
Hello

Managing MySQL Scale Through Consolidation

Percona Live 04/15/15

Chris Merz, @merzdba

DB Systems Architect, SolidFire

Enterprise Scale MySQL Challenges

• Many MySQL instances (10s-100s-1000s)

• Often 100s of GB or multi-TB range

• Capacity planning and resource management

• Quickly respond to changing requirements

• Ability to quickly scale in real-time

Confidently Planning for the Future

• Understand application data storage profile

• Predict growth trajectory for MySQL platform

• Capacity planning and resource management
– Compute Resources

– Memory Allocation

– Storage Resources

• Growth and scaling plan for application

• Public cloud TCO tipping-point plan

Planning for the Future: Compute

• Compute Resources

– What is contributing to total CPU consumption?

(query processing, i/o wait, virtualized steal?, etc)

– Is CPU utilization truly driven from mysqld

churning and processing data (rather than wait,

steal, network wait, etc)?

– What is the CPU growth rate for your systems?

Planning for the Future: Memory

• Memory Resources

– Memory bound?

– ‘Hot set’ of data fit in memory?

– Are queries optimized to only pull required
data?

– Indexes? Over indexed? Under indexed?

– When is the next RAM increase required?

Planning for the Future: Storage

• Storage Resources
– Disk resource heavy?

– IOPS bound?

– Max IOPS ceiling for disk configuration?

– Disk latencies within acceptable tolerance?

– Sequential reads, large chunk processing?

– More random in nature? Disk heads thrashing?

– Is flash memory required?

– Disk usage consumption rate?

– When is the next storage addition required?

– How will you add that capacity?

– Extend existing filesystem natively? (xfs_grow)

– Filesystem-per-database strategy (symlinks)?

Planning for the Future: Topology

• MySQL topology scaling plan
– Master cluster servers (Percona Cluster, Galera)

– Master shard servers (Homegrown, ClusterixDB, etc)

– Slave servers (read-heavy environments)

– DevTest instances that require prod db copies

– Reporting and Data Warehouse instances

– Public vs Private Cloud

– Orchestration, OpenStack, DBaaS: Trove

Instrument and Gather

• System Performance Data is Essential

– Quantify change rate over time

– Monitor every layer, from app to storage

– Zabbix, Zenoss, Munin, Cacti, Nagios, Graphite

– Critical to real-time troubleshooting

“Trust in God, all others bring Data”

Larger Data Sets == Larger Challenges

• Automation increasingly important

• Leverage software defined infrastructure

• Quickly react to increase performance

• Deploy additional slaves for read scaling

• Refresh DevTest, QA, Business copies

• Improve Backup and Restore times

Leverage Point: Pivot on the Storage Layer

• Invert the Dominant Paradigm

• Data Gravity and Storage Jiu-jitsu

• Move the platform around the data

• Modern shared storage capabilities

– Snap/clone, writable snapshots

– De-duplication, QoS allocation, Scale-out

• Efficient use of storage resources

Shared Storage: MySQL Ops Secret Weapon

• Real-time resource allocation
– Extend volume capacity

– Designate Min/Max/Burst IOPS

• Dev/Test secondary copies
– Deployment for growing teams

– Refreshes for faster iterations

• Replication slave creation
– MySQL read arrays

– HA warm standby copies

• Decrease/eliminate backup windows

• Accelerate restore scenarios

Real-time resource allocation

• Modern storage virtualizes resources

• Allows for dynamic allocation

• Increase capacity on the fly

• Change QoS settings (Min/Max/Burst IOPS)

• Scale ‘up’ instantly without lead time

• Scale out – horizontal storage growth

Deploy Secondary Copies in Seconds

• Snapshot the prod MySQL storage volume

• Create a volume clone from the snapshot

• Attach the cloned volume to a MySQL VM

• service mysqld start

• For a 1TB dataset: ~6 hrs -> ~90 seconds

Deploy Replication Slaves in Seconds

• Flush the target master, SHOW MASTER STATUS

• Snapshot the prod MySQL storage volume

• Create a volume clone from the snapshot

• Mount the cloned volume to a MySQL instance

• Increment server_id; remove auto.cnf

• Script in the CHANGE MASTER config

• service mysqld start

• start slave

• For a 1TB dataset: ~9+ hrs -> ~100 seconds

Decrease or Eliminate Backup Windows

• Leverage instant snapshots

• Creates crash consistent backups

• Zero impact to production performance

• Multiple volumes? Group snapshot

• Suitable for many use cases

• Efficient storage utilization (meta data only)

Accelerate Restore Scenarios

• Snapshot Backups are crash consistent

• Ideal time-sensitive restore operations

• Snapshots applied to volumes instantly

• Revert in seconds:
– Stop mysqld

– Unmount /var/lib/mysql

– Restore storage volume from snapshot (instant)

– Remount /var/lib/mysql

– Start mysqld

• Key: block storage metadata manipulation

Managing Scale Through Consolidation

• Enterprise/Web Scale MySQL: new set of challenges

• Understanding growth patterns is essential

• Virtualization and Orchestration ecosystems

• Data Gravity requires a capable storage layer

• Pivot on storage to avoid data transfer

Thank You

Come visit us at Booth #211

We’re also hiring…

