
Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Øystein Grøvlen
Senior Principal Software Engineer
MySQL Optimizer Team, Oracle
April 16, 2015

How to Analyze and Tune MySQL
Queries for Better Performance

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Introduction to MySQL cost-based optimizer

Selecting data access method

Join optimizer

Sorting

Tools for monitoring, analyzing, and tuning queries

Influencing the optimizer

1

2

3

4

5

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Introduction to MySQL optimizer

Selecting data access method

Join optimizer

Sorting

Tools for monitoring, analyzing, and tuning queries

Influencing the optimizer

1

2

3

4

5

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

MySQL Optimizer

SELECT a, b
FROM t1, t2, t3
WHERE t1.a = t2.b
 AND t2.b = t3.c
 AND t2.d > 20
 AND t2.d < 30;

MySQL Server

Cost based
optimizations

Heuristics

Cost Model
Optimizer

Table/index info
(data dictionary)

Statistics
(storage engine)

t2 t3

t1

Table
scan

Range
scan

Ref
access

JOIN

JOIN

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Cost-based Query Optimization

• Assign cost to operations

• Compute cost of partial or alternative plans

• Search for plan with lowest cost

• Cost-based optimizations:

General idea

Access method Subquery strategy Join order

t2 t3

t1

Table
scan

Range
scan

Ref
access

JOIN

JOIN

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• IO-cost:
– Estimates from storage engine based

on number of pages to read

– Both index and data pages

• Schema:
– Length of records and keys

– Uniqueness for indexes

– Nullability

• Statistics:
– Number of rows in table

– Key distribution/Cardinality:
• Average number of records per key value

• Only for indexed columns

• Maintained by storage engine

– Number of records in an index range

Input to Cost Model

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Cost Model Example

Table scan:

• IO-cost: #pages in table

• CPU cost: #rows * ROW_EVALUATE_COST

Range scan (on secondary index):

• IO-cost: #pages to read from index + #rows_in_range

• CPU cost: #rows_in_range * ROW_EVALUATE_COST

SELECT SUM(o_totalprice) FROM orders
WHERE o_orderdate BETWEEN '1994-01-01' AND '1994-12-31';

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Cost Model

EXPLAIN SELECT SUM(o_totalprice) FROM orders
WHERE o_orderdate BETWEEN '1994-01-01' AND '1994-12-31';

Example

EXPLAIN SELECT SUM(o_totalprice) FROM orders
WHERE o_orderdate BETWEEN '1994-01-01' AND '1994-06-30';

id
select
type

table type possible keys key
key
len

ref rows extra

1 SIMPLE orders ALL i_o_orderdate NULL NULL NULL 15000000 Using where

Id
select
type

table type possible keys key
key
len

ref rows extra

1 SIMPLE orders range i_o_orderdate i_o_orderdate 4 NULL 2235118
Using index
condition

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Cost Model Example: Optimizer Trace
join_optimization / row_estimation / table : orders / range_analysis

"table_scan": {
 "rows": 15000000,
 "cost": 3.12e6
} /* table_scan */,

"potential_range_indices": [
 {
 "index": "PRIMARY",
 "usable": false,
 "cause": "not_applicable“
 },
 {
 "index": "i_o_orderdate",
 "usable": true,
 "key_parts": ["o_orderDATE", "o_orderkey"]
 }

] /* potential_range_indices */,

…

"analyzing_range_alternatives": {

 "range_scan_alternatives": [
 {
 "index": "i_o_orderdate",
 "ranges": ["1994-01-01 <= o_orderDATE <= 1994-12-31"
],
 "index_dives_for_eq_ranges": true,
 "rowid_ordered": false,
 "using_mrr": false,
 "index_only": false,
 "rows": 4489990,
 "cost": 5.39e6,
 "chosen": false,
 "cause": "cost"
 }

] /* range_scan_alternatives */,

 …

} /* analyzing_range_alternatives */

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Cost Model vs Real World

Data in Memory Data on Disk Data on SSD

Table scan 6.8 seconds 36 seconds 15 seconds

Index scan 5.2 seconds 2.5 hours 30 minutes

Measured Execution Times

Force Index Range Scan:
SELECT SUM(o_totalprice)
FROM orders FORCE INDEX (i_o_orderdate)
WHERE o_orderdate BETWEEN '1994-01-01' AND '1994-12-31‘;

