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Good old replication

Master

App can write in parallel 
on the master...

… but writes are serialized 
on slaves: quickly 
becomes a bottleneck!

App Slave
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Multi-Threaded Slaves (MTS)

● Coordinator thread on slave dispatches work 
across several worker threads
● Each worker thread commits trx in isolation

MasterApp Slave

http://www.percona.com/
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Prerequisites (5.6)

● Transactions are assumed independent only if 
they are executed in separate databases
● And if there is no cross db transaction

● Using a single db? MTS 5.6 is not for you!

● Using N dbs? Use N parallel worker threads

● Use slave_parallel_workers = N
● Worker threads are visible with SHOW PROCESSLIST

http://www.percona.com/
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Visual Explanation

● Slave has 2 dbs and 2 worker threads

Relay log

db1

db2

Coordinator
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2 micro-benchmarks

● Goal: does MTS help reduce replication lag?
● Sysbench writes to 2 databases
● 3 slaves

● 1 single-threaded slave
● 1 MTS with 2 parallel workers
● 1 MTS with 50 parallel workers

● 2 scenarios
● 50% writes to each db
● 80% writes to db1

http://www.percona.com/
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Scenario #1: 50%/50% writes

● 4x m3.xlarge instances
innodb_buffer_pool_size = 10G
innodb_log_file_size = 512M
innodb_flush_log_at_trx_commit
­> 1 (master)
­> 2 (slaves)

GTID­replication enabled “Control Slave”
No parallel repl.

“MTS 2 workers”
Parallel repl.
2 workers

“MTS 50 workers”
Parallel repl.
50 workers

Master

Two sysbench runs executed concurrently on the master:

# sysbench ­­mysql­user=root ­­mysql­db=db1 ­­test=insert.lua ­­max­requests=100000 
­­num­threads=15 ­­oltp­tables­count=16 run

# sysbench ­­mysql­user=root ­­mysql­db=db2 ­­test=insert.lua ­­max­requests=100000 
­­num­threads=15 ­­oltp­tables­count=16 run

http://www.percona.com/
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Master + Control Slave

No surprise: the slave is not able to keep up
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Replication Lag

Very high replication lag as expected
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Enter multi-threaded replication

The multi-threaded slave is almost as efficient as the master!

http://www.percona.com/
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Replication Lag

Almost no replication lag for MTS
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www.percona.com  

What about 50 workers?

No visible performance degradation with 50 workers

http://www.percona.com/
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Replication Lag

MTS 50 workers is even slightly better
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Benchmark Scenario #2

● Same servers
● Same configuration
● Write distribution is not the same

● db1 gets 80% of the writes

# sysbench ­­mysql­user=root ­­mysql­db=db1 ­­test=insert.lua ­­max­requests=400000 ­­num­
threads=24 ­­oltp­tables­count=16 run

# sysbench ­­mysql­user=root ­­mysql­db=db2 ­­test=insert.lua ­­max­requests=100000 ­­num­
threads=6 ­­oltp­tables­count=16 run

http://www.percona.com/
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Insert Rate

This time MTS is not so efficient...

http://www.percona.com/
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Replication Lag

… and replication lag shows up again!
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Execution Gaps & Checkpointing

● Worker threads can commit events in parallel
● Means the events are no longer guaranteed to be 

consecutive (execution gaps)

● Execution gaps are tracked

● Checkpoints are performed from time to time
● See slave_checkpoint_period and 
slave_checkpoint_group settings

http://www.percona.com/
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More on execution gaps

Relay log

trx1 (db1)

trx2 (db1)

trx3 (db2)

● trx3 is executed before trx2

● Checkpoints will make sure trx2 is not forgotten

Parallel execution

Replica

http://www.percona.com/
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SHOW SLAVE STATUS w/o GTID

● Exec_Master_Log_Pos can no longer be trusted
● Only shows the position at the latest checkpoint

● Is there a way to remove all execution gaps?
● Yes: STOP SLAVE followed by START SLAVE UNTIL 
SQL_AFTER_MTS_GAPS

● STOP SLAVE alone is not enough (see bug #74528)

http://www.percona.com/
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Use GTID!

● As Exec_Master_Log_Pos is no longer reliable
● sql_slave_skip_counter may not work
● Be careful with the binlog position when taking a 

backup from a MTS

● Best option is to use GTIDs
● Executed_Gtid_Set is reliable

http://www.percona.com/
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SHOW SLAVE STATUS with GTID

● Looks ugly?
● Blame the execution gaps!
● At least it reflects the reality

http://www.percona.com/


www.percona.com  

Agenda

● Why multi-threaded replication?

