
MANAGING MULTI-DC MYSQL
INSTALLATION WITH CHEF

Tatyana Arenburg
14/04/2015 tata@wix.com

mailto:tata@wix.com

What’s on the menu?

• System architecture overview
– DB per service approach
– Multi-instance MySQL

• MySQLer cookbook
– Install & config MySQL instances
– Create new replica
– Automate credentials

2

How MySQLer will simplify your life?

• Manage MySQL instances (multi or single)

• Create replica of existing server with just
minutes of work

• 3 techniques to automate credentials.

• Handle MySQL upgrade and backward
compatibility (distributions).

3

Some WIX numbers

• 7 Data Centres (both physical and cloud)

• ~ 500 Servers + 100s on demand cloud instances

• ~100 different services

• 150 MySQL instances of 30 databases

• ~7TB of production master data

• ~63M users over the globe

4

System Architecture 5

• Multi system architecture usually looks like:

DO NOT TOUCH
ANY OF THIS WIRES

DB per service approach

• Each data set has it own requirements of:
– Availability (how many 9’s?, which DCs)
– Durability (can data be lost in failure?)
– Scalability (reads and writes throughput)

• Different working sets (memory)

• Simple data size planning

6

Multi Instance MySQL

• Pros:
– Increase flexibility
– Decrease costs

• Cons:
– Complex management

• How?
– fake-chef-client cookbook

7

Server

.

.

MySQL app1

MySQL app2

MySQL app3

MySQL appN

Fake-chef-client

• What?
– Run chef client for each IP/instance

• How?
– Add additional config files
– Run chef client in the background

8

Our Chef Toolkit 9

Passwords

Databags

Users

fake-chef-client

Cookbook

mysqler mysql_app1

mysql_parent

Roles

mysql_app2

Ph
ys

ic
al

Se

rv
er

Ad
di

ti
on

al
 IP

mysqler::install_server

Steps to create new functioning replica 10

• Step I
– Install binaries
– Configure instance

• Step II
– Get data from another replica/master
– Add grants

• Step III

– Add monitoring

Installation and configuration of MySQL instances

• Wrapper Cookbook Attributes
– Tunings, relevant to all servers

• Role
– App_name if multi-instance is used
– Default innodb_buffer_pool_size for your application.
– Auto_increment_increment

• Node
– innodb_buffer_pool_size -if differs from role
– Auto_increment_offset

11

* Default only

Cookbook

Role

Node

Building new replica - Rebuild strategies

• Dump
– Schema changes before data transfer.
– Start io_slave together with dump start.
– No need in additional software.

• Xtrabackup
– Replica is synced immediately after rebuild
– Requires additional software

• Data snapshots

12

Using snapshots to create new replica 13

• Potential problems
– Forgotten snapshot can leave you with no

available disk space on source DB
– Not properly flushed data can waste your

time, and you will need to start all over
again.

Automated credentials

• Local and monitoring users
– Predefined passwords
– Created from encrypted

databag
– or created from template

14

{
 "id": "mysql",
 "users": {
 "root": {
 "password": "root_password",
 "grants": {
 "db": "*",
 "actions": "SELECT"
 },
 "sources": ["localhost"]
 }
 }
}

Automated credentials

• Application credentials
– Generated passwords
– Created from "users" data-

bag

*Also used to find the servers by application

15

{
 "id": "app_name",
 "users": {
 "app1": {
 "db_name": "db1",
 "table_names": ["*"],
 "privileges": {
 "ro": "SELECT",
 "rw": "SELECT, INSERT",
 },
 "action": "create"
 }
 }
}

Summary

• Defining system architecture

• Create wrapper cookbook

• Add users and applications to data-bags

• Choose rebuild strategy

16

Q&A 17

