
Tokutek, Inc.
57 Bedford Road, Suite 101
Lexington, MA 02420

Performance Database Company

www.tokutek.com

Using TokuDB

Presented by Jon Tobin
jon@tokutek.com

A Guided Walk Through a TokuDB Implementation



Tokutek Customers

2



Agenda

• Storage Engine Overview

• Why’s TokuDB Different

• Demo Environment Overview
– Configuration Settings

– iiBench Overview

• Agility (Hot Schema Change)

• Compression

• Performance

• Read Free Replication

3



Why Change?

1. I want to increase the number of sources 
I ingest

2. I want to be able to follow a more agile 
development path

3. My data is taking up too much space

4. My current method of scaling is not 
sustainable

5. CapEx & OpEx for my environment are 
rising too quickly

4



Storage Engines

InnoDB TokuDB

Data Structure B-tree Fractal Tree

Transactions Yes Yes

Foreign Keys Yes No

Compression Yes* Yes

Clustered Indexes Primary Key Only Any

Hot Schema Change Yes* Yes

Strength In memory working set > Memory performance

Weakness Efficiency Point Queries*

5



Why’s TokuDB Different?

6



B-tree Overview - vocabulary

Internal Nodes -

Path to data

Leaf Nodes -

Actual Data -

Sorted

Pointers

Pivots



B-tree Overview - search

22

10 99

2, 3, 4 10,20 22,25 99

“Find 25”

Pivot Rule >=



B-tree Overview - insert

22

10 99

2, 3, 4 10,15,20 22,25 99

“Insert 15”



RAM

RAM

DISK

B-tree Overview - performance

22

10 99

2, 3, 4 10,20 22,25 99

Performance is IO limited when data > RAM, 

one IO is needed for each insert/update

(actually it’s one IO for every index on the table)



Fractal Tree Indexes



Fractal Tree Indexes

similar to B-trees

•store data in leaf nodes

•use index key for ordering

message 

buffer

message 

buffer

message 

buffer

All internal nodes 

have message 

buffers

different than B-trees

•message buffers

•big nodes (4MB vs. ~16KB)

As buffers 

overflow, they 

cascade down the 

tree

Messages are 

eventually applied 

to leaf nodes



Fractal Tree Indexes - sample data

25

10 99

2,3,4 10,20 22,25 99

Looks a lot like a b-tree!



insert 15;

Fractal Tree Indexes - insert

25

10 99

2,3,4 10,20 22,25 99

insert (15)

• search operations must consider messages along the way

• messages cascade down the tree as buffers fill up

• they are eventually applied to the leaf nodes, hundreds or thousands 

of operations for a single IO

• CPU and cache are conserved as important data is not ejected



Fractal Tree Indexes - other operations

25

10 99

2,3,4 10,20 22,25 99

add_column(c4 bigint)

delete(99)

increment(22,+5)

...

insert (100)
delete(8)

delete(2)

insert (8)

Lots of operations can be messages!



Demo Environment

16



Our Configuration

InnoDB
– Cache 64 (innodb_buffer_pool_size=64M)

– Direct IO (innodb_flush_method=0_DIRECT)

– 1 File/table (inno_files_per_table=1)

– Barracuda format (innodb_file_format)

TokuDB
– Cache 64M (tokudb_cache_size)

– Direct IO (tokudb_directio=1)

17



iibench Overview

• Python based benchmarking app

• Created by Tokutek

• Maintained by Mark Callaghan (facebook)

• Simulates Point of Sale environment

• Highly customizable – just pass parameters

• Schema
– transactionid - int(11) NOT NULL AUTO_INCREMENT,

– dateandtime - datetime DEFAULT NULL,

– cashregisterid - int(11) NOT NULL,

– customerid - int(11) NOT NULL,

– productid - int(11) NOT NULL,

– Price - float NOT NULL,

– data - varchar(4000) DEFAULT NULL,

18



Why is iiBench Interesting?