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Performance Schema

SELECT event_name, count_read, avg_timer_read/1000000000.0 “Avg Read Time (ms)”,
 sum_number_of_bytes_read “Bytes Read”
FROM performance_schema.file_summary_by_event_name
WHERE event_name='wait/io/file/innodb/innodb_data_file';

Disk I/O

event_name count_read Avg Read Time (ms) Bytes Read

wait/io/file/innodb/innodb_data_file 2188853 4.2094 35862167552

event_name count_read Avg Read Time (ms) Bytes Read

wait/io/file/innodb/innodb_data_file 115769 0.0342 1896759296

Index Range Scan

Table Scan

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Introduction to MySQL optimizer

Selecting data access method

Join optimizer

Sorting

Tools for monitoring, analyzing, and tuning queries

Influencing the optimizer

1

2

3

4

5

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Selecting Access Method

• For each table, find the best access method:
– Check if the access method is useful

– Estimate cost of using access method

– Select the cheapest to be used

• Choice of access method is cost based

Finding the optimal method to read data from storage engine

Main access methods:

 Table scan

 Index scan

 Ref access

 Range scan

 Index merge

 Loose index scan

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Ref Access

EXPLAIN SELECT * FROM customer WHERE c_custkey = 570887;

Single Table Queries

id
select
type

table type possible keys key
key
len

ref rows extra

1 SIMPLE customer const PRIMARY PRIMARY 4 const 1 NULL

EXPLAIN SELECT * FROM orders WHERE o_orderdate = ‘1992-09-12’;

id

select
type

table type possible keys key
key
len

ref rows extra

1 SIMPLE orders ref i_o_orderdate i_o_orderdate 4 const 6271 NULL

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Ref Access
Join Queries

EXPLAIN SELECT *
FROM orders JOIN customer ON c_custkey = o_custkey
WHERE o_orderdate = ‘1992-09-12’;

Id
select
type

table type possible keys key
key
len

ref rows extra

1 SIMPLE orders ref
i_o_orderdate,
i_o_custkey

i_o_orderdate 4 const 6271
Using
where

1 SIMPLE customer eq_ref PRIMARY PRIMARY 4
dbt3.orders.
o_custkey

1 NULL

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Ref Access
Join Queries, continued

EXPLAIN SELECT *
FROM orders JOIN customer ON c_custkey = o_custkey
WHERE c_acctbal < -1000;

Id
select
type

table type
possible
keys

key
key
len

ref rows extra

1 SIMPLE customer ALL PRIMARY NULL NULL NULL 1500000
Using
where

1 SIMPLE orders ref i_o_custkey i_o_custkey 5
dbt3.customer.
c_custkey

7 NULL

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Range Optimizer

• Goal: find the “minimal” ranges for each index that needs to be read

• Example:
SELECT * FROM t1 WHERE (key1 > 10 AND key1 < 20) AND key2 > 30

• Range scan using INDEX(key1):

• Range scan using INDEX(key2):

10 20

30

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Range Optimizer

 "analyzing_range_alternatives": {

 "range_scan_alternatives": [

 {

 "index": "i_a",

 "ranges": [

 "10 < a < 11",

 "11 < a < 19",

 "19 < a < 25"

],

 "index_dives_for_eq_ranges": true,

 "rowid_ordered": false,

 "using_mrr": false,

 "index_only": false,

 "rows": 3,

 "cost": 6.61,

 "chosen": true

 },

 {

 "index": "i_b",

 "ranges": [

 "NULL < b < 5",

 "10 < b"

],

 "index_dives_for_eq_ranges": true,

 "rowid_ordered": false,

 …

Optimizer Trace show ranges

SELECT a, b FROM t1
WHERE a > 10
 AND a < 25
 AND a NOT IN (11, 19))
 AND (b < 5 OR b > 10);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Range Optimizer: Case Study

SELECT * FROM orders
WHERE YEAR(o_orderdate) = 1997 AND MONTH(o_orderdate) = 5
 AND o_clerk = 'Clerk#000001866';

Why table scan?

id select type table type possible keys key key len ref rows extra

1 SIMPLE orders ALL NULL NULL NULL NULL 15000000 Using where

Index not considered
mysql> SELECT * FROM orders WHERE year(o_orderdate) = 1997 AND MONTH(…

...

