It’s About Performance

Bill Karwin LW\ PERCONA

Senior Database Architect @ SchoolMessenger

MySQL Tuning

INTRODUCTION

What Are We Talking About?

Configuration variables.

We change them to allocate resources for specific
features in MySQL.

Or enable/disable optional behavior.
Make settings persistent by editing /etc/my.cnf

OPERCONA
LIVE

Types of Tuning Changes

Many configuration variables can be GLOBAL
or SESSION.

Sessions copy global values at connect time.

Sessions can change tuning values for the scope of
one connection.

OPERCONA
LIVE

Tuning Advantages

No changes required to schema.
No changes required to code.

Some tuning changes possible without
restarting mysqld.

InnoDB Buffer Pool Connections and Threads
InnoDB Redo Log Tables

InnoDB 10 Capacity Query Cache

InnoDB Other Operating System
Optimizer Tuning Tools

Logging Monitoring Tools
Replication Tuning vs. Architecture

OPERCONA
LIVE

MySQL Tuning

INNODB

BUERERIPOOL;

- 28 e
. > < P ;:'-

ey
e E—— -y

-~

B T A e | ‘\‘ (‘
\‘\'. : .ﬁ..: . Q | 3 '
®0O

O =5

54 |

InnoDB Buffer Pool

Largest single use of memory in the server

In-memory cache of InnoDB data, indexes,
undo pages, change buffer — anything that is
stored in pages in the tablespace.

Buffer Pool Size

Enough to hold most frequently-used pages.
1nnodb_buffer_pool_size = 10240M

Buffer Pool Size

Watch the ratio of page reads to page reads that needed I/0:

mysql> SHOW GLOBAL STATUS LIKE
"Innodb_buffer_pool_read%s’';

et et i L T e t-——— - +
vVariable_name Value

et et i L T e t-——— - +
Innodb_buffer_pool_read_requests 30887 98.67%
Innodb_buffer_pool_reads 411 efficiency

et et i L T e to—————- +

OPERCONA
LIVE

Buffer Pool as a Portion of RAM

70
& B Spare
e’ M Buffer Pool
40
H MySQL
30 :
M Filesystem
20
M Processes
10
I— % Linux
0 I T]

8GB RAM 16GB RAM 64GB RAM

OPERCONA
LIVE

Buffer Pool Sizing Tips

Assume the buffer pool uses +10% RAM for
internal metadata.

You can reach a point of diminishing returns.
A small database doesn’t need a large buffer pool.

Pages are not stored more than once.

Don’t oversize it and cause swapping!

OPERCONA
LIVE

What’s In My Buffer Pool?

USE information_schema; MySQL or

SET @page_size = @@innodb_page_size;
SET @bp_pages = @@innodb_buffer_pool_size/@page_size;

Percona Server
5.6-5.7

/* MySQL or Percona Server 5.6 - 5.7 */
SELECT P.TABLE_NAME, P.PAGE_TYPE,

CASE WHEN P.INDEX_NAME IS NULL THEN NULL WHEN P.TABLE_NAME LIKE ' SYS_%' THEN P.INDEX_NAME WHEN
P.INDEX_NAME <> 'PRIMARY' THEN 'SECONDARY' ELSE 'PRIMARY' END AS INDEX_TYPE,

COUNT(DISTINCT P.PAGE_NUMBER) AS PAGES,
ROUND (100*COUNT (DISTINCT P.PAGE_NUMBER)/@bp_pages,2) AS PCT_OF_BUFFER_POOL,

CASE WHEN P.TABLE_NAME IS NULL THEN NULL WHEN P.TABLE_NAME LIKE 'SYS_%' THEN NULL ELSE
ROUND (100*COUNT (DISTINCT P.PAGE_NUMBER)/CASE P.INDEX_NAME WHEN 'PRIMARY' THEN TS.DATA_LENGTH/

@page_size ELSE TS.INDEX_LENGTH/@page_size END, 2) END AS PCT_OF_INDEX
FROM INNODB_BUFFER_PAGE AS P

JOIN INNODB_SYS_TABLES AS T ON P.SPACE = T.SPACE

JOIN TABLES AS TS ON T.NAME = CONCAT(TS.TABLE_SCHEMA, '/', TS.TABLE_NAME)
WHERE TS.TABLE_SCHEMA <> 'mysql'

GROUP BY TABLE_NAME, PAGE_TYPE, INDEX_TYPE;

OPERCONA
LIVE

What’s In My Buffer Pool?

