
55 Washington St. #512 Brooklyn, NY 11222 April, 2015

The Database Is Down, 
Now What? 
!

Jeremy Tinley 
jtinley@etsy.com 
@techwolf359

mailto:jtinley@etsy.com


About Etsy



Main Section:

Sub Section



Agenda
Evolution of MySQL Architectures


MySQL at Etsy


Etsy Problem Resolution



Evolution of MySQL 
Architectures



Master with Standby

All reads and writes go to a single server.


Caveats:


• Doesn’t scale. CPU, disk bottlenecks.


• Single point of failure.


!

What DBAs Do:


• Tune Queries (slow query log; pt-query-digest).


• Add caching (memcached; more memory for BP).


• Add replicas.

6



Master with Read Pool

All writes go to a single server. One or more read servers, likely using a load balancer.


Caveats:


• Doesn’t address write bound workload.


• Replication lag becomes a problem.


• Single point of failure (still).


!

What DBAs Do:


• Shard.


• Use multi-threaded replication.

7



Functional Sharding

Take a heavy database or table and move the entire thing to another server.


Caveats:


• Scaling an issue when that object grows.


• Two different connections for some queries.


• Single point of failure (yes, still).


!

What DBAs Do:


• Logical Sharding.


• Buy bigger servers.

8



Logical Sharding

Multiple server pairs running the same schema, each with a subset of data in them. Can 
be done as range-based or mapping.


Caveats:


• Replication lag if using read pool.


• Mapping queries add a connection.


• Multiple single points of failure.


!

What DBAs Do:


• Master-Master, writing to both sides.

9



MySQL at Etsy



High Level Overview

Etsy uses fairly standard MySQL patterns. 


• CentOS 5/6/7


• Percona Server 5.5, no custom patches.


• Percona Server 5.6 in one environment for TokuDB


• Farm is managed by Chef


• Generally inspired by the Flickr design


• ORM (Not hand-crafted or vintage queries)

11

http://ceilingcat.ninja

http://ceilingcat.ninja


Tickets, Index & Shards

Our main data store consists of user-generated objects such as users, shops, listings, 
orders, favorites, etc.


• Ticket servers provides unique IDs for all objects


• Index servers provide the mapping for objects to shards


• Shard servers store the actual user data


12



Generating Globally Unique Object PKs

Ticket servers only purpose in life is to provide unique IDs for all objects we create in 
our environment.


• Pair of servers generating evens/odds using auto_increment_increment and 
auto_increment_offset. Code auto-retries the other side if unreachable.


• MyISAM table with an ID and a stub. Only 1 row for the latest ID.


• Use REPLACE INTO to get a new, unique ID for any object


• For more details: http://code.flickr.net/2010/02/08/ticket-servers-distributed-
unique-primary-keys-on-the-cheap/

13

http://code.flickr.net/2010/02/08/ticket-servers-distributed-unique-primary-keys-on-the-cheap/


Index to Shard Locations

Once a new object is given a primary key, it’s assigned a shard location.


• Index maps objects to shards.


• A general purpose memcache layer in front reduces connections/queries.


• Other convenient data stored here to prevent a subsequent shard lookup, such as user 
or shop name.


• Master-Master replication with writes to both sides. Incoming writes are use a simple 
mod 2 to ensure they pin to A or B side.

14



User Generated Data on Shards

The bulk of user data such as shops or listings lives in the shard farm.


• A shard pair is a pair (A/B) of physical servers


• Each server is running a single MySQL instance


• Each instance has multiple shard databases


• Replication is master-master


• Writes are done on both sides


• Shards are mod 2 driven, not range-based

15



Master-Master Isn’t Scary.

In most environments, master-master replication is never a problem so long as you 
ensure you only write to one side. In our shard layout, we “pin” object reads/writes to 
one side and accept writes to both sides at the same time.


• Writes to an object will pin to A or B side and replicate to the opposite side


• Reads pin the same way making the application immune to normal replication lag


• Buffer pool working set is reduced to half of what it normally would be


• A single server going down impacts us half as much as normal

16



Maintenance - Schema Changes

We apply schema changes every Thursday. We use an internal tool called “Schemanator” 
to manage this process.


