
Pseudo-GTID and Easy MySQL
Replication Management

Shlomi Noach

Percona Live, April 2015

Overview:
● What? Why?
● Replication topologies, types
● Binary & relay logs
● GTID
● Pseudo GTID
● Failover with Pseudo GTID, bulk operations
● Orchestrator
● Pseudo GTID & orchestrator @ Booking.com
● Demo
● Considerations, gotchas & limitations

What? Why?

● Be happy!

● Avoid using GTID. Pseudo GTID offers what GTID offers, without GTID. This includes:

● Slave repointing

● Failover schemes

● With less requirements

● And, with larger topologies: faster!

● Without upgrading your servers; without installing anything on them; in short: not touching your

beloved existing setup

● No vendor lockdown; no migration paths

3

MySQL replication topologies

4

More complex topologies

5

Replication topologies, “classic replication”

● Single master, multiple slaves

● Nested replication: slaves of slaves

● Replication load on master, on network

● Intermediate masters:

● Upgrades

● Schema changes

● Switching datacenters

● Experiments

6

Replication topologies, “classic replication”

● Too many slaves on a single master:

● Can be too much load (network traffic, dedicated connections)

● What happens when the master goes down?

● Using intermediate masters:

● Reduced load

● Accumulating slave lag

● What happens when the intermediate master goes down?

7

Problem: master goes down

8

!! ?

Problem: intermediate master goes down

9

!! ?

MySQL binary & relay logs

10

Master
Slave

MySQL binary & relay logs: different languages

11

Master
Slave

MySQL binary & relay logs: even more languages

12

Master

Slave

Slave

GTID

● Every transaction has a unique identifier

● When a slave connects to a master, it looks for the last GTID statement it already executed

● Available in Oracle MySQL 5.6, MariaDB 10.0

● Completely different implementations; may cause lockup

● 5.6 migration path is unacceptable

● 5.6 requires binary logs & log-slave-updates enabled on all slaves

● 5.6 issues with errant transactions, unexecuted sequences, …

● 5.6 requires adaptation of tools / understanding

● 5.6 GTID will be the requirement in future Oracle features

● MariaDB GTID supports domains; easy to use

13

Pseudo GTID

● Application-side enhancement

● We inject a uniquely identified statement every X seconds. We call it Pseudo GTID.

● Pseudo GTID statements are searchable and identifiable in binary and relay logs

● Make for “markers” in the binary/relay logs

● Injection can be made via MySQL event scheduler or externally

● Otherwise non intrusive. No changes to topology/versions/methodologies

14

Injecting Pseudo-GTID

create event if not exists create_pseudo_gtid_event

 on schedule every 5 second starts current_timestamp

 on completion preserve enable

 do begin

 set @pseudo_gtid_hint := uuid();

 set @_create_statement := concat('drop ',

 'view if exists `meta`.`_pseudo_gtid_hint__', @pseudo_gtid_hint, '`');

 PREPARE st FROM @_create_statement;

 EXECUTE st;

 DEALLOCATE PREPARE st;

 end $$

15

In the binary logs

mysql> show binlog events in 'mysql-bin.015631' \G

...

Log_name: mysql-bin.015631

Pos: 1632

Event_type: Query

Server_id: 1

End_log_pos: 1799

Info: use `meta`; drop view if exists `meta`.`_pseudo_gtid_hint__50731a22-9ca4-

11e4-aec4-e25ec4bd144f`

...

16

Recap: MySQL binary & relay logs

17

Master
Slave

MySQL binary & relay logs: a virtual contiguous log file

18

Master
Slave

MySQL binary & relay logs: Pseudo GTID injection

19

Master Slaveinsert
> PGTID 17
update
delete
create
> PGTID 82
delete
delete
> PGTID 56
insert
insert
update
drop
update

insert
> PGTID 17
update
delete
create
> PGTID 82
delete
delete
> PGTID 56
insert
insert
update
drop

insert
> PGTID 17
update
delete
create
> PGTID 82
delete
delete
> PGTID 56
insert
insert

insert
> PGTID 17
update
delete
create
> PGTID 82
delete
delete
> PGTID 56
insert
insert

Pseudo GTID: repoint, based on binary logs

20

Master Slaveinsert
> PGTID 17
update
delete
create
> PGTID 82
delete
delete
> PGTID 56
insert
insert
update
drop
update

insert
> PGTID 17
update
delete
create
> PGTID 82
delete
delete
> PGTID 56
insert
insert
update
drop

Pseudo GTID: repoint, based on relay logs

21

Master Slaveinsert
> PGTID 17
update
delete
create
> PGTID 82
delete
delete
> PGTID 56
insert
insert
update
drop
update

Multiple possible destinations

22

!!

Bulk operations

23

!!● If you’re aware of the topology,

● Identify slaves that crashed on the same position

● Or with the same last pseudo-gtid entry

● Significantly reduce access onto failover master

● Orchestrator does all that

MySQL @ Booking.com

● We are a big MySQL shop

● We have >2600 production servers (~3300 including experiments & tests) on >110 topologies

(aka chains, aka clusters)

● As small as 1 server per topology, as large as 400 servers per topology

● Two major data centers

● All chains are deployed with Pseudo-GTID and controlled by orchestrator

24

● command line, web API, web interface

● Crawls through your topologies, maps them, persists to backend database

● Understands replication, gathers metadata on replicating slaves (Which cluster? Depth?)