USE information_schema; Percona Server

SET @page_size = @@innodb_page_size;
SET @bp_pages = @@innodb_buffer_pool_size/@page_size; 5 1 — 5 5

/* Percona Server 5.1 - 5.5 */
SELECT P.TABLE_NAME, P.PAGE_TYPE,

CASE WHEN P.INDEX_NAME IS NULL THEN NULL WHEN P.TABLE_NAME LIKE ' SYS_%' THEN P.INDEX_NAME WHEN
P.INDEX_NAME <> 'PRIMARY' THEN 'SECONDARY' ELSE 'PRIMARY' END AS INDEX_TYPE,

COUNT(DISTINCT P.PAGE_NUMBER) AS PAGES,
ROUND (100*COUNT (DISTINCT P.PAGE_NUMBER)/@bp_pages,2) AS PCT_OF_BUFFER_POOL,

CASE WHEN P.TABLE_NAME IS NULL THEN NULL WHEN P.TABLE_NAME LIKE 'SYS_%' THEN NULL ELSE
ROUND (100*COUNT (DISTINCT P.PAGE_NUMBER)/CASE P.INDEX_NAME WHEN 'PRIMARY' THEN TS.DATA_LENGTH/

@page_size ELSE TS.INDEX_LENGTH/@page_size END, 2) END AS PCT_OF_INDEX
FROM INNODB_BUFFER_PAGE AS P

JOIN INNODB_SYS_TABLES AS T ON P.SPACE = T.SPACE

JOIN TABLES AS TS ON (T.SCHEMA, T.NAME) = (TS.TABLE_SCHEMA, TS.TABLE_NAME)
WHERE TS.TABLE_SCHEMA <> 'mysql'

GROUP BY TABLE_NAME, PAGE_TYPE, INDEX_TYPE;

OPERCONA
LIVE

What’s in My Buffer Pool?

e e +---mm— - +---——=- +-—mm e +--mm +
| TABLE_NAME | PAGE_TYPE | INDEX_TYPE | PAGES | PCT_OF_BUFFER_POOL | PCT_OF_INDEX |
e e +---m———————- +-----=- +--mm e +--mmmm +
NULL	FILE_SPACE_HEADER	NULL	1	0.00	NULL
NULL	IBUF_BITMAP	NULL	1	0.00	NULL
NULL	INODE	NULL	1	0.00	NULL
"test . foo	INDEX	PRIMARY	2176	3.32	98.37
"test . foo	INDEX	SECONDARY	2893	4.41	88.47
Fommm e e +--mm———————- +-----=- ittt F-mmmmm +

how much of how much of
BP is full of each index is
each index cached in BP

OPERCONA
LIVE

Buffer Pool Instances

Many threads can queue up, in contention for
exclusive access to the buffer pool.

Scalability issue more than performance issue.

OPERCONA
LIVE

Buffer Pool Instances

Split the buffer pool into a fixed number of
sub-pools, and distributes pages among them.

ouffer_pool_instances = <integer>

How Many Buffer Pool Instances?

Typically set this to the number of CPU cores.

Default BP instances = 1
MySQL 5.6 auto-defaults to 8 when BP > 1GB

You still specify total RAM used in
1nnodb_buffer_pool_size,

Automatically splits evenly between BP instances.

InnoDB Buffer Pool Save & Restore

After a server restart, an empty buffer pool
causes low performance until it “warms up.”

OPERCONA
LIVE

InnoDB Buffer Pool Save & Restore

Dump & restore automatically:
SET innodb_buffer _pool dump_at shutdown = ON;
SET innodb_buffer _pool load at startup = ON;

Dump & restore manually (e.g. in an EVENT)

SET innodb_buffer pool dump_now = ON;
SET innodb_buffer _pool load now = ON;

OPERCONA
LIVE

InnoDB Buffer Pool Save & Restore

CREATE EVENT mysqgl.buffer_pool_dump
ON SCHEDULE EVERY 1 HOUR

DO

SET GLOBAL
innodb_buffer_pool_dump_now=0N;

good if you anticipate crashes!

OPERCONA
LIVE

ggegeeenae) LV
veiay Vi
-

MySQL Tuning

:

INNODB:{»JefNelch \

J

Simon Law @@
OPERCONA
LIVE

InnoDB Log File

The log file records changes to InnoDB pages.
The file(s) are fixed size, and are overwritten.

: ib_logfileO ib_logfilel :

InnoDB Log Size

Dirty pages in the BP must be accounted for
by log entries.

Log entries may not be overwritten until the
corresponding dirty pages are flushed.

Thus a larger log file allows more dirty pages.

InnoDB Log Size

At 0-75% log file usage, query 75-88% log file usage, 88%+ log file usage, all
threads work freely, while page page cleaner runs qguery threads block
cleaner thread does adaptive async flush. for sync flush.

flushing continually.

ib_logfileO

https://blogs.oracle.com/mysalinnodb/entry/introducing page cleaner thread in

OPERCONA
LIVE

Log File Size Indicator

Enable InnoDB metrics for the buffer pool:
SET GLOBAL innodb_monitor_enable="module_buffer';

Monitor for the number of sync waits:

SELECT name, count_reset
FROM INFORMATION_SCHEMA.INNODB_METRICS
WHERE name LIKE 'buffer_flush_sync%';

If the counts are regularly greater than zero,
increase Thnodb_log_file_size.

