
Multi-Threaded Replication
in MySQL 5.6 and MySQL 5.7

Stéphane Combaudon
April 14th, 2015

www.percona.com

Agenda

● Why multi-threaded replication?

● Performance benefits

● Positioning: GTID or not?

● GTID in a nutshell

● MySQL 5.7

http://www.percona.com/

www.percona.com

Good old replication

Master

App can write in parallel
on the master...

… but writes are serialized
on slaves: quickly
becomes a bottleneck!

App Slave

http://www.percona.com/

www.percona.com

Multi-Threaded Slaves (MTS)

● Coordinator thread on slave dispatches work
across several worker threads
● Each worker thread commits trx in isolation

MasterApp Slave

http://www.percona.com/

www.percona.com

Prerequisites (5.6)

● Transactions are assumed independent only if
they are executed in separate databases
● And if there is no cross db transaction

● Using a single db? MTS 5.6 is not for you!

● Using N dbs? Use N parallel worker threads

● Use slave_parallel_workers = N
● Worker threads are visible with SHOW PROCESSLIST

http://www.percona.com/

www.percona.com

Visual Explanation

● Slave has 2 dbs and 2 worker threads

Relay log

db1

db2

Coordinator

http://www.percona.com/

www.percona.com

Agenda

● Why multi-threaded replication?

● Performance benefits

● Positioning: GTID or not?

● GTID in a nutshell

● MySQL 5.7

http://www.percona.com/

www.percona.com

2 micro-benchmarks

● Goal: does MTS help reduce replication lag?
● Sysbench writes to 2 databases
● 3 slaves

● 1 single-threaded slave
● 1 MTS with 2 parallel workers
● 1 MTS with 50 parallel workers

● 2 scenarios
● 50% writes to each db
● 80% writes to db1

http://www.percona.com/

www.percona.com

Scenario #1: 50%/50% writes

● 4x m3.xlarge instances
innodb_buffer_pool_size = 10G
innodb_log_file_size = 512M
innodb_flush_log_at_trx_commit
­> 1 (master)
­> 2 (slaves)

GTID­replication enabled “Control Slave”
No parallel repl.

“MTS 2 workers”
Parallel repl.
2 workers

“MTS 50 workers”
Parallel repl.
50 workers

Master

Two sysbench runs executed concurrently on the master:

sysbench ­­mysql­user=root ­­mysql­db=db1 ­­test=insert.lua ­­max­requests=100000
­­num­threads=15 ­­oltp­tables­count=16 run

sysbench ­­mysql­user=root ­­mysql­db=db2 ­­test=insert.lua ­­max­requests=100000
­­num­threads=15 ­­oltp­tables­count=16 run

http://www.percona.com/

www.percona.com

Master + Control Slave

No surprise: the slave is not able to keep up

http://www.percona.com/

www.percona.com

Replication Lag

Very high replication lag as expected

http://www.percona.com/

www.percona.com

Enter multi-threaded replication

The multi-threaded slave is almost as efficient as the master!

http://www.percona.com/

www.percona.com

Replication Lag

Almost no replication lag for MTS

http://www.percona.com/

www.percona.com

What about 50 workers?

No visible performance degradation with 50 workers

http://www.percona.com/

www.percona.com

Replication Lag

MTS 50 workers is even slightly better

http://www.percona.com/

www.percona.com

Benchmark Scenario #2

● Same servers
● Same configuration
● Write distribution is not the same

● db1 gets 80% of the writes

sysbench ­­mysql­user=root ­­mysql­db=db1 ­­test=insert.lua ­­max­requests=400000 ­­num­
threads=24 ­­oltp­tables­count=16 run

sysbench ­­mysql­user=root ­­mysql­db=db2 ­­test=insert.lua ­­max­requests=100000 ­­num­
threads=6 ­­oltp­tables­count=16 run

http://www.percona.com/

www.percona.com

Insert Rate

This time MTS is not so efficient...

http://www.percona.com/

www.percona.com

Replication Lag

… and replication lag shows up again!

http://www.percona.com/

www.percona.com

Agenda

● Why multi-threaded replication?

● Performance benefits

● Positioning: GTID or not?

● GTID in a nutshell

● MySQL 5.7

http://www.percona.com/

www.percona.com

Execution Gaps & Checkpointing

● Worker threads can commit events in parallel
● Means the events are no longer guaranteed to be

consecutive (execution gaps)

● Execution gaps are tracked

● Checkpoints are performed from time to time
● See slave_checkpoint_period and
slave_checkpoint_group settings

http://www.percona.com/

www.percona.com

More on execution gaps

Relay log

trx1 (db1)

trx2 (db1)

trx3 (db2)

● trx3 is executed before trx2

● Checkpoints will make sure trx2 is not forgotten

Parallel execution

Replica

http://www.percona.com/

www.percona.com

SHOW SLAVE STATUS w/o GTID

● Exec_Master_Log_Pos can no longer be trusted
● Only shows the position at the latest checkpoint

● Is there a way to remove all execution gaps?
● Yes: STOP SLAVE followed by START SLAVE UNTIL
SQL_AFTER_MTS_GAPS

● STOP SLAVE alone is not enough (see bug #74528)

http://www.percona.com/

www.percona.com

Use GTID!