15 rows in set (8.91 sec)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Some Reasons Why Index can not be Used

• Indexed column is used as argument to function
YEAR(o_orderdate) = 1997

• Looking for a suffix:
name LIKE ’%son’

• First column(s) of compound index NOT used
b = 10 when index defined over (a, b)

• Type mismatch
my_string = 10

• Character set / collation mismatch
t1 LEFT JOIN t2 ON t1.utf8_string = t2. latin1_string

20

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Range Optimizer: Case Study

SELECT * FROM orders
WHERE o_orderdate BETWEEN '1997-05-01' AND '1997-05-31'
AND o_clerk = 'Clerk#000001866';

Rewrite query to avoid functions on indexed columns

id
select
type

table type possible keys key
key
len

ref rows extra

1 SIMPLE orders range i_o_orderdate i_o_orderdate 4 NULL 376352
Using index
condition;
Using where

mysql> SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' AND …

...

15 rows in set (0.91 sec)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Range Optimizer: Case Study

CREATE INDEX i_o_clerk ON orders(o_clerk);

SELECT * FROM orders
WHERE o_orderdate BETWEEN '1997-05-01' AND '1997-05-31'
AND o_clerk = 'Clerk#000001866';

Adding another index

id
select
type

table type possible keys key
key
len

ref rows extra

1 SIMPLE orders range
i_o_orderdate,
i_o_clerk

i_o_clerk 16 NULL 1504
Using index condition;
Using where

mysql> SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' AND …

...

15 rows in set (0.01 sec)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Range Access for Multi-Column Index

• Table:

• INDEX idx(a, b, c);

• Logical storage layout of index:

Example table with multi-column index

10

1 2 3 4 5

10 11

1 2 3 4 5

12

1 2 3 4 5

13

1 2 3 4 5

a

b

c

11 12

pk a b c

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Range Optimizer: Case Study

CREATE INDEX i_o_clerk_date ON orders(o_clerk, o_orderdate);

SELECT * FROM orders
WHERE o_orderdate BETWEEN '1997-05-01' AND '1997-05-31'
AND o_clerk = 'Clerk#000001866';

Create multi-column index

id
select
type

table type possible keys key
key
len

ref
row
s

extra

1 SIMPLE orders range

i_o_orderdate,
i_o_clerk,
i_o_clerk_date

i_o_clerk_date 20 NULL 14
Using index
condition

mysql> SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' AND …

...

15 rows in set (0.00 sec)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Performance Schema: Query History

UPDATE performance_schema.setup_consumers
SET enabled='YES' WHERE name = 'events_statements_history';

mysql> SELECT sql_text, (timer_wait)/1000000000.0 “Time(ms)”, rows_examined Rows FROM

performance_schema.events_statements_history ORDER BY timer_start;

+---+----------+------+

| sql_text | Time(ms) | Rows |

+---+----------+------+

| SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' … | 8.1690 | 1505 |

| SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' … | 7.2120 | 1505 |

| SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' … | 8.1613 | 1505 |

| SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' … | 7.0535 | 1505 |

| CREATE INDEX i_o_clerk_date ON orders(o_clerk,o_orderdate) |82036.4190 | 0 |

| SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' … | 0.7259 | 15 |

| SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' … | 0.5791 | 15 |

| SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' … | 0.5423 | 15 |

| SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' … | 0.6031 | 15 |

| SELECT * FROM orders WHERE o_orderdate BETWEEN '1997-05-01' … | 0.2710 | 15 |

+---+----------+------+

MySQL 5.7:
 Enabled by default

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Introduction to MySQL optimizer