• “ii” = indexed inserts
– TokuDB’s good at index maintenance

– Incrementing PK

– 3 indexes

• Batch inserts

• Batch queries
– Amortizes transactional overhead over many operations

• Lets look “below the covers”

19



Agility

1. MySQL 5.6 & PT offers online schema change
– create index & drop index are least expensive 

operations

– Most other operations require a table copy

– Resource intensive (CPU, RAM, I/O)

2. Master – Slave Switching

3. TokuDB

– Hot column addition, deletion, expansion 

• Expand char, varchar, varbinary & integer

• No table copy

– Background index creation

– HCADER can do one operation at a time

20



Online Index Creation

• Don’t use ALTER TABLE for hot operation

• Turn on ‘online index creation’
– SET tokudb_create_index_online=ON

• Create the index
– CREATE INDEX index_name ON table (field_name(s)

• SHOW PROCESSLIST will display progress
– Will likely be slower that offline index creation

21



Good to Know

• HCADER takes 1 operation at a time
– More than one will result in SLOW operation (resource 

utilization)

• You can disable slow alters
– tokudb_disable_slow_alter=ON

– Will pass an error back to MySQL if slow operation is 
passed

22



Your Turn

Run the Agility Lab now

23



Compression

24



Inno Compression

25

Inno

Cache block 16k

Disk block 8k, 4k, 2k, 1k

Algorithm zlib



Inno Compression

26

Inno

Cache block 16k

Disk block 8k, 4k, 2k, 1k

Algorithm zlib

Best Case
16:1 Compression

*5.6 new features – adaptive padding, compression level



TokuDB Compression

• Fractal Tree was made to compress

• More data = better compression

• No split/recompress = better performance

• Decompression may lead to addt’l query latency

27

TokuDB

Cache block 64k (tuneable)

Disk block 4MB (default)

Algorithm Quicklz/zlib(d)/lzma



Compression Thoughts

• Good
– Space savings is a big win for most use cases

– When compression saves and IO it’s well worth tradeoffs

• Bad
– Compression increases latency on the way down (not a 

big deal) and up (query latency)

– Taxes CPU

• Ugly
– It’s all about managing the quid-pro-quo

– Unpredictability can have bad side effects

28



Things to think about

• tokudb_read_block_size

– Will affect compression

– May also speed up reads that fetch a small amount of data

• Tokudb_row_format

– Will change compression for newly written data

– OPTIMIZE TABLE needs to be run to change entire index

• CPU Utilization
– If CPU utilization gets too high, try changing the compression algorithm to 

something more light weight

– If workload is read heavy, reducing the read_block_size may also help

• Tokudb_directio
– On = usually means more consistent performance esp write heavy

– Off = uses OS buffers to store COMPRESSED data. For majority read 
workloads with high compression ratios, MAY yield serious performance 
gains                                      

29



Compress EngStatus

30

• Tokudb_LEAF_COMPRESSION_TO_MEMORY_SECONDS

• Tokudb_LEAF_SERIALIZATION_TO_MEMORY_SECONDS

• Tokudb_LEAF_DECOMPRESSION_TO_MEMORY_SECONDS

• Tokudb_LEAF_DESERIALIZATION_TO_MEMORY_SECONDS

• Tokudb_NONLEAF_COMPRESSION_TO_MEMORY_SECONDS

• Tokudb_NONLEAF_SERIALIZATION_TO_MEMORY_SECONDS

• Tokudb_NONLEAF_DECOMPRESSION_TO_MEMORY_SECONDS

• Tokudb_NONLEAF_DESERIALIZATION_TO_MEMORY_SECONDS



Your Turn

Compression Lab

31



Performance

32



Performance

InnoDB
Pro

• In memory performance is exceptional

• Point query performance is good

Con

• B-trees rely on storage for performance when working set 
>memory

• Performance decreases as tables (keys) fragment

TokuDB
Pro

• Performance is consistently very good 

• “No fragmentation”

• Range query performance is great

Con

• Additional query latency due to data decompression (ms) 

• Point queries can be expensive (tuneable)

