What is it and how to avoid it

PERCONA
LIVE

WHAT IS SQL INJECTION?

What is SQL injection?

SQL injection is an attack vector

An attacker modifies the SQL queries which will be
executed by the server

But the attacker does not need to change the code
on the server or get access to the server

PERCONA
LIVE

What is SQL injection — interpolation (strings)

fusername = $_GET[‘username’];
$sql =
“select 1
from users.users
where admin_flag=true
and username = ““

. $username . :

S wget http://host/path.php?username=bob SQL injection!

S wget http://host/path.php?user id="" or'1'="1"
and username = ‘’ or ‘1’ = ‘1’

OPEQCONA
LIVE

Escape strings, or use prepared statements!

#escape string values
$username = mysqli_real_escape_string($_GET[‘username’]);
$sql = “select .. and username = -y

. Susername . .

#prepared statement

fusername = GET[‘username’];

$stmt = mysqli_stmt_init($conn) ;

$sql “select .. and username = ?”
mysqli_stmt_prepare($stmt, $sql);
mysqli_stmt_bind_param($stmt, “s”, S$Susername);
mysqli_stmt_execute($stmt) ;

mysqli_stmt_close($stmt);

OPEQCONA
LIVE

What is SQL injection — interpolation (ints)

$user_id = $_GET[‘user_id’];
$sql =
“select 1
from users.users
where admin_flag=true SQL injection!
and user_id = “ . $user_id;

S wget http://host/path.php?user_id=1
S wget http://host/path.php?user_id=“1 or 1=1"

OPEQCONA
LIVE

Use type checking, or prepared statements!

#check that integers really are integers!
$user_id = GET[‘user_id’];
if(lis_numeric(user_id)) S$user_id = “NULL”;
$sql “select .. and user_id = “ . $user_id;

#prepared statement
$user_id = GET[‘user_id’];
$sql “select .. and user_id = ?

mysqli_stmt_bind_param($stmt, “i”, Suser_id);
mysqli_stmt_execute($stmt) ;

OPEQCONA
LIVE

When escaping can’t help

Some parts of a SQL statement can’t be
manipulated using parameters

These include
ORDER BY columns

Variable number of items in an IN list
Adding SQL syntax like DISTINCT

PERCONA
LIVE

Don’t use user input in the query

#avoid using user input directly in ANY way

$sgql = “select * from Tistings where deleted = 0 and sold
= 0 and open = 17;

if(lempty($_GET[‘ob’])) {
$sgql .= “ ORDER BY

. $_GET[‘0ob’];

ks
Bad!

wget .. ?ob=post_date

wget .. 7ob="post_date union all (select * from listings)”

Now we can see all listings

OPEQCONA
LIVE

Use whitelisting instead

#avoid using user input directly in ANY way

$sgql = “select * from Tistings where deleted = 0 and sold
= 0 and open = 17;

$allowed = array(‘post_date’, 'neighborhood’,’etc’);
if(lempty($_GET[‘0b’]) && is_string($_GET[‘ob’1)) {
if(in_array($_GET[‘ob’], $allowed)) {

$sgql .= “ ORDER BY “ . $_GET[‘ob’];
¥

in_array() is the keeper of the gate

wget .. ?ob=post_date

wget .. ?ob="post_date union all (select * from listings)”

OPEQCONA
LIVE

All that works great for the apps you control

BUT...

If you don’t have the source for an app, then you
really can’t be sure it isn’t safe from SQL injection

Or maybe you have to support old apps
Or apps that were not developed rigorously

What do we do in these cases?

PERCONA
LIVE

Out-of-band SQL injection detection

SQL INJECTION DETECTION USING
PT-QUERY-DIGEST

How to detect SQL injection?

Most applications only do a small number of
things.

Add orders, mark orders as shipped, update
addresses, etc.

The SQL “patterns” that identify these behaviors
can be collected and whitelisted.

Queries that don’t match a known fingerprint may
be investigated as SQL injection attempts

PERCONA
LIVE

What is a query fingerprint?

A query fingerprinting algorithm transforms a
query into a form that allows like queries to be
grouped together and identified as a unit
In other words, these like queries share a
fingerprint
Even though the queries differ slightly they still
fingerprint to the same value

This is a heuristic based approach

OPEQCON/\
LIVE

Tools that support query fingerprints

Percona Toolkit tools
pt-query-digest

pt-fingerprint

Reads slow query logs and
populates the whitelist table.

Can also be used to display new

queries that have not been
marked as allowed.

Takes a query {or queries) and
produces fingerprints.

Useful for third party tools that
want to use fingerprints.

OPEQCONA
LIVE

What is a query fingerprint (cont?)

select * from some_table where col =3
becomes

select * from some_table where col = 7?

select * from some_table where col = IN (1,2)
becomes

select * from some_table where col IN (?)