Selecting data access method

Join optimizer

Sorting

Tools for monitoring, analyzing, and tuning queries

Influencing the optimizer

1

2

3

4

5

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Join Optimizer

• Goal: Given a JOIN of N tables, find the best JOIN ordering

• Strategy:
– Start with all 1-table plans

– Expand each plan with remaining tables
• Depth-first

– If “cost of partial plan” > “cost of best plan”:
• “prune” plan

– Heuristic pruning:
• Prune less promising partial plans

• May in rare cases miss most optimal plan (turn off with set optimizer_prune_level = 0)

”Greedy search strategy”

t1

t2

t2

t2

t2

t3

t3

t3

t4 t4

t4

t4 t4

t3

t3 t2

t4 t2 t3

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Complexity and Cost of Join Optimizer

Heuristics to reduce the number of plans to
evaluate:

• Use optimizer_search_depth to limit the
number of tables to consider

• Pre-sort tables on size and key dependency
order (Improved in MySQL 5.6)

• When adding the next table to a partial plan,
add all tables that it has an equality reference
to (New in MySQL 5.6)

Join of N tables: N! possible plans to evaluate

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Join Optimizer: Case study

SELECT o_year, SUM(CASE WHEN nation = 'FRANCE' THEN volume ELSE 0 END) / SUM(volume) AS
mkt_share

FROM (

SELECT EXTRACT(YEAR FROM o_orderdate) AS o_year,
 l_extendedprice * (1 - l_discount) AS volume, n2.n_name AS nation
FROM part
 JOIN lineitem ON p_partkey = l_partkey
 JOIN supplier ON s_suppkey = l_suppkey
 JOIN orders ON l_orderkey = o_orderkey
 JOIN customer ON o_custkey = c_custkey
 JOIN nation n1 ON c_nationkey = n1.n_nationkey
 JOIN region ON n1.n_regionkey = r_regionkey
 JOIN nation n2 ON s_nationkey = n2.n_nationkey
WHERE r_name = 'EUROPE’ AND o_orderdate BETWEEN '1995-01-01' AND '1996-12-31’
 AND p_type = 'PROMO BRUSHED STEEL'

) AS all_nations GROUP BY o_year ORDER BY o_year;

DBT-3 Query 8: National Market Share Query

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Join Optimizer: Case Study
MySQL Workbench: Visual EXPLAIN

Execution time: 3 min. 28 sec.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Join Optimizer: Case Study

SELECT o_year, SUM(CASE WHEN nation = 'FRANCE' THEN volume ELSE 0 END) / SUM(volume) AS
mkt_share

FROM (

SELECT EXTRACT(YEAR FROM o_orderdate) AS o_year,
 l_extendedprice * (1 - l_discount) AS volume, n2.n_name AS nation
FROM part
 STRAIGHT_JOIN lineitem ON p_partkey = l_partkey
 JOIN supplier ON s_suppkey = l_suppkey
 JOIN orders ON l_orderkey = o_orderkey
 JOIN customer ON o_custkey = c_custkey
 JOIN nation n1 ON c_nationkey = n1.n_nationkey
 JOIN region ON n1.n_regionkey = r_regionkey
 JOIN nation n2 ON s_nationkey = n2.n_nationkey
WHERE r_name = 'EUROPE’ AND o_orderdate BETWEEN '1995-01-01' AND '1996-12-31’
 AND p_type = 'PROMO BRUSHED STEEL'

) AS all_nations GROUP BY o_year ORDER BY o_year;

Force early processing of high selectivity predicates

Highest selectivity

part before lineitem

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Join Optimizer: Case Study
Improved join order

Execution time: 7 seconds

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

MySQL 5.7: Cost Information in Structured EXPLAIN

Accumulated cost Total query cost

Cost per table
Improvements to Query 8 in MySQL 5.7:

• Filtering on non-indexed columns are taken into account

– No need for hint to force part table to be processed early

• Merge derived tables into outer query

– No temporary table

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Introduction to MySQL optimizer

Selecting data access method

Join optimizer

Sorting

Tools for monitoring, analyzing, and tuning queries

Influencing the optimizer

1

2

3

4

5

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

ORDER BY Optimizations

• General solution; “Filesort”:
– Store query result in temporary table before sorting

– If data volume is large, may need to sort in several passes with intermediate storage
on disk

• Optimizations:
– Take advantage of index to generate query result in sorted order

