
Prepared Statements
With PDO & PHP

Chris Shumake
Created: 4/8/15
Presented:4/14/15



Who Am I?

• DBA at Bronto Software, Inc
• In the MySQL world for seven years
• PHP shop for same amount of time
• Seen both good-enough db-wrappers and no 

db-wrappers

2



Who is Bronto?

• Marketing automation for commerce
• 1300+ customers
• 200+ employees
• Headquarters in Durham, NC
• Offices in London, Sydney, NY and LA
• #1 email marketing provider to the Internet 

Retailer top 1000

3



What is Bronto in Database Terms?

• Highly transactional environment
• 50+ TB of unique data in MySQL
• Percona Server 5.5.32
• Reasonable standards in schema
• Reasonably good-enough dbwrapper
• SQL Injection Free for more than ten years

4



Outline

• SQL Statements vs Prepared Statements
• Life of a SQL Statement
• Benefits & Drawbacks
• Coding Basics
• Code Considerations
• Operational Considerations

5



SQL Statements vs Prepared Statements

SQL Statements

6

Prepared Statements



SQL Statements vs Prepared Statements

SQL Statements

7

Prepared Statements

Note the different treatment PDO uses:
“query” vs “prepare”



SQL Statements vs Prepared Statements

SQL Statements, with Injection

8

Prepared Statements, ignoring Injection



SQL Statements vs Prepared Statements

SQL Statements, with Parameters

9

Prepared Statements, with Parameters



SQL Statements

• Example using the World Database:
SELECT ID, Name FROM city LIMIT 3;

• Full Solution each statement
• Statement per Resultset

10



SQL Statements: Full Solution per statement

Every statement hits each step:
• Parsing: interpretation of text into syntax
• Resolution: matching to columns/tables
• Optimization: finding best path to answer
• Execution: read data, return resultset

11

(From Guilhem Bichot - http://bit.ly/1GLtzt4)

http://bit.ly/1GLtzt4


SQL Statements: Parsing

Parsing: interpretation of text into syntax
SELECT ID, Name FROM city LIMIT 3;

• Throws errors on syntax problems
• I can’t imagine that it’s expensive compared 

to the rest of the process, but I have no data 
on this assumption.

12



SQL Statements: Resolution

Resolution: matching to columns/tables
SELECT ID, Name FROM city LIMIT 3;

• Throws errors on resolution failures or 
ambiguities (ex: two columns w/ same name)

• Can be expensive when subqueries, joins, and 
table aliasing, etc, combine to generate a 
larger, complicated query

13



SQL Statements: Optimization

Optimization: finding best path to answer
SELECT ID, Name FROM city WHERE Name = 
'Kabul';

14

Lack of index, creates full table scan



SQL Statements: Optimization

Optimization: finding best path to answer
SELECT ID, Name FROM city WHERE Name = 
'Kabul' AND CountryCode = 'AFG';

15

With index, rows is based on Cardinality



SQL Statements: Optimization
16

Determine least work based on Cardinality



SQL Statements: Optimization
17

It can get complicated and expensive



SQL Statements: Optimization
18

Seriously 
complicated 
and expensive

(image source: Jorgen Loland)



SQL Statements: Execution
19

Always happens

“executing”
“Sending data”



SQL Statements: Example using World

• SQL Statement: 

20

Parsing, Resolution, 
Optimizing, Execution



SQL Statements: Example using World

• SQL Statement: same query, more details 

21



SQL Statements: Full Solution per statement

Every statement hits each step:
• Parsing: interpretation of text into syntax
• Resolution: matching to columns/tables
• Optimization: finding best path to answer
• Execution: read data, return resultset

22

(From Guilhem Bichot - http://bit.ly/1GLtzt4)

http://bit.ly/1GLtzt4


SQL Statements: Statement per Resultset
23



Full Solution to keep going
24



SQL Statements

• Statement per Resultset

25

• Full Solution per statement

• Every activity costs CPU



Prepared Statements

• Preparation per Query, Execution per Resultset
• From Guilhem Bichot (http://bit.ly/1GLtzt4)

– Parsing: interpretation of text into syntax
– Resolution: matching to columns/tables
– Optimization: finding best path to answer
– Execution: read data, return resultset

• Every activity costs CPU

26

http://bit.ly/1GLtzt4


Prepared Statements

• Example using the World Database:
SELECT ID, Name FROM city LIMIT 3;

• Partial Solution at Preparation
– Parsing, Resolution, some Optimization

• Partial Solution at Execution
– Remaining Optimization, Execution

• Execution per Resultset

27



Prep Stmts: Partial Solution at Preparation

• Prep Stmt: 

28

Parsing, Resolution, 
Some Optimizing



Remember the SQL Statement Profile?

