
Realtime Event Notification
FlexCDC and FlexCDC plugins

Justin Swanhart
PLMCE 2015

Introduction

• Who am I?

• What do I do?

• What is this talk about?

2

Flexviews and FlexCDC

• Flexviews – Materialized view toolkit

• FlexCDC – Change data capture

– Reads binary logs

– Writes changes into change log tables

– Can use plugins to send data to other systems

3

FlexCDC

• CDC – Change Data Capture

– Uses mysqlbinlog to read from remote server

– Decodes ROW based binary logs

– Uses change log tables to interpret RBR (data
types / column names)

4

FlexCDC requirements

• server_id must be set in my.ini

• binlog_format=ROW (not MIXED or STATEMENT)

• Row images must be FULL

• Must have user with following privs

– REPLICATION SLAVE

– REPLICATION CLIENT

5

FlexCDC requirements continued

• PHP 5.3+

• Pear (for getopt)

• PHP-MySQL

6

FlexCDC setup

• Clone github.com/greenlion/swanhart-tools

• FlexCDC in flexviews/consumer

• Create ini file
– consumer.ini.example has necessary settings

• Setup FlexCDC
– setup_flexcdc.php

7

consumer.ini (subset)

[flexcdc]

mysqlbinlog=/usr/local/mysql/bin/mysqlbinlog

database=flexviews

binlog_consumer_status=binlog_consumer_status

mvlogs=mvlogs

mview_uow=mview_uow

[source]

user=root

host=127.0.0.1

port=3306

password=

[dest]

user=root

host=127.0.0.1

port=3306

password=

8

Run consumer

• Includes “angel” script like mysql

• Run consumer_safe.sh &

• Runs in background and captures changes

9

Using standard changelog tables

• Two ways to add changelogs to tables

– Use add_table.php script to add tables to log

– Install flexviews setup.php and use
flexviews.create_mvlog()

10

Capturing changes

• FlexCDC uses mysqlbinlog

• Decodes RBR to pseudo-SBR
– ### INSERT INTO `test`.`demo`

– ### SET

– ### @1=1

– ### @2=10

– # at 124794

11

Capturing changes

• mysql> call
flexviews.create_mvlog('test','demo');

• Query OK, 1 row affected (0.01 sec)

12

Determining log table

• mysql> select * from mvlogs where table_name='demo'\G
• *************************** 1. row

• table_schema: test
• table_name: demo
• mvlog_name: mvlog_d04c8f0c8097ee8bce23318fb44950dc
• active_flag: 1
• 1 row in set (0.00 sec)

13

Log table

mysql> select * from mvlog_d04c8f0c8097ee8bce23318fb44950dc;

+----------+--------+--------------+--------+------+------+

| dml_type | uow_id | fv$server_id | fv$gsn | c1 | c2 |

+----------+--------+--------------+--------+------+------+

| 1 | 7 | 99 | 2 | 2 | 20 |

+----------+--------+--------------+--------+------+------+

1 row in set (0.00 sec)

14

Columns added by FlexCDC

UOW (transaction information) table

mysql> select * from mview_uow;

+--------+---------------------+---------+

| uow_id | commit_time | gsn_hwm |

+--------+---------------------+---------+

| 1 | NULL | 1 |

| 2 | 2015-04-15 06:08:40 | 1 |

| 3 | 2015-04-15 06:08:40 | 1 |

| 4 | 2015-04-15 06:08:40 | 1 |

| 5 | 2015-04-15 06:09:53 | 1 |

| 6 | 2015-04-15 06:11:11 | 1 |

| 7 | 2015-04-15 06:11:52 | 2 |

+--------+---------------------+---------+

7 rows in set (0.00 sec)

15

UOW_ID and GSN

• Each transaction is assigned a UOW_ID

• Each row change a unique GSN (global
sequence number)

16

Transactional changes group together

mysql> delete from test.demo;

