FlexCDC and FlexCDC plugins

Justin Swanhart L BWe PERCONA
PLMCE 2015 ~—

Introduction

Who am I?
What do | do?
What is this talk about?

Flexviews and FlexCDC

Flexviews — Materialized view toolkit

FlexCDC — Change data capture
Reads binary logs
Writes changes into change log tables
Can use plugins to send data to other systems

OPERCQNA
LIVE

FlexCDC

CDC — Change Data Capture
Uses mysqglbinlog to read from remote server
Decodes ROW based binary logs

Uses change log tables to interpret RBR (data
types / column names)

OPERCQNA
LIVE

FlexCDC requirements

server_id must be set in my.ini
binlog_format=ROW (not MIXED or STATEMENT)
Row images must be FULL

Must have user with following privs
REPLICATION SLAVE
REPLICATION CLIENT

PERCONA

FlexCDC requirements continued

PHP 5.3+
Pear (for getopt)
PHP-MySQL

FlexCDC setup

Clone github.com/greenlion/swanhart-tools
FlexCDC in flexviews/consumer

Create ini file
consumer.ini.example has necessary settings

Setup FlexCDC
setup_flexcdc.php

consumer.ini (subset)

[flexcdc]
mysglbinlog=/usr/local/mysgl/bin/mysglbinlog
database=flexviews
binlog consumer status=binlog consumer status
mvlogs=mvlogs
mview uow=mview uow

[source]
user=root
host=127.0.0.1
port=3306
password=

[dest]
user=root
host=127.0.0.1
port=3306
password=

PERCONA
LIVE

ncludes “angel” script like mysql
Run consumer_safe.sh &

Runs in background and captures changes

PERCONA
LIVE

Using standard changelog tables

Two ways to add changelogs to tables
Use add_table.php script to add tables to log

Install flexviews setup.php and use
flexviews.create. mvlog()

OPERCQNA
LIVE

Capturing changes

FlexCDC uses mysqlbinlog

Decodes RBR to pseudo-SBR
INSERT INTO ‘test'. demo’
Hi# SET
#i# @1=1
#i## ©@2=10
#at 124794

PERCONA
LIVE

Capturing changes

mysql> call
flexviews.create_mvlog('test','demo’);

Query OK, 1 row affected (0.01 sec)

Determining log table

mysql> select * from mvlogs where table_name='demo'\G
***************************].rOM/

%k 3k 3k 3k 3k 5k 3k 3k 5k 5k 3k 3k 5k 5k %k 3k 5k 5k %k 3k %k 5k %k %k %k %k 3k
table_schema: test
table_name: demo
mvlog _name: mviog d04c8f0c8097ee8bce23318fb44950dc
active_flag: 1
1 row in set (0.00 sec)

PERCONA
LIVE

Log table

mysqgl> select * from mvlog d04c8f0c8097ee8bce23318fb44950dc;

fmm e ———— fmm e ———— e - N fm——— R +
| dml type | uow id | fv$server id | fvSgsn | cl c2 |
fmm e ———— fmm e ———— e - fm——————— fm———— fm——— +
| 1 | 7 99 | 2 | 2 | 20 |
fmm e ———— fmm e ———— e - fm——————— fm———— fm——— +

\ | |

Columns added by FlexCDC

PERCONA
LIVE

UOW (transaction information) table

mysqgl> select * from mview uow;

|

i

| NULL

| 2015-04-15 06:08:40
| 2015-04-15 06:08:40
| 2015-04-15 06:08:40
| 2015-04-15 06:09:53
| 2015-04-15 06:11:11
| 2015-04-15 06:11:52
i

7 rows in set (0.00 sec)

PERCONA
LIVE

UOW _ID and GSN

Each transaction is assighed a UOW _ID

Each row change a unique GSN (global
sequence number)

