
InnoDB:
A journey to the core III

Jeremy Cole and Davi Arnaut

bit.ly/innodb_journey_iii

Jeremy Cole
@jeremycole

!

!

Making MySQL Awesome at Google
Worked at MySQL 2000-2004
Contributor since 3.23
16 years in the MySQL community
Code, documentation, research, bug reports
Yahoo!, Proven Scaling, Gazillion, Twitter

Davi Arnaut
@davi

!

!

MySQL Internals development at LinkedIn
Worked at MySQL 2007-2011
Designed and built Twitter and LinkedIn MySQL
Long time Open Source contributor: Apache, Linux kernel, etc.

About this work...

Not intended to be comprehensive
Not authoritative (it is based on research)
One of the best sources of documentation for InnoDB formats
!

Approach:
 1. Read the C and C++ sources
 2. Implement in Ruby
 3. Refactor and correct until reasonable
 4. Document!

Resources

blog.jcole.us/innodb/
!

github.com/jeremycole/innodb_ruby
!

groups.google.com/forum/#!forum/innodb_ruby
!

innodb_ruby@googlegroups.com
!

Overview of
InnoDB Compression

The high-level idea

Each page is compressed using zlib to save space
Usage of compression is transparent to the user
Save disk space and IO size/throughput at the cost of CPU,
memory usage, and complexity

Enabling compression

Use of innodb_file_per_table is required
Page sizes are 1, 2, 4, 8, or 16 KiB
Page size is the same for all pages in the space
!

CREATE TABLE (...)
ENGINE=InnoDB
ROW_FORMAT=COMPRESSED
KEY_BLOCK_SIZE=N

The implementation

Index usage in memory is only on uncompressed (16 KiB) pages
When a page is modified, both the compressed version of the
page and the uncompressed version are modified
Only the compressed page is flushed to disk
The uncompressed page is discarded when no longer needed
The buffer pool can contain both the compressed and
uncompressed version of each page at the same time
Uncompressed pages are evicted from the buffer pool first,
compressed pages in the buffer pool act as a cache

The modification log

As modifications to a page are made, they are appended to a
modification log inside the page
The modification log grows to consume the free space in a page
The page must be re-organized (re-compressed), or split when:
• The free space in the page is exhausted; or
• The page no longer compresses to the target page size
Pages initially start empty, with no compressed data; the
modification log grows until full when the page is re-organized
and that data is moved to the compressed data section

The buffer pool buddy system

Pages in the buffer pool are always 16 KiB (UNIV_PAGE_SIZE)
Pages can be borrowed into the “buddy system” where they can
be sub-divided into smaller (8, 4, 2, or 1 KiB) blocks
Management of buffer pool free space becomes a lot more
complicated when multiple pages sizes are in use
For example, in the worst case, almost the entire buffer pool can
be buddied as 8 KiB pages, of which half are free, but no two
halves of a single 16 KiB page are free, so a page must be evicted
to free a 16 KiB contiguous block

Physical Structures

FIL Header (38)
INDEX Header (36)
FSEG Header (20)

System Records (26)

User Records

Records are un-ordered physically but singly-linked to each other
via "next" pointers to the byte offset of the next record in

ascending order.

Page Directory

The page directory grows downwards from the FIL trailer in
ascending order by key. The number of entries is stored in the

INDEX header.

Free Space

FIL Trailer (8)

0

38

74

94

120

16384

16376

Heap
Top

INDEX Overview

FIL Header (38)
INDEX Header (36)
FSEG Header (20)

Compressed Record Data

Dense Page Directory

(Free Space)

0

38

74

94

INDEX Overview

Modification Log

Trailer Data

ZLIB Header

Description 1

Compressed Index Data

Description 2
Description 3
Description 4
Record Data 1
Record Data 2
Record Data 3
Record Data 4

Key fields

System Fields

Non-key fields

Key fields

System Fields

Non-key fields

Key fields

System Fields

Non-key fields

Key fields

System Fields

Non-key fields

TRX_ID/ROLL_PTR 4
TRX_ID/ROLL_PTR 3
TRX_ID/ROLL_PTR 2
TRX_ID/ROLL_PTR 1

Slot 3
Slot 2
Slot 1
Slot 0

Record 4: “D”