● Performance benefits

● Positioning: GTID or not?

● GTID in a nutshell

● MySQL 5.7

http://www.percona.com/


www.percona.com  

GTID?

● Unique identifier of a transaction across all 
servers of a replication setup

● 2 parts
● source_id:transaction_id

● 3E11FA47­71CA­11E1­9E33­C80AA9429562:1

● MySQL 5.6+

http://www.percona.com/


www.percona.com  

Main benefits

● Replication topology is easy to change
● The options master_log_file='mysql­bin.xxx', 

master_log_pos=yyy are gone, just use 
master_auto_position=1!

● Failover is simplified

● Managing multi-tiered replication is easier

http://www.percona.com/


www.percona.com  

What it is NOT

● A high-availability solution
● GTIDs do not provide replication monitoring
● GTIDs do not provide failover
● But they make HA so much easier

http://www.percona.com/
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Caveats

● All servers must be restarted at the same time
● Online GTID rollout in MySQL 5.7
● Online GTID rollout in Percona Server 5.6.22-72.0+ 

(porting of the Facebook patch)
● Booking.com has also developed another patch for 

online rollout

● log_bin + log_slave_updates adds some I/O 
overhead on slaves
● In 5.7, binary logging is no longer needed for slaves

http://www.percona.com/
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Checking replication status

● New columns for SHOW SLAVE STATUS

● Retrieved_Gtid_Set: List of GTIDs received by 
the I/O thread, cleared after a server restart

● Executed_Gtid_Set: List of GTIDs executed by 
the SQL thread

● Auto_position: 1 if GTID-based replication is 
enabled

http://www.percona.com/
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Replication protocol

● When slave connects to the master
● Position-based replication

– Master sends all transactions from the given offset

● GTID-based replication
– Slave sends the range of GTIDs it has executed
– Master sends back all other transactions
– Rule: a trx with a given GTID can only execute once
– Good: allows auto-positioning
– Bad: creates new challenges

http://www.percona.com/
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Challenge #1: Skip a transaction

● sql_skip_slave_counter = N no longer works
● Because of the new replication protocol, the 

transaction would automatically come back
● Solution is to execute a fake trx with the GTID you 

want to skip

mysql> STOP SLAVE;
mysql> SET gtid_next = 'XXXX:NN';
mysql> BEGIN;COMMIT;      # Fake transaction!
mysql> SET gtid_next=automatic;
mysql> START SLAVE;

http://www.percona.com/
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Challenge #2: Errant transactions

● A local trx on a slave generates its own GTID
● If slave is promoted, trx is sent to all servers

● Again thanks to the new replication protocol

● That can bite on failover
● Trx is not desired: well, now it is everywhere
● Trx is no longer in the binlogs: the IO thread will exit 

with a 1236 error, replication is now broken

http://www.percona.com/


www.percona.com  

Detect/fix errant transactions

● Use GTID_SUBSET() and GTID_SUBTRACT() to 
identify an errant transaction

● Skip it on all other servers with an empty trx
● Or inject the empty trx on the master if it is online

● If you need to run local transactions on slaves, 
prefer SET sql_log_bin = 0

http://www.percona.com/
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More parallelization in 5.7

● Worker threads can parallel apply transactions 
on the same database
● Use slave_parallel_type = logical_clock
● Master must be running 5.7 for logical clock to work

● 5.6-style MTS is still available 
(slave_parallel_type = database)

http://www.percona.com/
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Logical clock

● On the master
● Additional metadata is stored in the binlogs to 

identify transactions that can be applied in parallel
● Takes advantage of binlog group commit

● On the slave
● The coordinator thread is able to extract the 

metadata from the relay logs to dispatch the 
transactions across workers

http://www.percona.com/
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Better replication monitoring (5.7)

● SHOW SLAVE STATUS is okay for single-threaded 
replication, not so much for MTS

● Last_Error: what if several threads have errors?
● ...

● 5.7 is using performance_schema
● Requires more complex SQL to get diagnostics
● But flexible and extensible

http://www.percona.com/
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performance_schema tables

http://www.percona.com/
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Q&A

Thanks for attending!

Feel free to drop me a line at:

stephane.combaudon@percona.com

http://www.percona.com/
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