OPERCONA
LIVE

Log Buffer Size

Small (8MB) buffer for writing redo log
records to the log file.

If it’s full, a COMMIT has to wait for it to flush.

SHOW GLOBAL STATUS LIKE
"Innodb_log_waits';

If you get frequent waits (> 1/minute),
increase Thnodb_log_buffer_size.

InnoDB Log Flush at Transaction Commit

innodb_flush log at trx commit=1
Every transaction COMMIT is fully synchronous

file system
buffer

COMMIT log buffer

| —] — 4

committed data

OPERCONA
LIVE

InnoDB Log Flush at Transaction Commit

innodb_flush log at trx_commit =2
Each COMMIT flushes to filesystem

file system
COMMIT log buffer buffer

| — 4

committed data

OPERCONA
LIVE

InnoDB Log Flush at Transaction Commit

innodb_flush log at trx_commit =2
Each COMMIT flushes to filesystem
Background thread fsyncs every 1 second

file system
COMMIT log buffer buffer
[—]

4

committed data

OPERCONA
LIVE

InnoDB Log Flush at Transaction Commit

innodb_flush log at trx_commit=0
COMMIT does not flush, only writes to log buffer

file system

COMMIT log buffer buffer

, _—

committed data

OPERCONA
LIVE

InnoDB Log Flush at Transaction Commit

innodb_flush log at trx_commit=0
COMMIT does not flush, only writes to log buffer
Background thread fsyncs every 1 second

file system

COMMIT log buffer buffer

| _—

committed data

OPERCONA
LIVE

InnoDB Log Flush at Transaction Commit

Tradeoff between durability and performance:
Sync on commit (=1) limits commits per second.
Flush on commit (=2) risks data loss if OS crashes.

No flushing (=0) risks data loss if mysqgld aborts.

OPERCONA
LIVE

Shyaulls Anerus O

OPERCON/\
LIVE

InnoDB 10 Capacity

Limits the IOPS InnoDB uses while:

Flushing dirty pages from the buffer pool to the
tablespace.

Merging change buffer entries to secondary
indexes.

OPERCONA
LIVE

InnoDB 10 Capacity Tradeoffs

Raising 10 Capacity
Causes flushing to become more aggressive.
Uses more |0 load.
Good when your write load is constantly high.

OPERCONA
LIVE

InnoDB 10 Capacity Tradeoffs

Lowering |O Capacity:
Causes flushing to become more gradual.
Spreads out the 10 load.

Allows multiple writes to the same page to be
merged into fewer flushes.

Good when your write load has ups and downs.

OPERCONA
LIVE

InnoDB 10 Capacity

innodb _io capacity = 200 /* default */

Limit on rate of flushing pages during idle time,
or during shutdown.

Change buffer merges at a rate of 5-55% of
innodb_io_capacity.

OPERCONA
LIVE

InnoDB 10 Capacity

innodb _io capacity max = 2000 /* default */
Limit on rate of flushing during busy time.

Adaptive Flushing

Visualisation of af_pct_for_Isn() formula
io_capacity= 700 PCT_IO(100), io_capacity_max= 1500 PCT_IO(214)

PCGT _IO[214)=nnadb i capacily max

PCT_IO(100)=innadb_io_¢

Percentate of io capacity

Percentage of log file usage

Server: =&~ MySQL 5.6 =&~ Percona 5.6

http://www.percona.com/blog/2013/10/30/innodb-adaptive-flushing-in-mysql-5-6-checkpoint-age-and-io-capacity/

OPERCONA
LIVE

InnoDB 10 Capacity Caveats

Internals of flushing dirty pages change in
each major version of MySQL
(5.1/5.5/5.6/5.7/...).

Different goals? Minimizing 10 vs. minimizing
og checkpoint age.

Don’t go so high that you cause 10 queuing!
http://www.mysglplus.net/2013/01/07/play-innodb_io capacity/

InnoDB Buffer Pool LRU Scan Depth

When the BP is full, reading new pages must
evict pages currently in the BP.

Which pages? The least recently used (LRU).

InnoDB Buffer Pool LRU Scan Depth

How many pages may be evicted per second?
1nnodb_1lru_scan_depth = 1024 /* default */

Increase this if you have spare 10 capacity.

