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Tokutek Customers
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Agenda

• Storage Engine Overview

• Why’s TokuDB Different

• Demo Environment Overview
– Configuration Settings

– iiBench Overview

• Agility (Hot Schema Change)

• Compression

• Performance

• Read Free Replication
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Why Change?

1. I want to increase the number of sources 
I ingest

2. I want to be able to follow a more agile 
development path

3. My data is taking up too much space

4. My current method of scaling is not 
sustainable

5. CapEx & OpEx for my environment are 
rising too quickly
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Storage Engines

InnoDB TokuDB

Data Structure B-tree Fractal Tree

Transactions Yes Yes

Foreign Keys Yes No

Compression Yes* Yes

Clustered Indexes Primary Key Only Any

Hot Schema Change Yes* Yes

Strength In memory working set > Memory performance

Weakness Efficiency Point Queries*
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Why’s TokuDB Different?
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B-tree Overview - vocabulary

Internal Nodes -

Path to data

Leaf Nodes -

Actual Data -

Sorted

Pointers

Pivots



B-tree Overview - search

22

10 99

2, 3, 4 10,20 22,25 99

“Find 25”

Pivot Rule >=



B-tree Overview - insert

22

10 99

2, 3, 4 10,15,20 22,25 99

“Insert 15”



RAM

RAM

DISK

B-tree Overview - performance

22

10 99

2, 3, 4 10,20 22,25 99

Performance is IO limited when data > RAM, 

one IO is needed for each insert/update

(actually it’s one IO for every index on the table)



Fractal Tree Indexes



Fractal Tree Indexes

similar to B-trees

•store data in leaf nodes

•use index key for ordering

message 

buffer

message 

buffer

message 

buffer

All internal nodes 

have message 

buffers

different than B-trees

•message buffers

•big nodes (4MB vs. ~16KB)

As buffers 

overflow, they 

cascade down the 

tree

Messages are 

eventually applied 

to leaf nodes



Fractal Tree Indexes - sample data

25

10 99

2,3,4 10,20 22,25 99

Looks a lot like a b-tree!



insert 15;

Fractal Tree Indexes - insert

25

10 99

2,3,4 10,20 22,25 99

insert (15)

• search operations must consider messages along the way

• messages cascade down the tree as buffers fill up

• they are eventually applied to the leaf nodes, hundreds or thousands 

of operations for a single IO

• CPU and cache are conserved as important data is not ejected



Fractal Tree Indexes - other operations

25

10 99

2,3,4 10,20 22,25 99

add_column(c4 bigint)

delete(99)

increment(22,+5)

...

insert (100)
delete(8)

delete(2)

insert (8)

Lots of operations can be messages!



Demo Environment
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Our Configuration

InnoDB
– Cache 64 (innodb_buffer_pool_size=64M)

– Direct IO (innodb_flush_method=0_DIRECT)

– 1 File/table (inno_files_per_table=1)

– Barracuda format (innodb_file_format)

TokuDB
– Cache 64M (tokudb_cache_size)

– Direct IO (tokudb_directio=1)
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iibench Overview

• Python based benchmarking app

• Created by Tokutek

• Maintained by Mark Callaghan (facebook)

• Simulates Point of Sale environment

• Highly customizable – just pass parameters

• Schema
– transactionid - int(11) NOT NULL AUTO_INCREMENT,

– dateandtime - datetime DEFAULT NULL,

– cashregisterid - int(11) NOT NULL,

– customerid - int(11) NOT NULL,

– productid - int(11) NOT NULL,

– Price - float NOT NULL,

– data - varchar(4000) DEFAULT NULL,
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Why is iiBench Interesting?

• “ii” = indexed inserts
– TokuDB’s good at index maintenance

– Incrementing PK

– 3 indexes

• Batch inserts

• Batch queries
– Amortizes transactional overhead over many operations

• Lets look “below the covers”
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Agility

1. MySQL 5.6 & PT offers online schema change
– create index & drop index are least expensive 

operations

– Most other operations require a table copy

– Resource intensive (CPU, RAM, I/O)

2. Master – Slave Switching

3. TokuDB

– Hot column addition, deletion, expansion 

• Expand char, varchar, varbinary & integer

• No table copy

– Background index creation

– HCADER can do one operation at a time
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Online Index Creation

• Don’t use ALTER TABLE for hot operation

• Turn on ‘online index creation’
– SET tokudb_create_index_online=ON

• Create the index
– CREATE INDEX index_name ON table (field_name(s)

• SHOW PROCESSLIST will display progress
– Will likely be slower that offline index creation
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Good to Know

• HCADER takes 1 operation at a time
– More than one will result in SLOW operation (resource 

utilization)

• You can disable slow alters
– tokudb_disable_slow_alter=ON

– Will pass an error back to MySQL if slow operation is 
passed
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Your Turn

Run the Agility Lab now
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Compression
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Inno Compression