SQL Statement

29

Prepared Statement



Prep Stmts: Remainder Solution at Execution

• Prep Stmt: 

30

Remaining Optimization, 
Execution



Prep Stmts: Prep per Stmt & Exec per Resultset
31



Remainder Solution just keeps going
32



Speed Comparisons
33



Speed Comparisons
34



Review: SQL Statements vs Prepared Statements

SQL Statements

35

• Simplest

• Solution per Resultset

• Stateless

• Risk of Injection

Prepared Statements

• Partial Solution at Preparation

• Remainder Solution at 
Execution

• Execution per Resultset

• Less stateless

• No risk of Injection



Benefits & Drawbacks

SQL Statements

36

• Self-contained, prepare-free

• Long queries full of quoting 
can grow less readable

• Fastest option for one-offs

• Risk of Injection

Prepared Statements

• 2-step, handle management

• Fastest option for re-use

• No visibility into memory 
consumption until 5.7

• Pool for PrepStmt Handles

• No risk of Injection



How to deal with each issue Prepared Statements will cause

Coding Basics

37



Coding Basics: Re-use Statement
38



Coding Basics: Error Handling
39

• isRetryError: Max Conns, Max PrepStmts
• isReconnectError: Connections, permissions
• Unrecoverable: Invalid syntax



Coding Basics: Error Handling - Max Conns
40



Coding Basics: Error Handling - Max PrepStmts
41



Coding Basics: Error Handling - Reconnects
42

• More loops
– Repeated code
– Repeated errors



Coding Basics: DB Wrapper
43



Coding Basics: Good Enough DB Wrappers
44

• Its job: object instantiation & property setting
• Error handling: connections go away
• Insight: logging, stats, exceptions
• Caching: expiration, bypassable, layers
• Fully bypassable w/SQL, avoids ORM behavior
• Avoids handling code 1317, allows maint mode



Coding Basics: DB Wrapper Points
45

• Error Handling:
– Reconnect Errors: ensure prep stmt caches flushed

• Caching:

– Use the SQL and database identifier for an index 
hash for prepared statements

– Use the same, plus the values, for results caching 



How to deal with each issue Prepared Statements will cause

Code Considerations

46



Issues to resolve in Code

• Additional state:
– Creating Prepared Statements
– Managing Prepared Statement Handles
– Finding Prepared Statement Handles for Use
– Closing Prepared Statement Handles on Issue

• Ripping out all Injection Prevention Code

47



Error Codes related to Prepared Statements

• 1243: Unknown Prepared Statement Handle
– Deallocate & re-prepare

• 1390: Too Many Parameters
– Limit parameter count, potentially encode a 

splitter for any IN clause
• 1420: Exec called on Stmt w/ Open Cursor

– Close cursor & re-execute

48



Error Codes related to Prepared Statements

• 1444: Recursion with Stored Procedure
– Do not use recursion w/ Prep Stmt in SPs

• 1461: Too Many Prepared Statements
– Flush Prep Stmt Cache & re-prepare
– Eventually, activate Emulation

• 1615: Statement needs to be Re-Prepared
– Re-prepare

49



Good code prevents all errors vs SQL Stmts

• If the server-side prepared statement pool is 
full, emulation can prevent client-side errors

• If the database is down, prepared statements 
won’t hurt you. Or help you.

50



How to spot each issue Prepared Statements will cause

Operational Considerations

51



Operational Considerations

• Nagios:
– Prepared_stmt_count vs max_prepared_stmt_count

• Stats:
– Prepared Statement Handle Cache hit, miss, purge count

• Configuration:
– Leave additional memory available for Prep Stmts? 

Maybe.

52



Operational Considerations: Nagios

Prepared_stmt_count vs max_prepared_stmt_count

53

Monitor it like max_connections



Operational Considerations: Nagios
54

Monitor it like max_connections?

Yes. Still, monitor it.



Operational Considerations: StatsD
55



Operational Considerations: Configuration

• Prepared Statement Handle Cache
– Strategy: LRU - if dropping handles is consistent
– Strategy: Queue - if cache is large enough
– Cache Size: 200 at Bronto leads to a Queue

• Requires a Good Enough database wrapper

56



Operational Considerations: Parameter Types

• Named Parameters
– Associative arrays in code increase readability

– Values do appear in processlist
• Ordered Parameters

– Can still use associative array

– Values do not appear in processlist

57



Addressing Notes

• “Prepared Statement allocation is specific to a 
session until the end of a session or 
deallocation.” <- Will read this aloud
(read: unconfirmed memory leak if Stored 
Proc killed w/open Prep Statement Handle)

• Large lists of Named Parameters are not any 
more expensive than large lists of Ordered 
Parameters

58



Wrap-up

• Prepared Statements are Injection-immune
• Prepared Statements want a handle cache
• Prepared Statements have resolvable failure 

scenarios with reasonable code
• A good-enough database wrapper is needed

59



Thanks

Questions?
Walkthrough: 
github.com/cvshumake/pLiveDB
Basic implementation for some examples:
github.com/cvshumake/CustomDB
Slides available:
shumake.mobi/slides/PerconaLive2015

60