Transactional changes group together

mysgl> delete from test.demo;
Query OK, 2 rows affected (0.00 sec)

mysgl> select * from mvlog d04c8f0c8097ee8bce23318fb44950dc;

tmm tmm Fmm e tom————— to————— to————— +
| dml type | uow id | fv$server id | fv$Sgsn | cl | c2 |
S — b e to————— to————— +
1	7 99	2 2	20		
-1	8	99	3	1	10
-1	8	99	4	2	20
tmm tmm———— Fmm tm———— t————— t—————— +

3 rows in set (0.00 sec)

PERCONA
LIVE

Cleaning up changelogs

Change logs are analogous to binary logs,
except the changes are stored in a table

Like binary logs, it is necessary to purge data
from the change logs or they will grow
unbounded

Log_retention_interval

Setting in consumer.ini which controls for how
ong change log entries are retained

Use INTERVAL syntax, ie “10 day” (the default)
Run cleanup_history safe.sh

Every 600 seconds wakes up and cleans up old
rows

ALTER TABLE?

When an ALTER is processed from binary log if
the table is being logged, the ALTER is applied
to the log table (if applicable)

Indexes are not applied

ROW_FORMAT, KEY BLOCK_SIZE, etc, not applied

Only column names and data types basically

Using FlexCDC with Flexviews

FlexCDC is part of Flexviews

Flexviews uses change log tables to efficiently
update materialized views

You can’t change FlexCDC table names if you
want to use Flexviews

Using the changelog tables with ETL

ETL (extract transform load) tools are typically
designed to work with change data capture

Examples include Pentaho, Jaspersoft, almost
any Bl tool

How popular online clothing site uses FlexCDC

Use FlexCDC “auto_changelog” mode

Automatically creates log tables for any table that
has data changed by the database

FlexCDC captures changes to all tables

OPERCON[\
LIVE

Using with ETL tool

ETL tool remembers the highest UOW _ID that
it has read

Gets lists of tables to collect from from mvlogs
table

SELECT from the log tables where UOW >
last uow id

ETL

ETL tool is responsible for making changes in
downstream database (Redshift for example)

ETL tool can also maintain aggregate tables,
etc, in downstream database

One way only — changes in downstream do
not propagate upstream

Using ETL flows

If you capture changes from subset of tables
you can use normal ETL flow

Read changes (as inserts and deletes) from log
table, applying changes to downstream table

(data warehouse)
Transform along the way as required

Gearman and gearman UDF

Gearman is a job server/message queue

Workers — Wait for job input, process job, return
results

Servers — Accept jobs from clients, send to
workers. Marshalls data between worker and
client

Clients — sends input to workers, gets results

PERCONA
LIVE

Install gearman server

Create a worker script to do the work you
need (insert into remote database for

example)
Create a client

Could be FlexCDC plugin (more on this shortly)

But can be Gearman MySQL UDF as well
Compile with libgearman

Call gman_servers_set(...) to connect MySQL to
Gearman (good to put in init_sgl command)

OPERCQNA
LIVE

Using the Gearman UDF

set v args := concat('{"sgl":"', v sql,
'","schema name":"',v remote schema,'"}');
set v_json := gman do('shard query worker', v args);

SELECT gman do background('worker name', 'arguments');

PERCONA
LIVE

Use FlexCDC + Gearman UDF

Create changelog as normal
Use add_table.php for Flexviews.create_mvlog()

Add TRIGGER to log table
AFTER INSERT trigger probably is best

Use gman_do background to send changes to
workers

Pros/Cons

Pros

Easy to set up

Worker code can be any language
Cons

Triggers

Requires a trigger per log table, not generally useful for
many tables

Each row change is sent to Gearman (no batching) not
really transactional

PERCONA
LIVE

Using FlexCDC plugins

FlexCDC supports plugins since early last year

Plugins are written as a PHP class which is
loaded by FlexCDC at startup

Multiple plugins are supported
You can declare plugin execution order

Still need source and dest

When using plugins, FlexCDC maintains an
empty copy of the source table

Allows FlexCDC to provide proper data types
Allows FlexCDC to provide column names