This setting is per BP instance

Unlike innodb_io capacity®, which are for total
capacity of flushing for all BP instances.

http://mysqglha.blogspot.com/2013/05/configuring-innodb-for-mysql-56.html

OPERCONA
LIVE

MySQL Tuning

INNODB OTHER CONFIGURATION

InnoDB Flush Method

innodb flush method=fdatasync /* default */
Page flush writes to filesystem, and fsyncs

A
buffer
O

PPPPPPP
LIVE

InnoDB Flush Method

innodb_flush method=0_ DIRECT
Page flush bypasses the filesystem

BN =
buffer
O

PPPPPPP
LIVE

InnoDB Flush Method

The best setting depends on your hardware
O_DIRECT is often good on caching RAID

O_DIRECT not good when 10 has latency
(e.g. SAN, DRBD, or Amazon EBS when not EBS-
optimized)

To get optimal results, benchmark your
application workload on your hardware

OPERCONA
LIVE

InnoDB Change Buffer

If you INSERT/UPDATE/DELETE in a non-
unique index, the change buffer helps to delay
changes to the index.

Makes writes faster
The more indexes, the greater the benefit

InnoDB Change Buffer

The queue of changes can grow up to 25% of
the size of the buffer pool.
1innodb_change_buffer_max_size=25 /* default */

In practice, this fills up if you have a lot of writes
for a sustained period.

OPERCONA
LIVE

InnoDB Change Buffer

Background thread merges buffered changes

into indexes, at a rate of 5% IO capacity.*®

Increases gradually up to 55% of |0 capacity if the change buffer
is more than half of innodb_change_buffer_max_size,
as a percentage of the BP size.

*It’s supposed to merge at a rate of 100% |0 capacity when the system is idle, but
merging itself counts as “not idle” so I'm not sure it can ever do that.
OPERCONA
LIVE

InnoDB Change Buffer

To shrink the change buffer, try:

Increase the merge rate by raising
innodb_io capacity, or lowering
innodb_change buffer_max_size

InnoDB Change Buffer

...or reduce the growth of the change buffer:

innodb_change buffering = { inserts | updates |
deletes | changes | purges | none }

Global option only, not per session or per table.

...or change write-heavy tables to a different
storage engine.

OPERCONA
LIVE

InnoDB Adaptive Hash Index

Cache of frequently-requested index values.

Speeds up secondary index searches automatically —
nothing to enable.

See it working in InnoDB status:

60608.42 hash searches/s, 86753.09 non-hash searches/s

~41% of searches use the AHI

OPERCONA
LIVE

InnoDB Adaptive Hash Index

But —
The mutex for the AHI can become a bottleneck.

SEMAPHORES section of InnoDB status reports waits in
btrOsea.c

You can disable it:
skip_innodb_adaptive_hash_index

Percona Server can split it:
innodb_adaptive _hash_index_partitions = <N>

OPERCONA
LIVE

InnoDB Doublewrite Buffer

Every dirty page flush writes twice:
First, write to the doublewrite buffer on disk

InnoDB Doublewrite Buffer

Every dirty page flush writes twice:
Second, write to the respective pages on disk

NEE
NE=
HEE

InnoDB Doublewrite Buffer

The doublewrite buffer adds overhead.
Alternative:

Put datadir on a transactional filesystem.
Disable doublewrite buffer:

skip_innodb_doublewrite

http://www.percona.com/blog/2014/05/23/improve-innodb-performance-write-bound-loads/

OPERCONA
LIVE

InnoDB Read/Write Threads

Background threads to read and write pages.

See them working in InnoDB Status: Watch the
S number of
________ pending reads and
I/0 thread 2 state: waiting for completed aio requests (read thread) writes
I/0 thread 3 state: waiting for completed aio requests (read thread) .

I/0 thread 4 state: waiting for completed aio requests (read thread)

I/0 thread 5 state: waiting for completed aio requests (read thsead)

I/0 thread 6 state: waiting for completed aio requests_(write threas) Ifthese go too
I/0 thread 7 state: waiting for completed aio regu€sts (write thregad) : ~

I/0 thread 8 state: waiting for completea=aio requests (write thread) hlgh(64)’ then
I/0 thread 9 state: waitipg—fer—eesptetech aio requeststw~tte—chread) increase humber
Pending normal aio reads:[0 [0, O, 0, O] aio writes:/ 0 [0, O, O, O]}, Of/O threads

OPERCONA
LIVE

MySQL Tuning

OPTIMIZER CONFIGURATION

Optimizer Switches

Enable/disable optimizer features that aren't
doing what you want. Example:

optimizer_switch='index_merge_intersection=off’;

http://www.percona.com/blog/2012/12/14/the-optimization-that-often-isnt-index-merge-intersection/

OPERCONA
LIVE

Sort Buffer Size

In-memory buffer per thread for sorting query results.
SET sort_buffer_size = 256K /* default */

If the result is too large, subsets are sorted and merged on disk.
SHOW GLOBAL STATUS LIKE 'Sort_merge_passes';

OPERCONA
LIVE

V4

“Measure twice, cut once

Choose a measurable indicator of
performance

e.g. sort_buffer_size effectiveness is
measured by sort_merge_passes

Measure the impact of performance before
changing the configuration parameter.