– For ”LIMIT n” queries, maintain priority queue of n top items in memory instead of
filesort. (New in MySQL 5.6)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Filesort
SELECT * FROM orders ORDER BY o_totalprice ;

SELECT c_name, o_orderkey, o_totalprice
FROM orders JOIN customer ON c_custkey = o_custkey
WHERE c_acctbal < -1000 ORDER BY o_totalprice ;

 id
select
type

table type
possible
keys

key
key
len

ref rows extra

1 SIMPLE customer ALL PRIMARY NULL NULL NULL 1500000
Using where;
Using temporary;
Using filesort

1 SIMPLE orders ref i_o_custkey i_o_custkey 5 ... 7 NULL

id
select
type

table type
possible
keys

key
key
len

ref rows extra

1 SIMPLE orders ALL NULL NULL NULL NULL 15000000 Using filesort

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Filesort

Status variables related to sorting:

mysql> SHOW STATUS LIKE 'Sort%';
+-------------------+--------+
| Variable_name | Value |
+-------------------+--------+
Sort_merge_passes	1
Sort_range	0
Sort_rows	136170
Sort_scan	1
+-------------------+--------+

Status variables

>0: Intermediate storage on disk.
Consider increasing sort_buffer_size

Number of sort operations
(range scan or table/index scans)

Number of rows sorted

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Filesort

Sorting status per statement available from Performance Schema

mysql> SELECT sql_text,sort_merge_passes,sort_range,sort_rows,sort_scan
 FROM performance_schema.events_statements_history
 ORDER BY timer_start DESC LIMIT 1;

+--------------+-------------------+------------+-----------+-----------+
| sql_text | sort_merge_passes | sort_range | sort_rows | sort_scan |
+--------------+-------------------+------------+-----------+-----------+
| SELECT ... | 1 | 0 | 136170 | 1 |
+--------------+-------------------+------------+-----------+-----------+

Performance Schema

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

mysql> FLUSH STATUS;

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT AVG(o_totalprice) FROM (

SELECT * FROM orders

 ORDER BY o_totalprice DESC

 LIMIT 100000) td;

+-------------------+

| AVG(o_totalprice) |

+-------------------+

| 398185.986158 |

+-------------------+

1 row in set (24.65 sec)

mysql> SHOW STATUS LIKE 'Sort%';

+-------------------+--------+

| Variable_name | Value |

+-------------------+--------+

| Sort_merge_passes | 1432 |

| Sort_range | 0 |

| Sort_rows | 100000 |

| Sort_scan | 1 |

+-------------------+--------+

4 rows in set (0.00 sec)

Filesort: Case Study

Unnecessary large data volume! Many intermediate sorting steps!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Filesort: Case Study

mysql> SELECT AVG(o_totalprice) FROM (SELECT o_totalprice FROM orders ORDER BY

o_totalprice DESC LIMIT 100000) td;

+-------------------+

| AVG(o_totalprice) |

+-------------------+

| 398185.986158 |

+-------------------+

1 row in set (8.18 sec)

mysql> SELECT sql_text, sort_merge_passes FROM performance_schema.

 events_statements_history ORDER BY timer_start DESC LIMIT 1;

+--+-------------------+

| sql_text | sort_merge_passes |

+--+-------------------+

| SELECT AVG(o_totalprice) FROM (SELECT o_totalprice | 229 |
+--+-------------------+

Reduce amount of data to be sorted

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Filesort: Case Study

mysql> SET sort_buffer_size = 1024*1024;

mysql> SELECT AVG(o_totalprice) FROM (SELECT o_totalprice FROM orders ORDER BY

o_totalprice DESC LIMIT 100000) td;

+-------------------+

| AVG(o_totalprice) |

+-------------------+

| 398185.986158 |

+-------------------+

1 row in set (7.24 sec)

mysql> SELECT sql_text, sort_merge_passes FROM performance_schema.

 events_statements_history ORDER BY timer_start DESC LIMIT 1;

+--+-------------------+

| sql_text | sort_merge_passes |

+--+-------------------+

| SELECT AVG(o_totalprice) FROM (SELECT o_totalprice | 57 |

+--+-------------------+

Increase sort buffer (1 MB)

