

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Evgeny Potemkin
Snr Principal Engineer

Manyi Lu
Snr Engineering Manager

MySQL Optimizer Team
April, 2015

JSON Support in MySQL

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction

JSON datatype

Functions to handle JSON data

Indexing of JSON data

Examples

Performance

1

2

3

4

5

6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Why JSON support in MySQL?

• Convenient object serialization format

• Need to effectively process JSON data

• Provide native support for JavaScript applications

• Seemless integration of relational and schema-less data

• Leverage existing database infrastructure for new applications

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Storage Options

• Text
–Fast to insert

–Human-readable

• Binary
–Validate only once

–Fast access

– In-place updates

–Requires validation

–Requires parsing

–Hard to update

–Slower to insert

–Unreadable as-is

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

New JSON datatype

• Optimized for read intensive workload

• Parse and validation on insert only

• Dictionary
– Sorted objects’ keys

– Fast access to array cells by index

• In-place updates (future enhancement in SE), space reservation

• Smart size: 64K & 4G

• UTF8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

New JSON datatype: Supported Types

• ALL native JSON types
–Numbers, strings, bool

–Objects, arrays

• Extended
–Date, time, datetime, timestamp

–Other

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Examples: CREATE and INSERT

CREATE TABLE t1 (data JSON);

INSERT INTO t1(data) VALUES

(‘{ "series": 1}’), (‘{ "series": 7}’), (‘{ "series": 3}’),

(‘{ "series": 4}’), (‘{ "series": 10}’), (‘{ "series": 2}’),

(‘{ "series": 6}’), (‘{ "series": 5}’), (‘{ "series": 8}’),

(‘{ "series": 11}’);

9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Examples: more on INSERT

INSERT INTO t1(data) VALUES

(‘{ “a”: “valid”, “json”: [“text”] }’),

(JSN_QUOTE('some, might be formatted, { text } with "quotes"'));

10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Examples: SELECT

> SELECT * FROM t1 LIMIT 3;

+-----------------+

| data |

+-----------------+

| {"series": 1} |

| {"series": 7} |

| {"series": 3} |

+-----------------+

11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JSON Comparator: Design Principles

• Polymorphic behavior

• Seamless and consistent comparison
–JSON vs JSON, JSON vs SQL

–Different data types always non-equal

–No automatical type conversion

• Robustness

• Extensive use of caching

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JSON Comparator: example

SELECT * FROM t1 WHERE

jsn_extract(data,"$.series") >= 7 AND

jsn_extract(data,"$.series") <=10;

+-------------------+

| data |

+-------------------+

| {"series": 7} |

| {"series": 10} |

| {"series": 8} |

+-------------------+

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

New Functions to Handle JSON Data: Path

[[[database.]table.]column]$<path spec>

• Path expr
[[[database.] table.] field]

$

.identifier

[array]

.* and [*]

**

• Example
–db.phonebook.data (future extension)

–document’s root

–$.user.address.street

–$.user.addresses[2].street

–$.user.addresses[*].street

–$.user**.phone

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

New functions to handle JSON data: Funcs

• Info
–JSN_VALID()

–JSN_TYPE()

–JSN_KEYS()

–JSN_LENGTH()

–JSN_DEPTH()

–JSN_CONTAINS_PATH()

15

• Modify

–JSN_REMOVE()

–JSN_APPEND()

–JSN_SET()

–JSN_INSERT()

–JSN_REPLACE()

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

New functions to handle JSON data: Funcs

• Create
–JSN_MERGE()

–JSN_ARRAY()

–JSN_OBJECT()

16

• Get data
–JSN_EXTRACT()

–JSN_SEARCH()

• Helper
–JSN_QUOTE()

–JSN_UNQUOTE()

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Examples: CREATE + SELECT

CREATE TABLE t2 AS

SELECT

JSN_OBJECT("b_series",

JSN_ARRAY(

JSN_EXTRACT(data, "$.series")))

AS data

FROM t1;

17

> SELECT * FROM t2 LIMIT 3;

+----------------------+

| data |

+----------------------+

| {"b_series": [1]} |

| {"b_series": [7]} |

| {"b_series": [3]} |

+----------------------+

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Examples: UPDATE + join

UPDATE t1, t2

SET t1.data=

JSN_INSERT(t1.data,"$.inverted",

11 – JSN_EXTRACT(t2.data,"$.b_series[0]"))

WHERE

JSN_EXTRACT(t1.data, "$.series") =

JSN_EXTRACT(t2.data,"$.b_series[0]");

18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Examples: result of UPDATE

> SELECT * FROM t1 LIMIT 3;

+-------------------------------------+

| data |

+-------------------------------------+

| {"series": 1, "inverted": 10} |

| {"series": 7, "inverted": 4} |

| {"series": 3, "inverted": 8} |

+-------------------------------------+

19

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Examples: a subquery

SELECT * FROM t1

WHERE JSN_EXTRACT(data,"$.series") IN

(

SELECT JSN_EXTRACT(data,"$.inverted")

FROM t1

WHERE JSN_EXTRACT(data,"$.inverted")<4

);

20

+-------------------------------------+

| data |

+-------------------------------------+

| {"series": 1, "inverted": 10} |

| {"series": 3, "inverted": 8} |

+-------------------------------------+

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Indexing JSON data

• Use Functional Indexes, Luke 

• STORED and VIRTUAL types are supported

21

CREATE TABLE t1

(data JSON, id INT AS (JSN_EXTRACT(data,”$.id”)) STORED,

PRIMARY KEY(id));

ALTER TABLE t1

ADD COLUMN id INT AS (JSN_EXTRACT(data, "$.series")),

ADD INDEX id_idx (id);

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Indexing JSON data: STORED vs VIRTUAL

• STORED
–Primary & secondary

–BTREE, FTS, GIS

–Mixed with fields

–Req. table rebuild

–Not online

22

• VIRTUAL
–Secondary only

–BTREE only

–Mix with virtual column only

–No table rebuild

– Instant ALTER (Coming soon!)

–Faster INSERT

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Indexing JSON data: an example

SELECT data FROM t1 WHERE

–JSN_EXTRACT(data,"$.series") BETWEEN 3 AND 5;

– id BETWEEN 3 AND 5;

23

+------------------------------------+----+

| data | id |

+------------------------------------+----+

| {"series": 3, "inverted": 8} | 3 |

| {"series": 4, "inverted": 7} | 4 |

| {"series": 5, "inverted": 6} | 5 |

+------------------------------------+----+

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Indexing JSON data: an example

> EXPLAIN SELECT data FROM t1 WHERE JSN_EXTRACT(data,"$.series")
BETWEEN 3 AND 5;

+----+----------------+--------+---------------+--------+…+------------------------------+

| id | select_type | table | partitions | type | | Extra |

+----+----------------+--------+---------------+--------+…+------------------------------+

| 1 | SIMPLE | t1 | NULL | range | | Using index condition |

+----+----------------+--------+---------------+--------+…+------------------------------+

24

select `test`.`t1`.`data` AS `data` from `test`.`t1`

where (`test`.`t1`.`id` between 3 and 5)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Comparison to Facebook’s solution

• Path expr
–Glob ops

–Deterministic name resolution

–JSON manipulation functions

• More generic indexes
–Primary keys

–Virtual secondary keys

–Any MySQL data type

• More versatile comparator

• Different format

– In-place updates

– Faster lookups

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Roadmap

• Online alter for virtual columns

• Advanced JSON functions

• In-place update of JSON/BLOB

• Full text and GIS index on virtual columns

• Improved performance through condition pushdown

26

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Questions?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Thank You!

