
Encrypting MySQL data
at Google
Jonas Oreland

and
Jeremy Cole

bit.ly/google_innodb_encryption

Jonas Oreland

!

!

Software Engineer at Google
Has worked on/with MySQL since 2003
Has a current crush on Taylor Swift
Loves the German language and pretends to speak it fluently

Jeremy Cole
@jeremycole

!

!

Making MySQL Awesome at Google
Worked at MySQL 2000-2004
Contributor since 3.23
16 years in the MySQL community
Code, documentation, research, bug reports
Yahoo!, Proven Scaling, Gazillion, Twitter

Ceiling Cat

!

!

Reading your plaintext data since 2003
Grandmother (tabby) was owned by George Orwell
Worked for unnamed agencies for unknown governments
R.I.P. (2010)

The threat

Diverse set of threats to protect against

Access through network APIs (mysql client, etc.)
!

Access within from a running server (ptrace, memory dumping,
etc.)
!

Lost or misplaced disk
!

Backups

Not all threats are feasible to mitigate

A dedicated attacker with root access to a running instance and
unlimited time to attack it
!

An attacker with unlimited network access — we have to assume
that the network and shared services are reasonably secure

The alternatives

Column encryption in the application

Encrypt individual column data from the application or ORM
system
!

Direct access via SQL no longer possible
!

May not be feasible with many diverse users of applications
!

Completely incompatible with any 3rd party applications

Column encryption by middleware

Column encryption from a middleman — MyDiamo wraps
InnoDB and MyISAM storage engines
!

Column encryption via a connection proxy — CryptDB uses a
proxy in between client and server

Full system encryption / disk encryption

Block device / full disk encryption – dm-crypt encrypts the device
on which the filesystem is built. While mounted, files are accessed
as normal.

Our solution

Design goals and principles

Encrypt all user data that may touch the disk — InnoDB data,
InnoDB logs, binary logs, temporary tables, temporary files
!

Make drive-by data exfiltration impossible
!

An attacker has to steal data and have access to internal key
management systems

Technology and
Terminology

Definitions

AES — Advanced Encryption Standard — a standard with a set of
encryption primitives
IV — Initialization Vector — a starting point for an algorithm
Nonce — Random data used to randomize IV inputs
AES CTR — AES Counter Mode — block encryption, data stays the
same size, input to the counter must be unique
AES GCM — AES Galois/Counter Mode — authenticated block
encryption, data grows (new “tag” added)
Counter block — Input to AES CTR to guarantee unique/secure
output of repeated or known patterns

InnoDB data and redo logs

Key
Mgmt
Plugin

AES
ECB

AES
CTR

IV

Tablespace

Page

Key

Page 0
(FSP_HDR)

Google
Key

Mgmt.

Key Version

Nonce

Counter Block
Page Data

Encrypted
Page Data

InnoDB Space EncryptionInnoDB data and redo logs

InnoDB tablespaces (table and index data)
• InnoDB organizes data into (default) 16 KiB pages
• All pages are encrypted except for page 0 (FSP_HDR: header

and tablespace bookkeeping)
• Page 0 is augmented with Crypt Data, data need to perform

encryption/decryption
• The page header of all other pages are augmented with key

version
• The page header and trailer are not encrypted

InnoDB tablespaces (table and index data)

• PAGE 0 is not encrypted and is augmented with Crypt Data
Header

FIL Header (38)
FSP Header (zero-filled for XDES pages) (112)

FIL Trailer (8)

0

38

150

190

230

16384

16376

FSP_HDR/XDES Overview

XDES Entry 0 (pages 0- 63) (40)
XDES Entry 1 (pages 64- 127) (40)
XDES Entry 2 (pages 128- 191) (40)
XDES Entry 3 (pages 192- 255) (40)

...

XDES Entry 255 (pages 16320-16383) (40)
XDES Entry 254 (pages 16256-16319) (40)

270

310

10390

10350

10310

(Empty Space)

Crypt Data (28)

InnoDB tablespaces (table and index data)

• PAGE 0 is not encrypted and is augmented with Crypt Data
Header

Magic (6) = (’s’, 0xE, 0xC, ‘R’, ‘E’, ’t’)
0

6

7

8

24

Crypt Scheme (1) = 1
Length of IV (1) = 16

IV (16)
Minimum Key Version in Space (4)

28

Crypt Data Header

InnoDB tablespaces (table and index data)

Space ID (4)
0

4

Page Counter
Page Number (4)

8

16
LSN (8)

Key
Mgmt
Plugin

AES
ECB

AES
CTR

IV
Tablespace

Page

Key

Page 0
(FSP_HDR)

Google
Key

Mgmt.