Query OK, 2 rows affected (0.00 sec)

mysql> select * from mvlog_d04c8f0c8097ee8bce23318fb44950dc;

+----------+--------+--------------+--------+------+------+

| dml_type | uow_id | fv$server_id | fv$gsn | c1 | c2 |

+----------+--------+--------------+--------+------+------+

| 1 | 7 | 99 | 2 | 2 | 20 |

| -1 | 8 | 99 | 3 | 1 | 10 |

| -1 | 8 | 99 | 4 | 2 | 20 |

+----------+--------+--------------+--------+------+------+

3 rows in set (0.00 sec)

17

Cleaning up changelogs

• Change logs are analogous to binary logs,
except the changes are stored in a table

• Like binary logs, it is necessary to purge data
from the change logs or they will grow
unbounded

18

Log_retention_interval

• Setting in consumer.ini which controls for how
long change log entries are retained

• Use INTERVAL syntax, ie “10 day” (the default)

• Run cleanup_history_safe.sh

• Every 600 seconds wakes up and cleans up old
rows

19

ALTER TABLE?

• When an ALTER is processed from binary log if
the table is being logged, the ALTER is applied
to the log table (if applicable)

– Indexes are not applied

– ROW_FORMAT, KEY_BLOCK_SIZE, etc, not applied

– Only column names and data types basically

20

Using FlexCDC with Flexviews

• FlexCDC is part of Flexviews

• Flexviews uses change log tables to efficiently
update materialized views

• You can’t change FlexCDC table names if you
want to use Flexviews

21

Using the changelog tables with ETL

• ETL (extract transform load) tools are typically
designed to work with change data capture

• Examples include Pentaho, Jaspersoft, almost
any BI tool

22

How popular online clothing site uses FlexCDC

• Use FlexCDC “auto_changelog” mode

– Automatically creates log tables for any table that
has data changed by the database

– FlexCDC captures changes to all tables

23

Using with ETL tool

• ETL tool remembers the highest UOW_ID that
it has read

• Gets lists of tables to collect from from mvlogs
table

• SELECT from the log tables where UOW >
last_uow_id

24

ETL

• ETL tool is responsible for making changes in
downstream database (Redshift for example)

• ETL tool can also maintain aggregate tables,
etc, in downstream database

• One way only – changes in downstream do
not propagate upstream

25

Using ETL flows

• If you capture changes from subset of tables
you can use normal ETL flow

• Read changes (as inserts and deletes) from log
table, applying changes to downstream table
(data warehouse)

• Transform along the way as required

26

Gearman and gearman UDF

• Gearman is a job server/message queue
– Workers – Wait for job input, process job, return

results

– Servers – Accept jobs from clients, send to
workers. Marshalls data between worker and
client

– Clients – sends input to workers, gets results

27

Setup steps

• Install gearman server

• Create a worker script to do the work you
need (insert into remote database for
example)

• Create a client

28

UDF client

• Could be FlexCDC plugin (more on this shortly)

• But can be Gearman MySQL UDF as well

– Compile with libgearman

– Call gman_servers_set(…) to connect MySQL to
Gearman (good to put in init_sql command)

29

Using the Gearman UDF

set v_args := concat('{"sql":"', v_sql,

'","schema_name":"',v_remote_schema,'"}');

set v_json := gman_do('shard_query_worker', v_args);

SELECT gman_do_background('worker_name', 'arguments');

30

Use FlexCDC + Gearman UDF

• Create changelog as normal

– Use add_table.php for Flexviews.create_mvlog()