● As Exec_Master_Log_Pos is no longer reliable
● sql_slave_skip_counter may not work
● Be careful with the binlog position when taking a

backup from a MTS

● Best option is to use GTIDs
● Executed_Gtid_Set is reliable

http://www.percona.com/

www.percona.com

SHOW SLAVE STATUS with GTID

● Looks ugly?
● Blame the execution gaps!
● At least it reflects the reality

http://www.percona.com/

www.percona.com

Agenda

● Why multi-threaded replication?

● Performance benefits

● Positioning: GTID or not?

● GTID in a nutshell

● MySQL 5.7

http://www.percona.com/

www.percona.com

GTID?

● Unique identifier of a transaction across all
servers of a replication setup

● 2 parts
● source_id:transaction_id

● 3E11FA47­71CA­11E1­9E33­C80AA9429562:1

● MySQL 5.6+

http://www.percona.com/

www.percona.com

Main benefits

● Replication topology is easy to change
● The options master_log_file='mysql­bin.xxx',

master_log_pos=yyy are gone, just use
master_auto_position=1!

● Failover is simplified

● Managing multi-tiered replication is easier

http://www.percona.com/

www.percona.com

What it is NOT

● A high-availability solution
● GTIDs do not provide replication monitoring
● GTIDs do not provide failover
● But they make HA so much easier

http://www.percona.com/

www.percona.com

Caveats

● All servers must be restarted at the same time
● Online GTID rollout in MySQL 5.7
● Online GTID rollout in Percona Server 5.6.22-72.0+

(porting of the Facebook patch)
● Booking.com has also developed another patch for

online rollout

● log_bin + log_slave_updates adds some I/O
overhead on slaves
● In 5.7, binary logging is no longer needed for slaves

http://www.percona.com/

www.percona.com

Checking replication status

● New columns for SHOW SLAVE STATUS

● Retrieved_Gtid_Set: List of GTIDs received by
the I/O thread, cleared after a server restart

● Executed_Gtid_Set: List of GTIDs executed by
the SQL thread

● Auto_position: 1 if GTID-based replication is
enabled

http://www.percona.com/

www.percona.com

Replication protocol

● When slave connects to the master
● Position-based replication

– Master sends all transactions from the given offset

● GTID-based replication
– Slave sends the range of GTIDs it has executed
– Master sends back all other transactions
– Rule: a trx with a given GTID can only execute once
– Good: allows auto-positioning
– Bad: creates new challenges

http://www.percona.com/

www.percona.com

Challenge #1: Skip a transaction

● sql_skip_slave_counter = N no longer works
● Because of the new replication protocol, the

transaction would automatically come back
● Solution is to execute a fake trx with the GTID you

want to skip

mysql> STOP SLAVE;
mysql> SET gtid_next = 'XXXX:NN';
mysql> BEGIN;COMMIT; # Fake transaction!
mysql> SET gtid_next=automatic;
mysql> START SLAVE;

http://www.percona.com/

www.percona.com

Challenge #2: Errant transactions

● A local trx on a slave generates its own GTID
● If slave is promoted, trx is sent to all servers

● Again thanks to the new replication protocol

● That can bite on failover
● Trx is not desired: well, now it is everywhere
● Trx is no longer in the binlogs: the IO thread will exit

with a 1236 error, replication is now broken

http://www.percona.com/

www.percona.com

Detect/fix errant transactions

● Use GTID_SUBSET() and GTID_SUBTRACT() to
identify an errant transaction

● Skip it on all other servers with an empty trx
● Or inject the empty trx on the master if it is online

● If you need to run local transactions on slaves,
prefer SET sql_log_bin = 0

http://www.percona.com/

www.percona.com

Agenda

● Why multi-threaded replication?

● Performance benefits

● Positioning: GTID or not?

● GTID in a nutshell

● MySQL 5.7

http://www.percona.com/

www.percona.com

More parallelization in 5.7

● Worker threads can parallel apply transactions
on the same database
● Use slave_parallel_type = logical_clock
● Master must be running 5.7 for logical clock to work

● 5.6-style MTS is still available
(slave_parallel_type = database)

http://www.percona.com/

www.percona.com

Logical clock

● On the master
● Additional metadata is stored in the binlogs to

identify transactions that can be applied in parallel
● Takes advantage of binlog group commit

● On the slave
● The coordinator thread is able to extract the

metadata from the relay logs to dispatch the
transactions across workers

http://www.percona.com/

www.percona.com

Better replication monitoring (5.7)

● SHOW SLAVE STATUS is okay for single-threaded
replication, not so much for MTS

● Last_Error: what if several threads have errors?
● ...

● 5.7 is using performance_schema
● Requires more complex SQL to get diagnostics
● But flexible and extensible

http://www.percona.com/

www.percona.com

performance_schema tables

http://www.percona.com/

www.percona.com

Q&A

Thanks for attending!

Feel free to drop me a line at:

stephane.combaudon@percona.com

http://www.percona.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