Query fingerprints expressed as hashes

pt-query-digest can provide short hashes of
checksums

select * from some_table where col = 7?
082e5737f9747a5d (163110537%)
base 10
select * from some_table where col = IN (?)
2da8ed487cdfclc8 (1680229806268)

pt-query-digest

Normally used for profiling slow queries
Has a “SQL review” feature for DBAS

Designed to mark query fingerprints as having
been reviewed

This feature can be co-opted to discover new
query fingerprints automatically

New fingerprints are either new application code
or SQL injection attempts

PERCONA
LIVE

pt-query-digest — review feature

Need to store the fingerprints in a table

Known good fingerprints will be marked as
reviewed

If pt-query-digest discovers new fingerprints you
will be alerted because there will be unreviewed
queries in the table

PERCONA
LIVE

pt-query-digest - review table initialization

Need to initialize the table

pt-query-digest /path/to/slow.log \
--create-review-table
--review “h=127.0.0.1,P=3306,u=percona,p=2unlcOrns,D=percona,t=whitelist” \

--sample 1\
Where to store fingerprints
--no-report
Don’t waste time on stats
Don’t print
report

OPEQCONA
LIVE

pt-query-digest — command-line review

pt-query-digest /path/to/slow.log \

--review “DSN...” \
--sample 1\
--report \

--limit O

How it knows which queries have already
been reviewed

Don’t collect stats, just sample one of
each new fingerprint

Display the report of queries

Ensure that all unreviewed queries are shown

OPEQCONA
LIVE

USING THE WHITELIST WITH SQL

Detecting new query fingerprints

SELECT count(®)

Any new queries?

FROM percona. whitelist percona.whitelist is just
: an example name, you can
WHERE reviewed_by IS NULL; e iy you like

SELECT checksum, sample
FROM percona.whitelist
WHERE reviewed_by IS NULL;

Get a list of the
queries

OPEQCONA
LIVE

Add a query fingerprint to the whitelist

UPDATE percona.whitelist
SET reviewed_by = ‘allow’,
reviewed_on = now()
WHERE checksum= 1680229806268;

OPEQCONA
LIVE

Out of band detection

LIMITATIONS AND CAVEATS

Out-of-band detection

Some damage or information leakage may
have already happened

To limit the extent of the damage send an alert
as soon as a new pattern is detected

Ensure thorough application pattern detection in a
test environment to avoid false positives

PERCONA
LIVE

Get logs as fast as possible

Use tcpdump on a mirrored server port
Pipe the output to pt-query-digest
Use tcpdump on the database server

Adds some additional overhead from running the
tools on the same machine

Possibly higher packet loss
Collect and process slow query logs frequently

Adds slow query log overhead to server
Longer delay before processing

PERCONA
LIVE

What to do BEFORE a fishy fingerprint appears

FINDING THE VULNERABILITY

Prepare for finding a vulnerability

Tracking down the vulnerable code fragment

can be difficult if you have only the SQL
statement

Not just a problem with SQL injection since it is
usually convenient to see where a SQL
statement was generated from

Add tracing comments to queries

A good approach is to modify the data access
layer (DAL) to add SQL comments
Comments are preserved in the slow query log

Comments are displayed in SHOW commands
SHOW ENGINE INNODB STATUS
SHOW PROCESSLIST

Make sure your client does not strip comments!

PERCONA
LIVE

Add tracing information

PHP can use debug_backtrace() for example

PERL has variables that point to the file and
ine

nvestigate the debugging section of your
angauge’s manual

What to place in the comment

Here are some important things to consider
placing into the tracing comment
session_id (or important cookie info)
application file name, and line number
important GET, POST, PUT or DELETE contents

Any other important information which could be
useful for tracking down the vector being used in
an attack

PERCONA
LIVE

Example comments in SQL queries

select airport_name, count(*)
from dim_airport

join ontime_fact
on dest_airport_id = airport_id
where depdelay > 30
and flightdate_id = 20080101
/':‘:
webserver:192.168.1.3,f1le:show_delays.php, 1

1ne: 326, function:get_ de1ayed flights,user:ju
stin, sessionid:7B7N2PCNIOKCGF

L
0/

This comment contains all that you need

PERCONA

LIVE

Most apps don’t do this out of the box

You can modify the application

If you have the source code (and it uses a DAL)
BUT...

There isn’t much you can do if

The application is closed source, or you can’t change
the source

There is no DAL (code/query spaghetti)

For any other reason it is problematic to inject
information into all SQL queries

OPEQCONA
LIVE

If | can’t change the source?

You can’t fix the problems when you detect
them.

Consider using an open source solution
Or consider in-band protection
Noinject-MySQL — My Lua script for MySQL proxy + web interface

GreenSQL — Commercial proxy for MySQL and other databases

MySQL Enterprise Firewall — New SQL injection prevention firewall
from Oracle

OPEQCONA
LIVE

Q/A

OPEQCONA
LIVE