33



TokuDB & InnoDB On Disk

34

DAY 1



TokuDB & InnoDB On Disk

35

DAY X



Performance

36

 2,000

 12,000

 22,000

 32,000

 42,000

 52,000

 62,000

 72,000

 82,000

 92,000

 4
,0

0
0

,0
0

0
 2

4
,8

0
0

,0
0

0
 4

5
,6

0
0

,0
0

0
 6

6
,4

0
0

,0
0

0
 8

7
,2

0
0

,0
0

0
 1

0
8

,0
0

0
,0

0
0

 1
2

8
,8

0
0

,0
0

0
 1

4
9

,6
0

0
,0

0
0

 1
7

0
,4

0
0

,0
0

0
 1

9
1

,2
0

0
,0

0
0

 2
1

2
,0

0
0

,0
0

0
 2

3
2

,8
0

0
,0

0
0

 2
5

3
,6

0
0

,0
0

0
 2

7
4

,4
0

0
,0

0
0

 2
9

5
,2

0
0

,0
0

0
 3

1
6

,0
0

0
,0

0
0

 3
3

6
,8

0
0

,0
0

0
 3

5
7

,6
0

0
,0

0
0

 3
7

8
,4

0
0

,0
0

0
 3

9
9

,2
0

0
,0

0
0

 4
2

0
,0

0
0

,0
0

0
 4

4
0

,8
0

0
,0

0
0

 4
6

1
,6

0
0

,0
0

0
 4

8
2

,4
0

0
,0

0
0

 5
0

3
,2

0
0

,0
0

0
 5

2
4

,0
0

0
,0

0
0

 5
4

4
,8

0
0

,0
0

0
 5

6
5

,6
0

0
,0

0
0

 5
8

6
,4

0
0

,0
0

0
 6

0
7

,2
0

0
,0

0
0

 6
2

8
,0

0
0

,0
0

0
 6

4
8

,8
0

0
,0

0
0

 6
6

9
,6

0
0

,0
0

0
 6

9
0

,4
0

0
,0

0
0

 7
1

1
,2

0
0

,0
0

0
 7

3
2

,0
0

0
,0

0
0

 7
5

2
,8

0
0

,0
0

0
 7

7
3

,6
0

0
,0

0
0

 7
9

4
,4

0
0

,0
0

0
 8

1
5

,2
0

0
,0

0
0

 8
3

6
,0

0
0

,0
0

0
 8

5
6

,8
0

0
,0

0
0

 8
7

7
,6

0
0

,0
0

0
 8

9
8

,4
0

0
,0

0
0

 9
1

9
,2

0
0

,0
0

0
 9

4
0

,0
0

0
,0

0
0

 9
6

0
,8

0
0

,0
0

0
 9

8
1

,6
0

0
,0

0
0

In
se

rt
s/

se
c

Total Rows Inserted

Inno DB vs TokuDB
Inserts/second as DB Scales

In memory



Performance EngStatus

37

• Tokudb_CHECKPOINT_PERIOD

• Tokudb_CHECKPOINT_LAST_BEGAN

• Tokudb_CHECKPOINT_LAST_COMPLETE_BEGAN

• Tokudb_CHECKPOINT_LAST_COMPLETE_ENDED

• Tokudb_CHECKPOINT_TAKEN

• Tokudb_CHECKPOINT_FAILED

• Tokudb_CHECKPOINT_BEGIN_TIME

• Tokudb_CHECKPOINT_LONG_BEGIN_TIME

• Tokudb_CHECKPOINT_LONG_BEGIN_COUNT



Your Turn

Performance Lab

38



Read Free Replication

• Our newest feature in v7.5

WHY

• Master = multithreaded

• Replication = single threaded (5.5)

multi threaded (5.6)

• Master can process more concurrent threads
– Master can do more work/unit of time

• Slave can be bottlenecked by two things working together
– Time to process a single ‘operation’

– Replication “bandwidth”

• Slave application overhead is high
– Constantly trying to confirm it’s “before image” is consistent with the 

master (reading before writing)

39



Read Free Replication

“Beer, the cause and solution to all of life’s 
problems”

-Homer Simpson

40



Tokutek to the Rescue

• Only changes (writes) are replicated

• Fractal Tree writes are cheap & fast

• Remove the read and we can empty the 
replication stream faster

Goal: Reduce replication related I/O on 
slave to nada in between checkpoints while 
reducing (hopefully eliminating) lag

More bandwidth for read scaling

Make Sense?

41



How do we use it?

Master:

• Row based replication

Slave:

• Must be in “read only mode”

• Can disable unique checks (not necessary)
– tokudb_rpl_unique_checks=0

• Can disable lookups
– tokudb_rpl_lookup_rows=0

NOTE: mysql & maria 5.5 pk needs to be defined for the 
optimization to work

42



Does it work?