Default is 256 kB

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Filesort: Case Study

mysql> SET sort_buffer_size = 8*1024*1024;

mysql> SELECT AVG(o_totalprice) FROM (SELECT o_totalprice FROM orders ORDER BY

o_totalprice DESC LIMIT 100000) td;

+-------------------+

| AVG(o_totalprice) |

+-------------------+

| 398185.986158 |

+-------------------+

1 row in set (6.30 sec)

mysql> SELECT sql_text, sort_merge_passes FROM performance_schema.

 events_statements_history ORDER BY timer_start DESC LIMIT 1;

+--+-------------------+

| sql_text | sort_merge_passes |

+--+-------------------+

| SELECT AVG(o_totalprice) FROM (SELECT o_totalprice | 0 |

+--+-------------------+

Increase sort buffer even more (8 MB)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Use Index to Avoid Sorting

CREATE INDEX i_o_totalprice ON orders(o_totalprice);

SELECT AVG(o_totalprice) FROM
(SELECT o_totalprice FROM orders ORDER BY o_totalprice DESC LIMIT 100000) td;

 id
select
type

table Type
possible
keys

key
key
len

ref rows extra

1 PRIMARY <derived2> ALL NULL NULL NULL NULL 100000 NULL

2 DERIVED orders index NULL i_o_totalprice 6 NULL 15000000 Using index

mysql> SELECT AVG(o_totalprice) FROM (

 SELECT o_totalprice FROM orders

 ORDER BY o_totalprice DESC LIMIT 100000) td;

...

1 row in set (0.06 sec)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Program Agenda

Introduction to MySQL optimizer

Selecting data access method

Join optimizer

Sorting

Tools for monitoring, analyzing, and tuning queries

Influencing the optimizer

1

2

3

4

5

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Useful tools

• MySQL Enterprise Monitor (MEM), Query Analyzer
– Commercial product

• Performance schema, MySQL SYS schema

• EXPLAIN

• Structured EXPLAIN (FORMAT=JSON)

• Visual EXPLAIN (MySQL Workbench)

• Optimizer trace

• Slow log

• Status variables (SHOW STATUS LIKE ’Sort%’)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

MySQL Enterprise Monitor, Query Analyzer

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Query Analyzer Query Details

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Performance Schema

• events_statements_history
events_statements_history_long
– Most recent statements executed

• events_statements_summary_by_digest
– Summary for similar statements (same statement digest)

• file_summary_by_event_name
– Interesting event: wait/io/file/innodb/innodb_data_file

• table_io_waits_summary_by_table
table_io_waits_summary_by_index_usage
– Statistics on storage engine access per table and index

Some useful tables

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Performance Schema

• Normalization of queries to group statements that are similar to be
grouped and summarized:

SELECT * FROM orders WHERE o_custkey=10 AND o_totalprice>20
SELECT * FROM orders WHERE o_custkey = 20 AND o_totalprice > 100

 SELECT * FROM orders WHERE o_custkey = ? AND o_totalprice > ?

• events_statements_summary_by_digest

DIGEST, DIGEST_TEXT, COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT,
MAX_TIMER_WAIT, SUM_LOCK_TIME, SUM_ERRORS, SUM_WARNINGS, SUM_ROWS_AFFECTED,
SUM_ROWS_SENT, SUM_ROWS_EXAMINED, SUM_CREATED_TMP_DISK_TABLES,
SUM_CREATED_TMP_TABLES, SUM_SELECT_FULL_JOIN, SUM_SELECT_FULL_RANGE_JOIN,
SUM_SELECT_RANGE, SUM_SELECT_RANGE_CHECK, SUM_SELECT_SCAN, SUM_SORT_MERGE_PASSES,
SUM_SORT_RANGE, SUM_SORT_ROWS, SUM_SORT_SCAN, SUM_NO_INDEX_USED,
SUM_NO_GOOD_INDEX_USED, FIRST_SEEN, LAST_SEEN

Statement digest

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Performance Schema

• Tables:
events_statements_current (Current statement for each thread)
events_statements_history (10 most recent statements per thread)
events_statements_history_long (10000 most recent statements)