OPERCQNA
LIVE

Enabling plugins in the consumer.ini

; The example plugin prints out all the rows that are sent
to it - THEY ARE NOT LOGGED INTO THE MVLOG TABLE

;plugin=example plugin.php

;You can load more than one file with plugins:
plugin=filel.php,file2.php, file3.php

;Of course, 1f you want more than one plugin, each MUST
have a unique name (again this 1s the CLASS name 1n the
file(s) loaded above)

plugin order=FlexCDC plugin,Classl,ClassZ

PERCONA
LIVE

Plugins implement FlexCDC_plugin_interface

interface FlexCDC Plugin Interface ({
static function plugin init ($Sinstance);
static function plugin deinit (Sinstance);
static function begin trx(Suow id, $gsn, Sinstance);
static function commit trx(Suow id, gsn, Sinstance);
static function rollback trx(Suow id, S$instance);
static function insert(Srow, $db, Stable, Suow id, gsn, Sinstance);
static function delete(Srow, $db, Stable, Suow id, gsn, Sinstance);

static function update before(Srow, $db, $table, Suow id, $gsn,
Sinstance) ;

static function update after ($row, $db, Stable, Suow id, $gsn,
Sinstance) ;

}

PERCONA
LIVE

Init/Deinit

static function plugin init (Sinstance);
static function plugin deinit (Sinstance);

These functions are called during plugin startup and shutdown. If you
are sending changes to an external data store, this is a good place to
connect/disconnect from the remote server

Instance is a copy of the FlexCDC object (not generally useful here, but
present for completeness)

PERCONA
LIVE

Transaction state ma nagement

static function begin trx(Suow id, $gsn, $instance);
static function commit trx(Suow id, $gsn, Sinstance);

static function rollback trx(Suow id, S$instance);

These functions manage transaction state.
Suow_id — The transation identifier assigned by FlexCDC for the transactions

Sgsn — GSN high water mark (highest GSN used in transactions)
Sinstance — FlexCDC instance for helper functions

PERCONA
LIVE

Row changes

static function insert (Srow, $db, Stable, Suow id, $Sgsn,
Sinstance) ;

static function delete (Srow, $db, Stable, Suow id, $Sgsn,
Sinstance) ;

static function update before(S$row, Sdb, Stable, Suow id,
gsn, Sinstance);

static function update after(row, Sdb, Stable, Suow id,
gsn, Sinstance);

These functions manage transaction state.

Srow — the row data (associative array includes column names)
Sdb — the schema that the change originated in

Sdb — the table that was changed

PERCONA
LIVE

Sending changes to non-transactional stores

FlexCDC provides Suow _id and Sgsn
Record Sgsn in remote system

Write plugin such that if “something bad”
happens, it can skip through highest GSN

GSN are monotonically increasing, never skip
values, and are never reused

Sending changes to transactional stores

Start a transaction against remote store in
begin_trx(..)

Commit in commit_trx(...)
Rollback in rollback trx
(pretty simple)

PERCONA

Batching changes

Instead of writing to remote store for every
row change use a class member to hold
changes and then batch them into the remote
database in commit_trx(...)

Similar technique can be used to send UPDATE
statements instead of delete/insert in
before _update and after update

Advantages over other solutions

MySQL C binlog API, Ruby binlog API,
Tungsten, etc

Can not provide column names

Can not correctly interpret unsigned data types

Do not use binlog_ dump command to ‘act as a
slave’

Do not handle ALTER TABLE

PERCONA
LIVE

Possible use cases

Keep Sphinx/SOLR up to date based on data
changes

Invalidate Memcached based on row changes
Turn row changes into SELECT statements to
warm a slow slave

Send data to Kafka, RedShift, Hadoop, any third
party data store with PHP client

http://ceilingcat.ninja

PERCONA
LIVE