Record 3: “B”

Record 2: “C”

Record 1: “A”

Uncompressed
Index Records

Compressed Data

Uncompressed Data

ZLIB Header

Description 1

Compressed Index Data

Description 2
Description 3
Description 4
Record Data 1
Record Data 2
Record Data 3
Record Data 4

Key fields

System Fields

Non-key fields

Key fields

System Fields

Non-key fields

Key fields

System Fields

Non-key fields

Key fields

System Fields

Non-key fields

TRX_ID/ROLL_PTR 4
TRX_ID/ROLL_PTR 3
TRX_ID/ROLL_PTR 2
TRX_ID/ROLL_PTR 1

Slot 3
Slot 2
Slot 1
Slot 0

Record 4: “D”

Record 3: “B”

Record 2: “C”

Record 1: “A”

Uncompressed
Index Records

Compressed Data

Uncompressed Data

ZLIB Header

Description 1

Compressed Index Data

Description 2
Description 3
Description 4
Record Data 1
Record Data 2
Record Data 3
Record Data 4

Key fields

System Fields

Non-key fields

Key fields

System Fields

Non-key fields

Key fields

System Fields

Non-key fields

Key fields

System Fields

Non-key fields

TRX_ID/ROLL_PTR 4
TRX_ID/ROLL_PTR 3
TRX_ID/ROLL_PTR 2
TRX_ID/ROLL_PTR 1

Slot 3
Slot 2
Slot 1
Slot 0

Record 4: “D”

Record 3: “B”

Record 2: “C”

Record 1: “A”

Uncompressed
Index Records

Compressed Data

Uncompressed Data

Heap Number (1-2)
Record Data

Modification Log

End Marker (1) = 0

En
tr

y
1

Heap Number (1-2)
Record Data En

tr
y

2

Heap Number (1-2)
Record Data En

tr
y

N

...

TRX_ID (6)
Roll Pointer (5)

Trailer Data
En

tr
y

1
En

tr
y

2
En

tr
y

N

...

TRX_ID (6)
Roll Pointer (5)

TRX_ID (6)
Roll Pointer (5)

Dense Page Directory

...

Record Offset (14 bits)

Deleted Flag (1 bit)

Sl
ot

 0 Owned Flag (1 bit)

Record Offset (14 bits)

Deleted Flag (1 bit)

Sl
ot

 1 Owned Flag (1 bit)

Record Offset (14 bits)

Deleted Flag (1 bit)

Sl
ot

 N Owned Flag (1 bit)

The dense page directory contains one entry per records, in the key’s collation order.
All directory slots will own a minimum of 4 and maximum of 8 records.
The page directory grows "downwards" from the end of the page.

Problems with
Compression

Many bugs, problems, inefficiencies

Facebook has worked for the past several years to fix
!

Probably should use at least MySQL 5.6 to get these fixes, older
versions are not good
!

Quirks with the specific version of zlib used and upgrading; if the
zlib version changes, compressed data may change size, so
currently in some cases the entire compressed page is redo
logged for safety

Compression is overly complicated :)

Lots of “if (page_zip)“ everywhere, lots of “_zip” variations of
functions — compression support leaks all over the code base
!

It is difficult to monitor and to tell what it’s doing and why
!

Bad abstraction, tied to zlib implementation/design

MySQL Bug #67963: “InnoDB wastes almost one extent out of
every innodb_page_size pages”
!

Very little waste (0.37%) with regular uncompressed 16 KiB pages,
but up to 24.8% waste in worst case (innodb_page_size=4k,
key_block_size=1).
!

Typical waste 0.75% with default 16 KiB page size and
key_block_size=8.

Disk space waste with smaller page sizes

Onwards

Facebook’s
InnoDB Compression Posts

facebook.com/MySQLatFacebook/notes

Facebook’s
“InnoDB Defragmentation”

Rongrong Zhong
!

Today @ 15:50 in Ballroom A

Q & A