• Validates schema changes by applying to a temporary location


• Has validation for things like character sets, IDs as bigint


• Sets downtime for appropriate hosts/services


• Pulls side A, applies schema changes via Gearman jobs, reports back progress


• Repeat on B side, checksums when done


• Best part: code never forgets to SET SQL_LOG_BIN=0!

17



Schemanator Example.

Example of creating a new schema change.


18



Schemanator Examples

!

19



Maintenance - Side Splitter

Schemanator has a tool inside of it called Side Splitter. This lets us pull a single server or 
an entire A/B side from production. 


• Validation to ensure you aren’t pulling both sides of a pair


• Checks to see if you set monitoring downtime for the host 


• Pushes a disabled connection file out to all hosts in parallel


• File is loaded within 1 second of landing on the host


• All new requests use the other side

20



Impact of Pulling a Server/Side

Pulling a server isn’t without (brief) pain.


• Buffer pool for the new traffic is cold leading to an I/O spike


• Replication should be in sync, or very-nearly in sync. Failing to do so will serve stale 
data for the side of traffic that is being flipped over


• Used to create a single point of failure. If the remaining side went down during a 
schema change, it was messy to get restored.

21



The Need for More Copies

Realizing that having user data on just a pair of servers was scary, especially since we 
pull them once a week, we added more copies of data.


• Originally was a local delayed copy and an offsite copy in another data center


• This only got us a local, latent copy of the user data which had to be caught up before 
it was usable 


• Natural progression was to store additional real time replicants, but server volume was 
prohibitive


• Consolidating lots of data onto less hardware while maintaining both replica sides was 
the goal 

22



Enter Comboshards

The comboshards are standby servers that give us warm fuzzies when we pull half our 
masters every week.


• 1U Dell R630 960GB SSDs x24 across 2 controllers (18TB usable in RAID-6)


• Each physical server runs multiple instances of MySQL


• A side, B side and Delayed replicas divided up across the comboshard farm


• Primary fail-to source if we lost both A and B side masters from a shard pair


• Primary read location for non-user facing bulk tasks


• Bonus: They write ROW based binlogs which feed into Kafka for event triggering

23



R630 Form Factor

1U, 24x 960GB SSD

24



Future Me’s Problems - Index

No architecture is ever perfect, or else we would all be doing it.


• Index race conditions. Needs code to fix it.


• 2 shops created at the same time can fall on different sides of a shard and collide 
on a unique key.


• Need globally unique tables to solve other hashing issues.


• Index scaling. We take a lot of connections per second.


• Better/longer caching in front of Index, perhaps on web servers themselves


• Functional partitioning of high traffic tables? Real read pools?

25



26
1: https://github.com/lefred/MyUndelete

Future Me’s Problems - Backup/Restore

We allow all developers access to production. This can be really scary because our time 
to restore feels too long.


• We use Percona Xtrabackup for hot backups alternating A and B every other night.

• 75 minutes for network transfer (gigabit)


• 20 minutes for —decompress —parallel=24


• 60 minutes for —apply-logs —use-memory=128G


• Replication catchup time varies. Usually hours.


• 5.6 + ROW + MyUndelete[1] can get us there faster, maybe?


• 10 gigabit network + pre-decompressed, pre-applied data directories?

https://github.com/lefred/MyUndelete


Our Biggest Problem - Hardware

Hardware will always fail. Often at 3AM.


• Pulling a server with Side Splitter is our failover process and it’s manual.


• Automated failover is scary. Quorum can be challenging.


• We limit damage by spreading our user data over a large number of servers. This, in 
turn, uses lots of power, rack space and time spent on management/automation.

27



A Walk Through Problem 
Resolution at Etsy



Step 1: Confirmation



Is it Really a Problem?

Automated detection can fail.


• Can you reproduce it?


• Are you seeing the same errors?


• Is this an intentional change?


• What do the logs or graphs show?

30



Aggregate Log View with Supergrep

Supergrep is our filtering tool we use to view logs from multiple sources.