• Columns:
THREAD_ID, EVENT_ID, END_EVENT_ID, EVENT_NAME, SOURCE, TIMER_START, TIMER_END, TIMER_WAIT,
LOCK_TIME, SQL_TEXT, DIGEST, DIGEST_TEXT, CURRENT_SCHEMA, OBJECT_TYPE, OBJECT_SCHEMA,
OBJECT_NAME, OBJECT_INSTANCE_BEGIN, MYSQL_ERRNO, RETURNED_SQLSTATE, MESSAGE_TEXT, ERRORS,
WARNINGS, ROWS_AFFECTED, ROWS_SENT, ROWS_EXAMINED, CREATED_TMP_DISK_TABLES,
CREATED_TMP_TABLES, SELECT_FULL_JOIN, SELECT_FULL_RANGE_JOIN, SELECT_RANGE,
SELECT_RANGE_CHECK, SELECT_SCAN, SORT_MERGE_PASSES, SORT_RANGE, SORT_ROWS, SORT_SCAN,
NO_INDEX_USED, NO_GOOD_INDEX_USED, NESTING_EVENT_ID, NESTING_EVENT_TYPE

Statement events

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

MySQL SYS Schema / ps_helper

• Started as a collection of views, procedures and functions, designed to
make reading raw Performance Schema data easier

• Implements many common DBA and Developer use cases

• MySQL 5.7.7: Included by default

• Bundled within MySQL Workbench

• Also available on GitHub
– https://github.com/MarkLeith/mysql-sys

• Examples of very useful functions:
– format_time() , format_bytes(), format_statement()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

MySQL SYS Schema

statement_analysis: Lists a normalized statement view with aggregated
statistics, mimics the MySQL Enterprise Monitor Query Analysis view,
ordered by the total execution time per normalized statement

 mysql> select * from statement_analysis limit 1\G

*************************** 1. row ***************************

query: INSERT INTO `mem__quan` . `nor ... nDuration` = IF (VALUES (...

db: mem

full_scan:

exec_count: 1110067

err_count: 0

warn_count: 0

total_latency: 1.93h

max_latency: 5.03 s

avg_latency: 6.27 ms

Example

lock_latency: 00:18:29.18

rows_sent: 0

rows_sent_avg: 0

rows_examined: 0

rows_examined_avg: 0

tmp_tables: 0

tmp_disk_tables: 0

rows_sorted: 0

sort_merge_passes: 0

digest: d48316a218e95b1b8b72db5e6b177788!

first_seen: 2014-05-20 10:42:17

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

EXPLAIN

{ "query_block": {
 "select_id": 1,
 "ordering_operation": {
 "using_filesort": false,
 "grouping_operation": {
 "using_temporary_table": true,
 "using_filesort": true,
 "table": {
 "table_name": "lineitem",
 "access_type": "ALL",
 "possible_keys": [
 "i_l_shipdate”
],
 "rows": 2829575,
 "filtered": 50,
 "attached_condition":
 "(`dbt3`.`lineitem`.`l_shipDATE` <=
 <cache>(('1998-12-01' - interval '118' day)))"
 } /* table */
 } /* grouping_operation */
 } /*ordering_operation */
 } /*query_block */ }

Structured EXPLAIN

EXPLAIN FORMAT=JSON

SELECT l_returnflag, l_linestatus, SUM(l_quantity)

FROM lineitem

WHERE l_shipdate <=

 DATE_SUB('1998-12-01', INTERVAL '118' DAY)

GROUP BY l_returnflag, l_linestatus

ORDER BY l_returnflag, l_linestatus;

FORMAT=JSON

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• attached_condition
"attached_condition": "(`test`.`t1`.`b` <> 30)"

• index_condition
“index_condition": "(`test`.`t1`.`c` = 10)”

• used_key_parts
"used_key_parts": [
 "o_clerk",
 "o_orderDATE"
],

• rows_examined_per_join (5.7)
"rows_examined_per_scan": 1,
"rows_produced_per_join": 3,

• Cost (5.7)
 "query_block": {

 "select_id": 1,
 "cost_info": {
 "query_cost": "6.41"
 } /* cost_info */,

...