OPERCONA
LIVE

Measure the rate of increase:
Sort merge passes

80
60
40
20

0

13:00 13:01 13:02 13:03 13:04 13:05 13:06 13:07 13:08

OPERCONA
LIVE

Research the range of reasonable values for
the corresponding configuration variable.
Make a modest change.

For example, this variable was 256KB by default.

Let’s raise it to 384KB.
mysql> SET GLOBAL sort_buffer_size = 384%1024;

OPERCONA
LIVE

Sort merge passes

80
60

40
20
0

Re-measure the rate after the change:

9T-€1
GT-€T
VT-€1
€l-€l
Cl-€1
TT-€1
OT-€1
60-€T
80:-€T
LO-ET
90:-€T
GO-€T
V0-€T
€0-€T
C0-€T
T10:€T
00:-€T

PERCONA
LIVE

O

How to Decide on a Size?

Must the rate of increase be zero? No.

Using the disk for sort merge passes
occasionally is normal.

Size the sort buffer so the rate of sort merge
passes is low — but no need to make it zero.

This principle applies to other tuning as well.

OPERCONA
LIVE

Design a graph to show the bell curve of result
sizes, and how the first modest increase
handles more cases than the subsequent

incremental increases.

OPERCONA
LIVE

Join Buffer Size

Used by Batched Key Access in 5.6

SET optimizer_switch =
'mrr=on,mrr_cost_based=off";

SET optimizer_switch = 'batched key access=on’;
SET join_buffer_size = 256K; /* default */

https://dev.mysqgl.com/doc/refman/5.6/en/bnl-bka-optimization.html

OPERCONA
LIVE

Read Rnd Buffer Size

Used by Multi-Range Reads in 5.6:

SET optimizer_switch =
'mrr=on,mrr_cost_based=off";

SET read_rnd buffer size = 256K; /* default */

https://dev.mysgl.com/doc/refman/5.6/en/mrr-optimization.html

OPERCONA
LIVE

Index Dives

Searching for multiple disjoint values in a query
WHERE foo IN (1, 2, 3, .. N)
WHERE foo=1 OR foo=2 .. OR foo=N

MySQL 5.5 searches the index for each value individually, so
very long lists result in many index “dives” —and slow queries.

MySQL 5.6 uses index statistics instead, when the list grows
longer than a configurable limit.

SET eg_range_index_dive_limit = 200;

Default in MySQL 5.6 is 10. In MySQL 5.7, it’s 200.

OPERCONA
LIVE

MySQL Tuning

LOGGING CONFIGURATION

Slow Query Log

Write information about every “slow” query.
SET GLOBAL slow_query log = ON;

Choose FILE or TABLE output.
SET GLOBAL log output = 'FILE';
TABLE is much slower.

OPERCONA
LIVE

Slow Query Log Filtering

Limit logging by time.
SET GLOBAL long_query_time = 10;

Slow Query Log Filtering

(Percona Server) Limit logging by query
execution plan.

SET GLOBAL log_slow_filter =
'tmp_table_on_disk,filesort _on_disk’;

Slow Query Log Filtering

(Percona Server) Limit logging by sampling,
e.g. 1/100 queries or sessions.

SET GLOBAL log_slow_rate_limit = 100;

MySQL Tuning

REPLICATION CONFIGURATION

Sync Binlog

Choose how strictly durable the binlog is —
trading off performance.

Sync writes to the binlog every N commits.
SET sync_binlog = 0; /* default */

Many people assume this is boolean and set it
to 1, which causes the highest overhead.

Binlog Format

binlog format is a tradeoff between
deterministic changes vs. efficiency.

STATEMENT writes less in the log, but requires
parsing, optimization and execution on slave.

ROW writes more log for complex updates, but
has less overhead and more reliability.

OPERCONA
LIVE

Binlog Cache

A buffer for uncommitted binlog writes.
SET GLOBAL binlog_cache_size = 32768; /* default */

A transaction must save buffer to disk when the
buffer is full.