Key Version

Nonce

Counter Block
Page Data

Encrypted
Page Data

InnoDB Space Encryption
InnoDB tablespaces (table and index data)

InnoDB redo logs (ib_logfileX)
• A redo log file is a series of log blocks
• The first 4 in logfile0 are not encrypted
• The checkpoint log blocks (2 & 4) are augmented with Crypt

Data
• All other log blocks are encrypted individually
• Each log block contains a checkpoint number
• Each checkpoint number has a Crypt Data Entry

InnoDB redo logs (ib_logfileX)

• A redo log file is a series of log blocks
• The first 4 in logfile0 are not encrypted

Log File Header Block
Checkpoint 1 Block

(Unused Block)

0

512

1024

1536

2048

Log File 0 Overview

Log blocks, each 512 bytes.

Checkpoint 2 Block

“Log Header”

Checkpoint Number (8)
0

8

Log Checkpoint
Checkpoint LSN (8)

Buffer Size (4)

16

20

Archived LSN (8)
28

36
Log Group Array (unused) (256)

Checksum 1 (4)
Checksum 2 (4)

FSP Free Limit (4)
FSP Magic Number (4)

292

296

300

304

Crypt Scheme (1) = 2
Number of Crypt Checkpoint Entries (1)

Crypt Checkpoint Entries (TBD)

Checkpoint Offset High Bytes (4)

Checkpoint Offset Low Bytes (4)

308

312

313

314

512

InnoDB redo logs (ib_logfileX)

• The checkpoint log blocks (2 & 4) are augmented with Crypt
Data

InnoDB redo logs (ib_logfileX)

• Each checkpoint number has a Crypt Data Entry
• Each Log Checkpoint block stores information about the last 5

checkpoints

Checkpoint Number Low Bytes (4)
0

4

Crypt Checkpoint Entry
Key Version (4)

Nonce (16)

8

24

40

IV (16)

InnoDB redo logs (ib_logfileX)

• All other log blocks are encrypted individually
• Each log block contains a checkpoint number

0

12

Log Block

Log records of variable length.

Total space available: 496 bytes.

512

Flush Flag (1 bit) + Block Number (4)
Data Length (2)

First Record Offset (2)
Checkpoint Number (4)

Checksum (4)

InnoDB redo logs (ib_logfileX)

Nonce (3)
0

3

Log Block Counter
Start LSN (8)

AES Counter (1)

11

15

16

Block Number (4)

Key
Mgmt
Plugin

AES
ECB

AES
CTR

IV
Log File

Log Block

Key

Checkpoint
Log Block

Google
Key

Mgmt.

Key Version
Nonce

Log Data

Encrypted
Log Block

InnoDB Redo Encryption

Counter Block
Counter

Checkpoint No
Offset

InnoDB redo logs (ib_logfileX)

InnoDB undo logs (record versions for MVCC)

Undo logs are stored in regular pages and are encrypted as well
!

Nothing special to make this work!

Key Management

An exercise for the reader…

We provide an example of the key management API
!

You have to write your own to be really useful/secure…

Google’s key management

Google has a proprietary key management plugin (which is not in
our public patch)
!

Keys are stored on other machines, fetched over the network
(using Google-proprietary authenticated and encrypted RPCs)
!

Keys are cached in RAM in mysqld

Key management plugin interface

Key
Mgmt
Plugin

AES
ECB

AES
CTR

IV

Tablespace

Page

Key

Page 0
(FSP_HDR)

Google
Key

Mgmt.

Key Version

Nonce

Counter Block
Page Data

Encrypted
Page Data

InnoDB Space EncryptionGetLatestKeyVersion()
GetCryptoKey(version, *key, key_size)

Key Rotation
(and scrubbing)

Goals

Set an upper bound on how long a key can be in use — each key
has a lifespan after which it is no longer used

How is key rotation done

Redo logs — dummy log entries are written regularly to ensure
that the log will be overwritten in a bounded time period
!