• Add TRIGGER to log table

– AFTER INSERT trigger probably is best

– Use gman_do_background to send changes to
workers

31

Pros/Cons

• Pros
– Easy to set up
– Worker code can be any language

• Cons
– Triggers
– Requires a trigger per log table, not generally useful for

many tables
– Each row change is sent to Gearman (no batching) not

really transactional

32

Using FlexCDC plugins

• FlexCDC supports plugins since early last year

• Plugins are written as a PHP class which is
loaded by FlexCDC at startup

• Multiple plugins are supported

• You can declare plugin execution order

33

Still need source and dest

• When using plugins, FlexCDC maintains an
empty copy of the source table

– Allows FlexCDC to provide proper data types

– Allows FlexCDC to provide column names

34

Enabling plugins in the consumer.ini

;The example plugin prints out all the rows that are sent
to it - THEY ARE NOT LOGGED INTO THE MVLOG TABLE

;plugin=example_plugin.php

;You can load more than one file with plugins:

plugin=file1.php,file2.php,file3.php

;Of course, if you want more than one plugin, each MUST
have a unique name (again this is the CLASS name in the
file(s) loaded above)

plugin_order=FlexCDC_plugin,Class1,Class2

35

Plugins implement FlexCDC_plugin_interface

interface FlexCDC_Plugin_Interface {

static function plugin_init($instance);

static function plugin_deinit($instance);

static function begin_trx($uow_id, $gsn, $instance);

static function commit_trx($uow_id, $gsn, $instance);

static function rollback_trx($uow_id, $instance);

static function insert($row, $db, $table, $uow_id, $gsn, $instance);

static function delete($row, $db, $table, $uow_id, $gsn, $instance);

static function update_before($row, $db, $table, $uow_id, $gsn,
$instance);

static function update_after($row, $db, $table, $uow_id, $gsn,
$instance);

}

36

Init/Deinit

static function plugin_init($instance);

static function plugin_deinit($instance);

These functions are called during plugin startup and shutdown. If you
are sending changes to an external data store, this is a good place to
connect/disconnect from the remote server

Instance is a copy of the FlexCDC object (not generally useful here, but
present for completeness)

37

Transaction state management

static function begin_trx($uow_id, $gsn, $instance);

static function commit_trx($uow_id, $gsn, $instance);

static function rollback_trx($uow_id, $instance);

These functions manage transaction state.

$uow_id – The transation identifier assigned by FlexCDC for the transactions

$gsn – GSN high water mark (highest GSN used in transactions)

$instance – FlexCDC instance for helper functions

38

Row changes

static function insert($row, $db, $table, $uow_id, $gsn,
$instance);

static function delete($row, $db, $table, $uow_id, $gsn,
$instance);

static function update_before($row, $db, $table, $uow_id,
$gsn, $instance);

static function update_after($row, $db, $table, $uow_id,
$gsn, $instance);

These functions manage transaction state.
$row – the row data (associative array includes column names)
$db – the schema that the change originated in
$db – the table that was changed

39

Sending changes to non-transactional stores

• FlexCDC provides $uow_id and $gsn

• Record $gsn in remote system

• Write plugin such that if “something bad”
happens, it can skip through highest GSN

• GSN are monotonically increasing, never skip
values, and are never reused

40

Sending changes to transactional stores

• Start a transaction against remote store in
begin_trx(..)

• Commit in commit_trx(…)

• Rollback in rollback_trx

• (pretty simple)

41

Batching changes

• Instead of writing to remote store for every
row change use a class member to hold
changes and then batch them into the remote
database in commit_trx(…)

• Similar technique can be used to send UPDATE
statements instead of delete/insert in
before_update and after_update

42

Advantages over other solutions

• MySQL C binlog API, Ruby binlog API,
Tungsten, etc
– Can not provide column names

– Can not correctly interpret unsigned data types

– Do not use binlog_dump command to ‘act as a
slave’

– Do not handle ALTER TABLE

43

Possible use cases

• Keep Sphinx/SOLR up to date based on data
changes

• Invalidate Memcached based on row changes

• Turn row changes into SELECT statements to
warm a slow slave

• Send data to Kafka, RedShift, Hadoop, any third
party data store with PHP client

44

Q/A
45