OPERCONA
LIVE

Binlog Cache

Monitor ratio of disk use.
SHOW GLOBAL VARIABLES LIKE 'Binlog_cache_%use';

bt fo—— = +
| variable_name | value |
o - fo—— - +
| Binlog_cache_disk_use | 327 |
| Binlog_cache_use | 6060842 |
o m - fo———————- +

OPERCONA
LIVE

Multi-Threaded Slave

Intended to replay binlog events as fast as the
master created them.
SET GLOBAL slave parallel _workers = 10;

Updates to a given schema still happen serially in
one thread — use as many workers as schemas.*

https://blogs.oracle.com/MySQL/entry/benchmarking mysqgl replication with mult

UPERCONA
LIVE

MySQL Tuning

CONNECTION AND THREAD
CONFIGURATION

Max Connections

Galax - Connections
S
100

S0

o] >

Mon 16: 00 Mon 20: 00 Tue 00: 00 Tue 04: 00 Tue 08: 00 Tue 12: 00

From 2008/05/19 15:29:41 To 2008/05/20 15:29:41

O Max Connections Current: 120.00
O Max Used Current: 55.00
@ Aborted Clients Current: 0.00 Average: 5.04 m Max: 66.34 m
@ Aborted Connects Current: 0.00 Average: 0.00 Max: 0.00
E Threads Connected Current: 26.00 Average: 21.47 Max: 40,33
@ New Connections Current: 230.56 m Average: 240.14 m Max: 958.05 m

OPERCONA
LIVE

Max Connections

Should you set max_connections very high?

Have you tested what happens when your server
spikes to 10,000+ threads?

Resource contention could make performance
exponentially worse.

It could be better to refuse some connections, so
those that are connected can finish.

OPERCONA
LIVE

InnoDB Thread Concurrency

How many threads are allowed to work in the
InnoDB engine in parallel?

SET GLOBAL innodb_thread concurrency = 0;
/* default, no limit */

If too much contention, try 2x CPU cores.

OPERCONA
LIVE

Thread Pool

(Percona Server) Serve more connections with a
limited number of MySQL user threads.

thread_handling=pool-of-threads
thread_pool_si1ze=36
thread_concurrency=0

Test with the thread pool if you typically see
Threads_running at 64 or more.

Thread Pool

OLTP_RW

N
|

Queries per second, qps

4 16 64 128 256 1024 4006 8192 12228 16384

Client connections

MySQL Server Percona Server Percona Sen

MySAL Server 5615 percona Semver 5615 5.6.15
Server: = iemalloc =i thread conc=36= iemalloc =|_thread_conc=36 = thread_pool
J jemalloc J jemalloc jemalloc

http://www.percona.com/blog/2014/01/23/percona-server-improve-scalability-percona-thread-pool/

OPERCONA
LIVE

Don’t Overallocate

Some buffers are Some are allocated per

allocated globally: SQL thread:
innodb_buffer_pool size sort_buffer_size
innodb_log buffer_size binlog_cache_size
max_heap_ table size* join_buffer_size*
qguery_cache_size read_buffer_size

read_rnd_buffer_size
thread_stack
tmp_table_size*

* may be allocated multiple times

OPERCONA
LIVE

Global vs. Per-Thread Resources

innodb buffer pool sort buffer

binlog cache x Max_connections

read rnd buffer or more practically,

read buffer Max_used_connections

& join buffer

= tmp table

OPEBCOM
LIVE

MySQL Tuning

TABLES CONFIGURATION

Table Open Cache

Cache for table metadata. Limits the number
of tables in use for all threads.

SET GLOBAL table open_cache = 2000;
/* default */

Set to Threads_running x tables per query.

OPERCONA
LIVE

Table Open Cache

Watch the number of opened tables per
second.

SHOW GLOBAL STATUS LIKE 'Opened_tables’;

If the rate of increase is too sharp, increase the
table_open_cache.

OPERCONA
LIVE

Table Open Cache Instances

MySQL 5.6 feature to split the table cache.
table_open_cache instances = 1; /*default*/

May help reduce contention when you have
Threads_running more than ~64.

Set to 8 or 16, the number of CPU cores.

OPERCONA
LIVE

Table Definition Cache

Cache for table metadata (contents of .frm).

Small overhead, so safe to increase this.

SET GLOBAL table definition_cache = 400 +
(@ @table open cache/2); /* default */

InnoDB also uses this as a soft limit for the data
dictionary cache.

OPERCONA
LIVE

InnoDB Open Tables

Limits the number of open InnoDB
tablespaces.

innodb_open_tables =-1 /* default, autosized */

Self-adjusts up to table_open_cache.

InnoDB File Per Table

Store each InnoDB data in a separate .ibd file
(tablespace). Default in 5.6+.

Required for some table options, transportable
tablespaces, recovering disk space.

No significant performance impact, unless you
have tens of thousands of tables.

OPERCONA
LIVE

MySQL Tuning

QUERY CACHE CONFIGURATION

Query Cache Effectiveness: Number

Monitor ratio of QC hits vs. misses:
SHOW GLOBAL STATUS LIKE 'QCache%';

o - fm—m———— + ,
] 15:1 hits — good!

| variable_name | value | y

o m - fm————— +

| Qcache_hits | 8675309 |

| Qcache_inserts | 606084 |

OPERCONA
LIVE

Query Cache Effectiveness: Magnitude

pt-query-digest outputs response time
histogram per query.

