High Performance MySQL Choices in Amazon Web Services: Beyond RDS

Andrew Shieh, SmugMug Operations shandrew @ smugmug.com

April 15, 2015

Agenda All about AWS **Current RDS alternatives** Cloud failures -> Cloud improvements Migrating MySQL into AWS MySQL backups in AWS The future

SmugMug—Who are we?

A > D > Heroes > SmugMug Super Heroes

Need Help? Everyone in the company is part of our Support Super Heroes contingent, they'll be glad to help you resolve issues over at the helpdesk

The early days of SmugMug

- Gradual bootstrapped growth
- Multiple self-managed datacenter cages
- Too many servers of varying types
- Too many disks
- Tons of valuable skilled employee hours spent in cages

Data Center Fantasy

SmugMug <3 AWS

Early adopter of Amazon S3

 Over the years, moved rendering, upload, archiving, payments, permissions, email, and more compute to AWS

 But DBs? Before mid-2012, no ultra-high performance I/O in AWS

• In 2013, we went 100% AWS

All About AWS

- AWS Customer Focus
 - amazing support
- Features
- Tech
- Cloud is not easy, and is far from a commodity!

RDS Alternatives

- Run your database hardware yourself,
- Connect via AWS
 Direct Connect
 (peering to AWS).

RDS Alternatives

- No! The hybrid cloud is a trap that will come back to bite you
- High I/O hardware, complexity goes up, costs can skyrocket

Use Amazon EC2

- Pre-EC2, our custom, obscure SSD hardware => difficult to resolve problems, difficult to upgrade
 - TRIM through FS, LVM, MD, driver layers: nightmare
 - Micron/Crucial 5000 hour bug
- hi1 overall DB IO performance comparable to 8 x SSD RAID10
- hi1 < 3%/yr instance failure rate! Many small important SSD details solved for you

EC2 i2.* instances: even better

- 1/2/4/8x sizes (up to 16 core, 244 GB RAM, 6.4 TB SSD)
- Better everything/\$ vs hi1
- Slightly higher failure rate, ~5%/yr

Two faces of EBS

- Since 2008, AWS' primary persistent storage
- Prior to 2013, large source of the major AWS outages: April 2011, October 2012, December 2012. Regional failures caused by cascading EBS failures
- Caused EBS-dependent services to fail as well
- So, we avoided it for production

Two faces of EBS

- But AWS has learned and continuously improved
- Limits on amount of reprovisioning when there's a failure
- Avoiding multi-AZ outages is key. Separate AZs as much as possible: independent power, networking, cooling, pushes

Two faces of EBS

- Mid-2012 EBS provisioned-IOPS: EBS on SSDs
- Late-2014 EBS gp2: EBS on SSDs now standard
- "EBS-optimized" lower latency high bw connections from EC2 to EBS at small cost
- 2015 EBS: 16 TB volumes

Use Amazon EC2+EBS?

- Improved EBS reliability/ technology=>greater use of it in production
- Cost advantages, select compute separately from SSD size
- Particularly useful for replicas and backups

SmugMug Architecture ~2006

AWS: S3

SV: Web, DB, Image*

SmugMug Architecture ~2011

AWS: S3

SV: Web, DB

AWS: S3, Image (upload,

processing, render, video, ...)

SmugMug Architecture - Transition

AWS: S3

SV: Web, DB

AWS: S3, Image*, Web

DC: Replication DB, Direct Connect

SmugMug Architecture Today

Zero Downtime Move Requirements

- Read-only site mode
- Traffic control shadow load
- Cross country MySQL replication + sufficient bandwidth
- Make sure replicas are caught up, go read only, then switch masters to your AWS MySQL instances

"High Availability" Solution for conventional MySQL

- Percona MySQL 5.5/5.6: Stable and well tested
- Other HA solutions address SPOF of conventional MySQL master replication
- But newer software may be less tested, more buggy. Bugs = SPOF

"High Availability" Solution for conventional MySQL

- Reduce failure exposure by distributing replicas in separate AZs, masters in one AZ
- Minimize master failure impact by switching to a read-only mode
- Recover quickly by reducing time needed to swap in new master

Controlling AWS costs

Reserved instances,
 1/3 year commit discount rates

Monitor usage always

Talk to your account manager

MySQL Backups in AWS

- With replicas on EBS, use EBS-S3 Snapshots
- Simple, fast, and only pay for changed blocks
- Snapshots also increases durability of your volumes
- Fast, lazy-loaded volume recovery. Your multi-TB backup can be ready in < ~5 min

MySQL Backups in AWS

- Percona xtrabackup
- Consistent, reliable, easy to manage
- Runs on production DB with minimal impact
- Choose your favorite storage method for short-term/long-term

The Future: PXC / Galera

High durability

Masterless, easy architecture

Easy to migrate in/out with replication

But little track record

 And performance penalties, esp crossdatacenter

Amazon Aurora

- Admin similar to RDS, backend all different
- MySQL 5.6 hacked up to separate cache, compute, and storage
- Compute: r3 (high RAM) EC2 instances only

Amazon Aurora: Storage

 A new storage method for AWS: Log-structured file system, on a single shared three-datacenter distributed system

 Master and all replicas share the same storage--each proceeding with replication by points in time on the log

- Server cost is 65-70% higher than equivalent EC2 instances - a bargain!
- Storage cost is same as GP2 EBS SSD, 10 cents/GB-mo, despite having 6 copies on SSD!
- IO charges similar to RDS
- Increased commit latency
- No replication in currently
- More details: watch Anurag Gupta's presentation (30m) at re:Invent 2014

Make your picks

- PXC and Aurora fix failure modes of traditional MySQL replication
- But add lots of unknowns
- The leading MySQL users continue to choose MySQL 5.6 with (mostly) traditional replication

Make your picks

- Amazon designed Aurora for customers like SmugMug!
- Trust = Reputation + Time x
 Track record
- AWS wants to "lock you in" by being the best choice. This is their time tested track record (YMMV)

Stuff we really like

- AWS S3 and VPC
- Stackdriver and NewRelic for monitoring
- Percona's support and tools
- Puppet, configuration management
- SmugMug's Super Heroes

Questions?

Andrew Shieh, Sunnyvale, CA shandrew @ smugmug.com @shandrew

http://www.smugmug.com/

http://pics.shieh.info/

Thank you!

Please email me to request an audio recording of my session.

