MySQL & InnoDB fundamentals TONFERENCE & **Justin Swanhart PLMCE 2015**

MySQL is a multi-threaded daemon

- mysqld
 - Accepts TCP connections
 - Authenticates users
 - Answers queries
 - One thread per connection model
 - pool-of-threads plugin available for Percona Server, MariaDB, MySQL Enterprise edition (not free)

my.cnf file

- MySQL settings normally in /etc/my.cnf
 - On Windows my.ini
- [mysqld_safe]
 - Settings for startup, like open-files-limit
- [mysqld]
 - Settings for MySQL, like sort_buffer_size

MySQL capabilities

- SQL92 compatible parser and feature set
- Storage engines are used for tables
 - Storage engine selection is extremely important
- Indexes are btree indexes
- Joins are indexed-nested-loop
 - If no indexes for join, block nested loop
 - No hash joins

Transactions

- Transactions are implemented by storage engines
- InnoDB and TokuDB support ACID transactions and XA (distributed) transactions
- InnoDB also supports foreign keys

Transactions

- MySQL defaults to auto_commit
- Start transaction with
 - BEGIN
 - START TRANSACTION
 - START TRANSACTION WITH CONSISTENT SNAPSHOT

- Use COMMIT to finalize changes into database
- Use ROLLBACK to undo changes
- Use SAVEPOINTS to stage changes into multiple sets
 - ROLLBACK TO SAVEPOINT ...

Transactions

- ACID
 - Atomicity
 - Consistency
 - Isolation
 - Durability

- MyISAM
 - Replaced original ISAM storage engine
 - Stores data in a heap structure
 - Can use fixed or dynamic row formats
 - Indexes point to physical file offsets
 - Table level locking (not good for high concurrency)

Storage engines – MylSAM (cont)

- MyISAM caches indexes in the key buffer
 - key_buffer_size controls how large it is
 - MyISAM stores indexes in .MYI files
 - Key buffer larger than sum of .MYI file sizes
 - More than one key buffer can be created and assigned to tables

- MyISAM does not cache data
 - Relies on OS file cache
 - Must ensure enough free memory to cache data in OS
 - Don't set key_buffer_size too large

- MyISAM is not transactional!
- Can not roll back
 - Pressing ctrl-C (or network error) in the middle of an update will leave some rows updated, others not
 - This can cause replication to stop (diff number of rows affected on slave and master) and slave becomes inconsistent
- Server crash can leave tables in inconsistent state

- Repair after crash
 - REPAIR TABLE command
 - Conceptually similar to fsck on non-logging filesystem
 - Can take a VERY long time on tables of significant size

- MyISAM best for non-critical data that can be recreated if necessary
- MyISAM does not have checksums (no data protection)
- Lack of concurrency for writes means MyISAM is only good for read-mostly workload

- MyISAM best for non-critical data that can be recreated if necessary
- MyISAM does not have checksums (no data protection)
- Lack of concurrency for writes means MyISAM is only good for read-mostly workload

- InnoDB is 100% ACID compliant
 - Uses a log file to ensure changes are not lost
 - Default is to fsync log at every commit
 - Unless few writes, battery-backed RAID or flash needed
 - Can be relaxed (innodb_flush_log_at_trx_commit)
 - If relaxed, up to one second of transactions can be lost
 - Roll forward / roll back recovery after crash

- InnoDB caches indexes and data
 - Cache area is called InnoDB buffer pool
 - Configured with innodb_buffer_pool_size
 - General rule of thumb is 80% of ram but if you have >100GB of ram, might be higher

- Buffer pool is an LRU
 - Least recently used list
 - Caches pages
- Adaptive hash indexes
 - In order to reduce cost of secondary lookups,
 builds in-memory hash of hot pages

- InnoDB tables are clustered tables
 - Also known as index-organized tables
 - Data in the table is stored with the PRIMARY KEY
 - This is significantly different compared to MyISAM

- PRIMARY KEY is very important
 - Should be short (auto_increment often best)
 - INSERT data in sorted order by PK as much as possible (prevents expensive page splits)
 - Secondary indexes contain a copy of the PK (not physical offset) so long PK will bloat table

- InnoDB uses more space than MyISAM
 - Each row has transaction_id and rollback pointer
 - Pages have a 15/16 fill factor, meaning some space is reserved for updates to prevent page splits

- SELECT statements do not take locks
 - Exception is SELECT .. [FOR UPDATE | LOCK IN SHARE MODE]
- ROW level locking for writes
 - Fine grain locking locks individual rows
 - In a range scan, all scanned rows are locked*
- Locks are held for duration of transation

- ROLLBACK / UNDO
 - InnoDB has rollback segments
 - Each transaction gets a rollback segment 'slot'
 - Rollback segment can not be cleaned up past oldest open transaction!
 - Indexes can contain multiple copies of a row with different visiblity

Storage engines – InnoDB important settings

- Innodb buffer pool size
- Innodb_log_file_size
 - By default two logs are created of this size
 - Innodb_log_files_in_group configures this
- Innodb_log_buffer_size
 - Defaults to 8MB
- Innodb file per table

Other important settings

- Sort_buffer_size
- Query_cache_size (should be 0!)
- Table_open_cache / table definition cache
- Log_slow_queries /slow_query_log_file