QC Hit 63% yes, 36% no

Query_time distribution
lus
10us #H##H#H#HBHHHBHHHBHHHBHHHRBRBBHHBRBRRBRHRBHBRBHBRBHRHRBHBRBHRARBH AR H
100us ####BHH#HBHHHBHHABHHARHHARHHARHHH
1ms

. query cache hits
#
#
#
10ms
#
#
#

100ms ### query cache misses —
1S HHHHHHBBBBBRA 4-5 orders of magnitude

10s+ #H#H#H##AHAHBHH#HHAHRH#HH slower 0(:0 r this query)

OPERCONA
LIVE

Query Cache Scalability

Every thread that reads or writes the query cache
must acquire a mutex.
SELECT must check if the query result is cached

INSERT/UPDATE/DELETE must evict query results

This can become a bottleneck when you have
many threads running — worse than not having
the query cache!

OPERCONA
LIVE

Query Cache Tuning

Better to disable it unless you can confirm it’s

giving you a lot of benefit.
query_cache type=0

. you should set both in my.cnf!
query _cache_size=0

OPERCONA
LIVE

Query Cache Defaults

MySQL 5.5:
query_cache_type = 1 /* still enables mutex */
query _cache_size =0 /* allocates no memory */

MySQL 5.6.8+:
query _cache type =0 /* off */
query_cache_size = 1M /* still allocates memory */

OPERCONA
LIVE

MySQL Tuning

TEMPORARY SPACE CONFIGURATION

Temporary Table Size

A temporary table created by a query may fit
in memory up to tmp_table size

SET tmp table size = 16M; /* default */

Larger temp tables are written to disk.

Exception: temp tables with BLOB/TEXT
columns always write to disk.

Temporary Table Size

Any in-memory table is limited by:
SET max_heap table size = 16M; /* default */
So it’s futile to set tmp_table_size greater.

OPERCONA
LIVE

Temporary Table Size

Monitor ratio of temp tables to temp tables on disk:
SHOW GLOBAL STATUS LIKE 'Created%tables’';

o f-————— +
| variable_name | value |
ittt fomm - +
| Created_tmp_disk_tables | 123 |
| Created_tmp_tables | 6060842 |
ittt fomm - +

OPERCONA
LIVE

Temporary Table Size

Like other buffers, increase tmp table size to
handle more cases, until the rate of disk tables
drops.

Temporary Tables per Statement

(Percona Server) Verbose slow-query log includes
fields for Tmp_tables, Tmp_ disk tables,
Tmp_table sizes.

Performance_Schema.events_statements %
includes columns created tmp_tables and
created_tmp_disk tables.

But not tmp table sizes (http://bugs.mysqgl.com/74484).

OPERCONA
LIVE

Tmpfs Partition

Trick MySQL into writing “on disk” temp tables
into memory (even with BLOB/TEXT):

In /etc/my.cnf:
tmpdir=/var/lib/mysgltmp
In /etc/fstab:

tmpfs /var/lib/mysqgltmp tmpfs \
noatime,size=1G,mode=700,uid=mysqgl,gid=mysql 0 O

MySQL Tuning

OPERATING SYSTEM CONFIGURATION

Filesystem

XFS consistently performs better in Percona
benchmarks.

Especially for multi-threaded 10 while using
innodb_flush_method=0_ DIRECT

http://www.percona.com/blog/2011/12/16/setting-up-xfs-the-simple-edition/

OPERCONA
LIVE

10 Scheduler

disk writes either one
50,000 of these is
better
40,000

30,000

o

= 20,000

time--->

http://www.percona.com/blog/2009/01/30/linux-schedulers-in-tpcc-like-benchmark/

OPERCONA
LIVE

Mount Options

Reduce unneeded writes to update access times
(but less important to tune if you use XFS)

noatime
nodiratime

If you use ext4, and battery-backed RAID cache,
disable barriers

nobarrier

OPERCONA
LIVE

Reduce the kernel’s tendency to swap
proactively. Edit /etc/sysctl.conf:

vm.swappiness = 1

Some old advice was to set swappiness to 0, but in
Linux kernel 2.6.32+, the value O can lead to OOM

conditions that kill mysqld.

http://www.percona.com/blog/2014/04/28/oom-relation-vm-swappiness0-new-kernel/

OPERCONA
LIVE

Some random stalls have been fixed by:
numactl --interleave=all
sysctl -q -w vm.drop_caches=3
forcing the NUMA node allocation decisions to be made on startup

These changes were developed at Twitter
http://blog.jcole.us/2012/04/16/a-brief-update-on-numa-and-mysql/

These patches are available in Percona Server 5.5 -5.6

http://www.percona.com/doc/percona-server/5.6/performance/
innodb numa support.html

OPERCONA
LIVE

MySQL Tuning

TUNING TOOLS

Mysqltuner

Recommends rough tuning changes based on
activity rates in SHOW GLOBAL STATUS.