 "table": { …

 "cost_info": {
 "read_cost": "3.00",
 "eval_cost": "0.60",
 "prefix_cost": "6.41",
 "data_read_per_join": "24"
 } /* cost_info */,

Structured EXPLAIN
Additional information compared to traditional EXPLAIN

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Optimizer Trace: Query Plan Debugging

• EXPLAIN shows the selected plan

• TRACE shows WHY the plan was selected:
– Alternative plans

– Estimated costs

– Decisions made

• JSON format

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Optimizer Trace: Example

SET optimizer_trace= “enabled=on“, end_markers_in_json=on;

SELECT * FROM t1, t2 WHERE f1=1 AND f1=f2 AND f2>0;

SELECT trace INTO DUMPFILE <filename>

 FROM information_schema.optimizer_trace;

SET optimizer_trace="enabled=off";

QUERY SELECT * FROM t1,t2 WHERE f1=1 AND f1=f2 AND f2>0;

TRACE “steps”: [{ "join_preparation": { "select#": 1,… } … } …]

MISSING_BYTES_BEYOND_MAX_MEM_SIZE 0

INSUFFICIENT_PRIVILEGES 0

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

5

Program Agenda

Introduction to MySQL optimizer

Selecting data access method

Join optimizer

Sorting

Tools for monitoring, analyzing, and tuning queries

Influencing the optimizer

1

2

3

4

6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Influencing the Optimizer

• Add indexes

• Force use of specific indexes:
– USE INDEX, FORCE INDEX, IGNORE INDEX

• Force specific join order:
– STRAIGHT_JOIN

• Adjust session variables
– optimizer_switch flags: set optimizer_switch=“index_merge=off”

– Buffer sizes: set sort_buffer=8*1024*1024;

– Other variables: set optimizer_prune_level = 0;

When the optimizer does not do what you want

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

MySQL 5.7: New Optimizer Hints

• Ny hint syntax:
– SELECT /*+ HINT1(args) HINT2(args) */ … FROM …

• New hints:
– BKA(tables)/NO_BKA(tables)

– BNL(tables)/NO_BNL(tables)

– MRR(table indexes)/NO_MRR(table indexes)

– NO_ICP(table indexes)

– NO_RANGE_OPTIMIZATION(table indexes)

– QB_NAME(name)

• Finer granularilty than optimizer_switch session variable

59

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Optimizer Hints

• Hints for subquery / semi-join execution:
SELECT /*+ SEMIJOIN(@subq1 LOOSESCAN)

 NO_SEMIJOIN(@subq2 DUPSWEEDOUT) */ a, b FROM t1

WHERE a IN (SELECT /*+ QB_NAME(subq1) c FROM t2 WHERE d > 10)
 AND b IN (SELECT /*+ QB_NAME(subq2) e FROM t3);

• Other hints to consider
– Enable/disable merge of views and derived tables

– Force/ignore index_merge alternatives

– Join order: LEADING(t1 t2 ...)

• Plan to reimplement existing hints in new syntax

60

Future hints

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

MySQL 5.7: Query Rewrite Plugin

• Rewrite problematic queries without the need to make application changes
– Add hints

– Modify join order

– Much more …

• Add rewrite rules to table:

 INSERT INTO query_rewrite.rewrite_rules (pattern, replacement) VALUES
 ("SELECT * FROM t1 WHERE a > ? AND b = ?",
 "SELECT * FROM t1 FORCE INDEX (a_idx) WHERE a > ? AND b = ?");

• New pre and post parse query rewrite APIs
– Users can write their own plug-ins

61

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

More information

• My blog:
– http://oysteing.blogspot.com/

• Optimizer team blog:
– http://mysqloptimizerteam.blogspot.com/

• MySQL Server Team blog
– http://mysqlserverteam.com/

• MySQL forums:
– Optimizer & Parser: http://forums.mysql.com/list.php?115

– Performance: http://forums.mysql.com/list.php?24

http://oysteing.blogspot.com/
http://mysqloptimizerteam.blogspot.com/
http://mysqloptimizerteam.blogspot.com/
http://forums.mysql.com/list.php?115
http://forums.mysql.com/list.php?24

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Q&A

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