Temporary tables and files — always encrypted with the latest key
and have a bounded lifetime
!

Binary logs and relay logs — encrypted using the latest key, log
rotation ensures a bounded lifetime

InnoDB data

Each page has the key version it was encrypted with stored in the
header
Each tablespace has the oldest (minimum) key version stored in
the tablespace header
If the tablespace has any pages with a key older than the
minimum acceptable key version, key rotation is started on the
tablespace

Key rotation for InnoDB data

Ensure tablespace is marked as encrypted
Using N threads:

Read a page
Check f the key version is too old
If yes, mark the page as dirty to cause a flush
Flushed pages always use the newest key

After all pages are checked:
Make sure all modified pages are flushed
Update tablespace header in page 0 with new minimum key version
Flush page 0

Cleaning up data to limit attack surface

InnoDB tends to collect “garbage”:
• Deleted rows
• Old versions of modified rows
• Redo log space which hasn’t been overwritten
• Undo log space which hasn’t been reused

Binary Logs

MySQL binary logs (for replication)
• New event type, Start_encryption, containing IV and key version
• Encryption begins for all events after Start_encryption
• Each event is augmented with 20 bytes to hold length and crypt

tag
• Authenticated encryption AES-GCM

binary/relay logs

• Encryption begins for all events after Start_encryption

Format Descriptor Event (19+N event sizes)
Start Encryption Event (43+)

0

Binary Log Overview

Encrypted Log Events

binary/relay logs

• New event type, Start_encryption

Log Event Header (19)
0

19

Start Encryption Event
Crypt Scheme (4) = 1

Nonce (16)

23

27

43

Key Version (4)

binary/relay logs

• Each event is augmented with 20 bytes to hold length and crypt
tag

Event Length (4) = N
0

4

Encrypted Log Event
Encrypted Event Content (N)

4+N

4+N+16
AES GCM Tag (16)

Key
Mgmt
Plugin

AES
GCM

Binary Log

Event

Key
Start Encryption

Event

Google
Key

Mgmt.

Key Version
Nonce

IV

Data

Encrypted
Event

Binary Log Encryption

Offset

IV

GCM Tag

binary/relay logs

Temporary Tables (Aria)

Temporary tables during query execution (Aria)
• Aria supports many different file formats
• We encrypted only BLOCK_RECORD
• When encryption is enabled, the format is forced to

BLOCK_RECORD
• When encryption is enabled, checksumming is always turned

on
• We only use aria for temporary tables, so upgrade is not

supported.
• Encryption is performed using AES_CTR

Temporary tables (Aria)

• First N-blocks of a data-file contains table meta data
• Table meta-data is augmented with Crypt Data Header
• Crypt Data Header contains crypt scheme and 20 bytes nonce

(total 22 bytes)
• Header of data pages and blob pages are augmented with 4

bytes key version
• Header of transactional index pages are augmented with 4 byte

key version
• Header of non-transactional index pages are augmented with 4

byte key version and 8 byte nonce (instead of LSN)

Temporary Files
(sorting buffers mostly)

Temporary files (e.g filesort buffers)
• Encryption key generated and stored in memory only
• Data in encrypted in blocks
• Block size is configurable using
temp_file_encryption_block_size (32768)

• Each block is augmented with a 24 byte header

Block 0 (32768)

Temporary Files
Block 1 (32768)

...

Block N (32768)

0

24

Temporary File Block

Block Data (32744)

32768

Block Counter (8)
AES-GCM Tag (16)

8

He
ad

er

Temporary files (e.g filesort buffers)

Where to find the code…

Code
innodb data storage/fil/fil0crypt.cc
innodb redo log storage/log/log0crypt.cc
binary/relay logs sql/log_event.cc sql/log.cc
aria storage/maria/ma_crypt.c
temp files mysys/block_encrypted_io.cc

Google MySQL

See: code.google.com/p/google-mysql
!

Branch: mariadb-10.0.12/16-encryption
Branch: mariadb-10.0.12/17-scrubbing

MariaDB 10.1

MariaDB added encryption features to MariaDB 10.1 based
somewhat loosely on our encryption work
!

This was done very recently and we haven’t reviewed it
!

We’re discussing things…

Conclusion

Conclusions…

Google takes security very seriously
!

Security presentations are great for people with sleeping
problems — recording will be available for later use

Q&A