Somewhat outdated — claims to support MySQL
5.4 and 6.0, which never existed.

Averages over uptime fail to account for spikes.

http://mysqgltuner.com/

OPERCONA
LIVE

Percona Configuration Wizard

P
® PERCONA About Products Software ts G ity Contact Percona Live .

Percona Tools for MySQL

Free online productivity tools for MySQL DBAs, SysAdmins and Developers
Bill | SignOut

Usually good as a

. .
This is your MySQL configuration file! Startlng pOIn t; bUt
You can find your generated MySQL server configuration below. You can place this into your my.cnf or my.ini file. Remember, although this is designed to be a .
good starting configuration for installing a new server, it may not include all options you need. This configuration should not be used to fine-tune an existing n O t a S u b S t—, t u te O r
server.

. .

Generated by Percona Configuration Wizard (httq://tools.percona.com/) version REL5-20120208
Configuration name dbserverl generated for bill.karwin€percona.com at 2014-11-12 18:16:46

s incremental tuning.

Feedback

CLIENT
socket

Cmysqld]
GENERAL

user
default-storage-engine TnnodB
cket /var/1ib/mysql/mysql .sock

W

s
pid-file 7var/1ib/mysql/mysql .pid
MyISAM

key-buffer-size = 32M

Myis: over = FORCE,BACKUP

SAFETY

max-al lowed-packet = 16M

ax-connect-errors = 1000000

-nare- resolve

https://tools.percona.com/

PERCONA
LIVE

MySQL Tuning

MONITORING TOOLS

Console tool to measure SHOW GLOBAL
STATUS and display incremental changes.

Nothing to install, part of the Percona Toolkit
scripts.

http://www.percona.com/doc/percona-toolkit/pt-mext.html

Real-time monitoring tool for queries,
transactions, memory, 10O, etc.

http://www.percona.com/blog/2013/10/14/innotop-real-time-advanced-
investigation-tool-mysqgl/

OPERCONA
LIVE

Percona Monitoring Plugins

Templates for Cacti and Zabbix to graph
GLOBAL STATUS values.

http://www.percona.com/software/percona-monitoring-plugins

Percona Cloud Tools

New Beta SaaS offering from Percona.
Graph many performance metrics like PMP.
Query analysis and trending.

https://cloud.percona.com/

OPERCONA
LIVE

MySQL Tuning

TUNING VERSUS ARCHITECTURE

Tuning Advantages

No changes required to schema.
No changes required to code.

Some tuning changes possible without
restarting mysqld.

Tuning Disadvantages

Most changes global or per session — but
cannot be set per user, database, or query.

Can improve performance — but only so far.

What's the Next Step?

Optimizing by greater order of magnitude:
Caching
Denormalizing
Indexing
Sharding or partitioning
Query design

Retain often-used query results.
Store in memory, for faster retrieval.

Performance strategy: avoid repeat queries.

Denormalizing

Store data redundantly, for a partially-
completed query.

Avoid expensive expressions, group
summaries, or joins.

Performance strategy: leverage early work.

OPERCONA
LIVE

Store a pre-sorted copy of some column(s).

Searching and sorting is now orders of
magnitude faster.

Performance strategy: data structure.

Partitioning

One logical table maps to multiple physical
tables of similar type.

Queries are designed to limit to one partition.
Performance strategy: divide and conquer.

Sharding

Split a table into subsets of rows.
Host each subset on a separate instance.

Performance strategy: horizontal scaling with
Instances.

Query Design

“There’s more than one way to do it.”

Experiment with alternative query designs for
the same result.

Performance strategy: take advantage of SQL
implementation idiosyncrasies.

MySQL Tuning

CONCLUSIONS

Measure relevant performance indicators
before and after tuning changes.

Re-test when you upgrade.
Monitor continually.

Architecture changes can improve
performance beyond tuning.

Thank you!

Questions?

Copyright 2014-2015 Bill Karwin

www.slideshare.net/billkarwin

Released under a Creative Commons 3.0 License:
http://creativecommons.org/licenses/by-nc-nd/3.0/

You are free to share - to copy, distribute and
transmit this work, under the following conditions:

@O0

Attribution. Noncommercial. No Derivative Works.
You must attribute this work You may not use this work for You may not alter, transform,
to Bill Karwin. commercial purposes. or build upon this work.

OPERCONA
LIVE

