InnoDB
Change Buffering

Davi Arnaut




Davi Arnaut
@davi

MySQL Internals development at LinkedlIn

Worked at MySQL 2007-2011
Designed and built Twitter MySQL
Long time Open Source contributor: Apache, Linux kernel, etc.



Overview of
InnoDB Change Buffering



The high-level idea

Consists of buffering modifications (insert, delete and purge
operations) to non-unigque secondary indexes.

Modifications to secondary indexes usually happen in relatively
random (primary key) order, potentially causing a lot of random
disk 1/0 operations.

Instead of performing these random |I/O operations necessary to
read secondary index pages, modifications are cached in a special
data structure named the change buffer.



Enabling change buffering

System variable innodb_change_buffering
*INnserts
+ deletes
* purges
+ changes (inserts and delete-mark)
- all (default)
* none

SET GLOBAL i1nnodb_change_buffering = “.”
SET GLOBAL 1i1nnodb_change_buffer_max_size = 25;



The implementation

A modification is cached when the relevant secondary index leaf
page necessary to perform the operation is not in the buffer pool.

When an operation on a secondary index page is buffered, an
entry is set on the change buffer bitmap to indicate that changes
are pending for that page.

Buffered changes are merged when relevant secondary index

pages are read from disk, or periodically and in batches by a
background thread.



Change Buffer

The change buffer, where modifications are cached, is a special
table/index stored in the system tablespace. The number of the
root page of the change buffer index is 4.

The clustering key is roughly a space ID and page number, which
IS the location of where the modification would have been made.

Whenever a secondary page index page is read, the change
buffer bitmap is checked for pending merges. Otherwise, the
change buffer index is randomly traversed for merges.



Physical Structures




High-level Overview

|/_ __________________________________________________________________________________________________________ \
I I
! — Buffer Pool LRU Data Dictionary Cache |
| O Page Cache |
| g) D? :
| = C , Buffer Pool Flush List Additional Mem Pool |
0 RS Adaptive Hash Indexes !
qV |
O = |
| m :
| |
I |
\ !
|/— __________________________________________________________________________________________________________ \
I I
! Log Buffer |
| Eg S i
= o i
09 5 DI
I
2 @ 0 iblogfileo > iblogfilel > iblogfile2 |
| S P 9 !
e :
I I
I I
\ !
|/— __________________________________________________________________________________________________________ \
! Tables with |
: IBUF_HEADER Doublewrite Buffer Data Dict. f'ile_per_table :
Y E 2 IBUF_TREE Block 1 (64 pages) SYS_TABLES T i
i % © O TRX_SYS Block 2 (64 pages) SYS_COLUMNS ' :
D 2 2 RSEG_HDR SYS_INDEXES B.1ibd |
: DICT_HDR UNDO_LOG SYS_FIELDS . |
: C.1bd !
I I
\ )



16

32

43

256

512

KiB

KiB

KiB

MiB

MiB

Space File Overview

FSP_HDR: Filespace Header / Extent Descriptor

IBUF_BITMAP: Insert Buffer Bookkeeping

INODE: Index Node Information

More pages

XDES: Extent descriptor for next 16,384 pages

IBUF_BITMAP: IBUF Bitmap for next 16,384 pages

More pages

XDES: Extent descriptor for next 16,384 pages

IBUF_BITMAP: IBUF Bitmap for next 16,384 pages

More pages




38

8230

16376

16384

IBUF BITMAP Overview

FIL Header (38)

Change Buffer Bitmap (pages 0-16384) (8192)
(4 bits per page)

(Empty Space: 8,146 bytes)

FIL Trailer (8)




IBUF_BITMAP Page Entry

Free Space (2 bits)

Buffered Flag (1 bit)

Change Buffer Flag (1 bit)




Record Format - Change Buffer - Leaf Pages

Space ID (4)

Field Marker (1)

Page Number (4)

Metadata

Operation Counter (2)

Operation Type (2)

Flags (1)

Type Info. 1

Data Type (1)

“Precise” Data Type (1)

Length (2)

Collation Code (2)

Type Information N

Secondary Index Fields (j)




Problems with Change Buffering




XtraBackup Bug#1366065

Exporting tables is inefficient when backup contains a
large (and unrelated) change buffer