43



What about I/O?

44



Customer Testimonial

“Finally got to bounce the master server […] 
and wow, talk about an improvement!… This 
release made a huge difference for our slave 

lag. Thank you! We went from 10-15 
minute periods of slave lag with peaks about 

15 minute of slave lag every hour to 5 
minutes with under 1 minute of slave lag”

-Joe Piscatella, Limelight Networks

45



There’s Still Work To do

• 5.5 still only has one thread
– Percona Server 5.6 has RFR with multi threads!!!!

• Binlog still doesn’t have great concurrency 
in 5.5
– Bottlenecks fsyncing log (very expensive)

– 5.6 has a much better “group commit algorithm”

• TokuDB v7.5.4 for Percona takes advantage of this

46



InnoDB My.cnf Parameters

InnoDB

• innodb_flush_method

– Default is fdatasync

– How InnoDB performs IO

• innodb_file_per_table=true

– Put each table in it's own file (instead of putting all tables into a single 
file), TokuDB always creates 1 file per index.

• innodb_buffer_pool_size

– Default is 128M (Yikes!)

– Amount of RAM to allocate for cache

• innodb_flush_log_at_trx_commit

– Default is 1.

– Controls what InnoDB does at transaction commit

47



TokuDB My.cnf Parameters

TokuDB
• tokudb_commit_sync

– Default "on"
– If on, log file is fsync()'d when transaction is committed.

• tokudb_fsync_log_period
– Default is 0 (milliseconds)
– Allows control of how frequently fsync() operations on the log occur, only valid if 

tokudb_commit_sync is on.

• tokudb_read_block_size
– Default is 64K
– Smallest unit of row data (think point queries).

• tokudb_cache_size
– Default is 50% RAM
– Amount of RAM to allocate for cache (i.e., 4G)

• tokudb_row_format
– Default is tokudb_zlib
– Valid values are tokudb_uncompressed, tokudb_quicklz, tokudb_zlib, 

tokudb_lzma

• tokudb_directio
– Default is 0
– Set to 1 to use directIO, not bufferedIO

48



TokuDB My.cnf Parameters

• tokudb_prelock_empty

– default is on

– set to off to disable bulk loading

– the bulk loader is a great way to load large tables

• only works if table is empty

• only advantageous if you are loading a good deal of data 
(>500,000 rows).

• overhead isn’t worth it for small loads

– be careful, bulk loading is triggered by the first insert into an 
empty table if this is set to on

• LOAD DATA [INFILE] ...

• INSERT INTO foo SELECT * FROM bar

• CREATE TABLE foo SELECT * FROM bar

• INSERT INTO foo VALUES (1,1,1);

49



Tips for a Successful Eval

1. Define your success criteria before eval

2. Use data representative of your expected 
workload

3. Use like for like (hardware & parameters)

4. Bottlenecks may be different
– Inno = Disk bound

– Toku = CPU bound

5. Try “slaving” in a Toku machine to see 
relative difference

6. Evaluate your ‘unique’ indexes

50



Links

• iiBench
– https://code.launchpad.net/~mdcallag/mysql-

patch/mytools

• Andy Pavlo’s Datasets
– http://www.cs.cmu.edu/~./pavlo/datasets/index.html

• TokuDB 7.5.5 Download
– http://www.tokutek.com/products/downloads/

51

https://code.launchpad.net/~mdcallag/mysql-patch/mytools
http://www.cs.cmu.edu/~./pavlo/datasets/index.html
http://www.tokutek.com/products/downloads/


Any Questions?

THANK YOU!

52

http://www.tokutek.com/category/tokuview/feed/
http://www.tokutek.com/category/tokuview/feed/
https://twitter.com/tokutek
https://twitter.com/tokutek
http://www.linkedin.com/company/tokutek
http://www.linkedin.com/company/tokutek
http://www.facebook.com/Tokutek
http://www.facebook.com/Tokutek
http://www.youtube.com/user/Tokutek
http://www.youtube.com/user/Tokutek
https://plus.google.com/101999678816894494109/videos
https://plus.google.com/101999678816894494109/videos

