8
Hello -

y Z N\ __\ 4
L\ _\ A
L N\ \ Y/ / 4
/L [A \ \ \/ [/ /
A A A __\Y_/ 4

ay A\ \ \/ 4

Managing MySQL Scale Through Consolidation

Percona Live 04/15/15

Chris Merz, @merzdba
DB Systems Architect, SolidFire

Enterprise Scale MySQL Challenges

Many MySQL instances (10s-100s-1000s)
Often 100s of GB or multi-TB range

Capacity planning and resource management
Quickly respond to changing requirements

* Ability to quickly scale in real-time

/A SOLIDFIRE

Confidently Planning for the Future

Understand application data storage profile
Predict growth trajectory for MySQL platform
Capacity planning and resource management
— Compute Resources

— Memory Allocation
— Storage Resources

Growth and scaling plan for application
Public cloud TCO tipping-point plan

/A SOLIDFIRE

Planning for the Future: Compute

 Compute Resources

— What is contributing to total CPU consumption?
(query processing, i/o wait, virtualized steal?, etc)

— Is CPU utilization truly driven from mysqld
churning and processing data (rather than wait,
steal, network wait, etc)?

— What is the CPU growth rate for your systems?

/A SOLIDFIRE

Planning for the Future: Memory

* Memory Resources
— Memory bound?
— ‘Hot set’ of data fit iIn memory?

— Are queries optimized to only pull required
data?

— Indexes? Over indexed? Under indexed?
— When is the next RAM increase required?

/A SOLIDFIRE

Planning for the Future: Storage

« Storage Resources
— Disk resource heavy?
— |OPS bound?
— Max IOPS ceiling for disk configuration?
— Disk latencies within acceptable tolerance?
— Sequential reads, large chunk processing?
— More random in nature? Disk heads thrashing?
— Is flash memory required?
— Disk usage consumption rate?
— When is the next storage addition required?
— How will you add that capacity?
— Extend existing filesystem natively? (xfs_grow)
— Filesystem-per-database strategy (symlinks)?

/A SOLIDFIRE

Planning for the Future: Topology

 MySQL topology scaling plan
— Master cluster servers (Percona Cluster, Galera)
— Master shard servers (Homegrown, ClusterixDB, etc)
— Slave servers (read-heavy environments)
— DevTest instances that require prod db copies
— Reporting and Data Warehouse instances
— Public vs Private Cloud
— Orchestration, OpenStack, DBaaS: Trove

/A SOLIDFIRE

Instrument and Gather

« System Performance Data is Essential
— Quantify change rate over time
— Monitor every layer, from app to storage
— Zabbix, Zenoss, Munin, Cacti, Nagios, Graphite
— Critical to real-time troubleshooting

“Trust in God, all others bring Data”

/A SOLIDFIRE

Larger Data Sets == Larger Challenges

Automation increasingly important
Leverage software defined infrastructure
Quickly react to increase performance

« Deploy additional slaves for read scaling
« Refresh DevTest, QA, Business copies

« Improve Backup and Restore times

/A SOLIDFIRE

Leverage Point: Pivot on the Storage Layer

 Invert the Dominant Paradigm
« Data Gravity and Storage Jiu-jitsu
* Move the platform around the data

« Modern shared storage capabilities
— Snap/clone, writable snapshots
— De-duplication, QoS allocation, Scale-out

« Efficient use of storage resources

/A SOLIDFIRE

Shared Storage: MySQL Ops Secret Weapon

« Real-time resource allocation
— Extend volume capacity
— Designate Min/Max/Burst IOPS

« Dev/Test secondary copies
— Deployment for growing teams
— Refreshes for faster iterations
* Replication slave creation

— MySQL read arrays
— HA warm standby copies

* Decrease/eliminate backup windows
« Accelerate restore scenarios

/A SOLIDFIRE

Real-time resource allocation

* Modern storage virtualizes resources
 Allows for dynamic allocation

* Increase capacity on the fly

« Change QoS settings (Min/Max/Burst IOPS)
« Scale ‘up’ instantly without lead time

« Scale out — horizontal storage growth

/A SOLIDFIRE

Deploy Secondary Copies in Seconds

Snapshot the prod MySQL storage volume
Create a volume clone from the snapshot
Attach the cloned volume to a MySQL VM

* service mysgld start

For a 1TB dataset: ~6 hrs -> ~90 seconds

/A SOLIDFIRE

Deploy Replication Slaves in Seconds

Flush the target master, SHOW MASTER STATUS
Snapshot the prod MySQL storage volume
Create a volume clone from the snapshot

Mount the cloned volume to a MySQL instance
Increment server_id; remove auto.cnf

Script in the CHANGE MASTER config

service mysqgld start

start slave

For a 1TB dataset: ~9+ hrs -> ~100 seconds

/A SOLIDFIRE

Decrease or Eliminate Backup Windows

Leverage instant snapshots

Creates crash consistent backups

Zero impact to production performance
Multiple volumes? Group snapshot
Suitable for many use cases

Efficient storage utilization (meta data only)

/A SOLIDFIRE

Accelerate Restore Scenarios

Snapshot Backups are crash consistent
ldeal time-sensitive restore operations
Snapshots applied to volumes instantly
Revert in seconds:

— Stop mysqgld

— Unmount /var/lib/mysq|

— Restore storage volume from snapshot (instant)

— Remount /var/lib/mysql
— Start mysqld

Key: block storage metadata manipulation

/A SOLIDFIRE

Managing Scale Through Consolidation

Enterprise/Web Scale MySQL.: new set of challenges
Understanding growth patterns is essential
Virtualization and Orchestration ecosystems

Data Gravity requires a capable storage layer

Pivot on storage to avoid data transfer

/A SOLIDFIRE

S Thank You o
AVAVME N V4
r—7 72 L %\ "/
y— 7 7\ \\V /7 7 3
I~ 7 7 A\ \\N7 7 3
—7 -\ \ V 7 4
4 L\ \ \/ 4

Come visit us at Booth #211

We’re also hiring...