● Understands rules of replication (SBR, RBR, version compatibility, other configurations you wish

you had never heard of)

● Can refactor/manipulate topologies

● Understands Pseudo-GTID

● Detects and recovers outage scenarios

Orchestrator: MySQL replication management &
visualization tool

25

Orchestrator general architecture

26

orchestrator
service

backend db

web API

web xface

Orchestrator architecture @ Booking.com

27

app
leader

app

app

app

HTTP load
balancerorchestrator-cli on all MySQL nodes

● Stack:

● golang - in retrospect a very good choice: a lot of concurrency; easy deployment; rapid

development

● MySQL as backend database (duh)

● go-martini web framework

● Page generation via dirty JavaScript/jQuery (sue me)

● Twitter bootstrap

● Graphs via D3, integrated with bootstrap

● Development:

● Github, completely open source; as generic as possible

https://github.com/outbrain/orchestrator/

Orchestrator stack & development

28

https://github.com/outbrain/orchestrator/
https://github.com/outbrain/orchestrator/

Live demo

In-production experiments, trust
● Tested:

● 21,138 rematch experiments on 7 topologies (based on binlogs)

● 13,872 rematch experiments on 6 topologies (based on relay logs)

● 6,246 bounce up and back experiments on 6 topologies

● 8,699 regroup, bounce up and back experiments on 9 topologies

● ~180 intermediate master automated failover (clean shutdown)

● A few dozens intermediate master automated failover (kill -9 / iptables)

● Many intermediate master manual failovers

● Todo:

● Daily (!) controlled intermediate master failover

● Not so far in the future: daily (!) controlled master failover

30

Considerations, requirements

● Works with:

● MySQL, MariaDB, using standard, single threaded replication

● Supports SRB & RBR

● Supports Binlog Servers

● When slave has log-slave-updates & sync_binlog=1, implies crash safe replication

● log-slave-updates required when slave should be considered to be promoted

● Otherwise relay logs work well

● But change of master clears relay logs; an additional crash during < injection time may

render the instance lost

31

Considerations, requirements

● Will not work with 5.6 per-schema-parallel-replication (no intended work on that)

● Will work with In-order binlog statements applier on slave (true in MariaDB and in MySQL 5.7.5

with slave_preserve_commit_order)

● No thoughts yet on multisource

32

Considerations, requirements

● Allows for queries to execute on slave

● But not after the last Pseudo-GTID entry

● Will succeed when:

● Matching a slave up the topology

● Matching below a sibling known to be more advanced

● Can succeed when:

● Matching below an “uncle”/”cousin”/other relative

● If not - then the opposite direction should work

● Cannot move slave underneath its own sibling (singularity, universe will collapse)

● Replication filters are your own risk

33

Considerations, requirements

● Therefore, can always recover the death of an intermediate master

● (This is partly automated at Booking.com)

● Master death topology recovery possible when all immediate slaves have log-slave-updates

● Consider actually enforcing such a layer

34

Auto pick replacement master

35

!!

● Only from slaves with log_slave_updates

● Slaves without log_slave_updates might be lost

Considerations, requirements

● Recovery time depends on binary log parsing speed. Typically, you will need to search

throughout the last binary logs

● Reduce max_binlog_size, max_relay_log_size

● Means more files

● Orchestrator already tackled plenty issues involving scanning (many) binlog files

36

Gotchas, careful!

● SHOW BINLOG EVENTS lockdown! Keep chunk size small

http://bugs.mysql.com/bug.php?id=76618

● Make sure Pseudo-GTID injected on master only

● log-slave-updates have I/O overhead; incurs more lag; experiments with 5.7 show reduces

parallelism

● Replication filters may be a necessary evil -- but they are evil!

● Relay log purging is is not user-controlled

37

http://bugs.mysql.com/bug.php?id=76618
http://bugs.mysql.com/bug.php?id=76618

Further ideas

● Reduce binlog scan time by injecting the master’s binlog position (e.g. output of SHOW

MASTER STATUS) within the Pseugo-GTID entry

● This allows starting the scan from the given position

● Likely to end quickly

● Applies for masters only, not for intermediate masters

● Use monotonically increasing Pseudo-GTID values

● Allows skipping of binary logs that begin with later/greater value than desired one

● Agents:

● Index the binary logs

● Full visibility even with RBR (mysqlbinlog more detailed than SHOW BINLOG EVENTS)

38

● Binlog Servers at Booking.com
Jean-François Gagné
15 April 2:00PM - 2:50PM @ Ballroom G

● Booking.com: Evolution of MySQL System Design
Nicolai Plum
16 April 12:50PM - 1:40PM @ Ballroom E

See also

Questions?

@ShlomiNoach
http://openark.org
http://blog.booking.com

Thank you!