31

https://github.com/etsy/supergrep



Step 2: Tell Someone

(Even if its your fault)

“If you mess up, tell someone. 
If you mess up big, tell everyone.”



The Importance of Communication

It takes virtually no time to communicate. The time you save from having to answer 
questions while you troubleshoot can be massive.


• 18 seconds to send an email


• 15 seconds to send an IRC message


• 16 seconds to send a text message


We have command line tools that let us post status updates that hit our status website 
(etsystatus.com) and twitter feed (@etsystatus) to push out important information to our 
members/users.

33

http://etsystatus.com


Step 3: Fix the Problem



General to Specific

Start with the most general assumptions and work down from there.


• Hardware


• OS


• Software


• Look at hints provided from error messages.

35



Know Your Tools

Brendan Gregg’s famous observability tools diagram.

36



Is Your Server Online?

Hardware failure happens. Detect and resolve.


• Is the server powered on & pingable?


• Can you SSH into the server?


• Check console or ILO/DRAC access.

37



Operating Systems - CPU Bound

From a Linux point of view, are there any resource constraints?


• top


!

• atop


!

• htop


38



Operating Systems - Disk/IO Limits

From a Linux point of view, are there any resource constraints?


• df - Are you out of space?


• iostat - Use -x to get Util%. Also look at svctime and await.


• sar (sysstat) - How do you compare historically? 


• pt-diskstats - Shows you iops


39



Operating Systems - Memory Limits

From a Linux point of view, are there any resource constraints?


• free - Did you start swapping?


• vmstat - See swap bytes in/out


• NUMA - Non-Uniform Memory Architecture [1]


40

[1] http://blog.jcole.us/2010/09/28/mysql-swap-insanity-and-the-numa-architecture/



MySQL Specific

MySQL health can be tricky to find.


• Can you log into MySQL?


• Are you at max processes? Log in as a SUPER and SHOW PROCESSLIST


• Are there a long queries running?


• Locking? SHOW ENGINE INNODB STATUS


• Use tools to help consolidate information: innotop/mytop, VividCortex

41



Step 4: Talk About It



Learn From An Outage

Use this experience to improve the detection and resiliency in your environment.


• Document a Runbook


• Conduct a Postmortem


• Identify and Implement Remediation Items


• Game Days

43



Runbooks from Alerts

Document what people should do in case of an alert. Tie it in with your monitoring 
system.


• Brief explanation of how the alert works or what it checks


• Document how to determine if something is wrong


• Give examples of how to fix the problem


• Provide an escalation path; who do you contact if what you tried didn’t work

44



What is a Postmortem?

A review of the situation that resulted in the outage where teams can learn how to 
protect against repeat occurrences.


• Track it. Etsy open sourced morgue, our PM tracker [1]


• Keep it open. Invite as many people that want to attend.


• Keep it blameless. The point is to learn, not to point fingers.


• Keep it on topic. Don’t digress to what-ifs or should-haves.

45
[1] https://github.com/etsy/morgue



Morgue Example

Morgue tracks time, severity, timeline and several other elements associated with a PM.


46



Anatomy of a Postmortem

• Summarize What Happened


• “The website went down because a configuration change was made to 
max_connections and we were unable to accept new connections.”


• Walk Through the Outage Timeline Step-by-Step


• IRC Transcripts are Useful


• Ask questions to determine why people came to (wrong) conclusions.


• Discuss Remediation Items


• Track Them with a Ticketing System

47



Remediation

Make a complete list of the work necessary to inhibit future recurrence and set a 
deadline.


• Set a deadline. We do 30 days.


• Prioritize over everything else (within reason).


• Just Ship.

48



Game Days

There is no substitute for actual practice.


• What does your homepage look like if your database goes down? 


• Fail over your database in a drill.


• Find the way your application will break if you do as many twisted things as possible 
to it.

49



Conclusion



Databases Go Down

DON’T hope it doesn’t happen. EXPECT it to happen. PLAN for what you do WHEN it 
happens. 


• Know your architecture


• Know the pain points


• Document how to get services restored


• Review how to improve both your architecture and your processes

51



Questions?



Happy Sleeping


53