25

Inno

Cache block 16k

Disk block 8k, 4k, 2k, 1k

Algorithm zlib



Inno Compression
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Inno

Cache block 16k

Disk block 8k, 4k, 2k, 1k

Algorithm zlib

Best Case
16:1 Compression

*5.6 new features – adaptive padding, compression level



TokuDB Compression

• Fractal Tree was made to compress

• More data = better compression

• No split/recompress = better performance

• Decompression may lead to addt’l query latency
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TokuDB

Cache block 64k (tuneable)

Disk block 4MB (default)

Algorithm Quicklz/zlib(d)/lzma



Compression Thoughts

• Good
– Space savings is a big win for most use cases

– When compression saves and IO it’s well worth tradeoffs

• Bad
– Compression increases latency on the way down (not a 

big deal) and up (query latency)

– Taxes CPU

• Ugly
– It’s all about managing the quid-pro-quo

– Unpredictability can have bad side effects
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Things to think about

• tokudb_read_block_size

– Will affect compression

– May also speed up reads that fetch a small amount of data

• Tokudb_row_format

– Will change compression for newly written data

– OPTIMIZE TABLE needs to be run to change entire index

• CPU Utilization
– If CPU utilization gets too high, try changing the compression algorithm to 

something more light weight

– If workload is read heavy, reducing the read_block_size may also help

• Tokudb_directio
– On = usually means more consistent performance esp write heavy

– Off = uses OS buffers to store COMPRESSED data. For majority read 
workloads with high compression ratios, MAY yield serious performance 
gains                                      

29



Compress EngStatus
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• Tokudb_LEAF_COMPRESSION_TO_MEMORY_SECONDS

• Tokudb_LEAF_SERIALIZATION_TO_MEMORY_SECONDS

• Tokudb_LEAF_DECOMPRESSION_TO_MEMORY_SECONDS

• Tokudb_LEAF_DESERIALIZATION_TO_MEMORY_SECONDS

• Tokudb_NONLEAF_COMPRESSION_TO_MEMORY_SECONDS

• Tokudb_NONLEAF_SERIALIZATION_TO_MEMORY_SECONDS

• Tokudb_NONLEAF_DECOMPRESSION_TO_MEMORY_SECONDS

• Tokudb_NONLEAF_DESERIALIZATION_TO_MEMORY_SECONDS



Your Turn

Compression Lab
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Performance
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Performance

InnoDB
Pro

• In memory performance is exceptional

• Point query performance is good

Con

• B-trees rely on storage for performance when working set 
>memory

• Performance decreases as tables (keys) fragment

TokuDB
Pro

• Performance is consistently very good 

• “No fragmentation”

• Range query performance is great

Con

• Additional query latency due to data decompression (ms) 

• Point queries can be expensive (tuneable)
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TokuDB & InnoDB On Disk
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DAY 1



TokuDB & InnoDB On Disk
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DAY X



Performance
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Performance EngStatus
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• Tokudb_CHECKPOINT_PERIOD

• Tokudb_CHECKPOINT_LAST_BEGAN

• Tokudb_CHECKPOINT_LAST_COMPLETE_BEGAN

• Tokudb_CHECKPOINT_LAST_COMPLETE_ENDED

• Tokudb_CHECKPOINT_TAKEN

• Tokudb_CHECKPOINT_FAILED

• Tokudb_CHECKPOINT_BEGIN_TIME

• Tokudb_CHECKPOINT_LONG_BEGIN_TIME

• Tokudb_CHECKPOINT_LONG_BEGIN_COUNT



Your Turn

Performance Lab
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Read Free Replication

• Our newest feature in v7.5

WHY

• Master = multithreaded

• Replication = single threaded (5.5)

multi threaded (5.6)

• Master can process more concurrent threads
– Master can do more work/unit of time

• Slave can be bottlenecked by two things working together
– Time to process a single ‘operation’

– Replication “bandwidth”

• Slave application overhead is high
– Constantly trying to confirm it’s “before image” is consistent with the 

master (reading before writing)
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Read Free Replication

“Beer, the cause and solution to all of life’s 
problems”

-Homer Simpson
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Tokutek to the Rescue

• Only changes (writes) are replicated

• Fractal Tree writes are cheap & fast

• Remove the read and we can empty the 
replication stream faster

Goal: Reduce replication related I/O on 
slave to nada in between checkpoints while 
reducing (hopefully eliminating) lag

More bandwidth for read scaling

Make Sense?
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How do we use it?

Master:

• Row based replication

Slave:

• Must be in “read only mode”

• Can disable unique checks (not necessary)
– tokudb_rpl_unique_checks=0

• Can disable lookups
– tokudb_rpl_lookup_rows=0

NOTE: mysql & maria 5.5 pk needs to be defined for the 
optimization to work
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Does it work?

43



What about I/O?
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Customer Testimonial

“Finally got to bounce the master server […] 
and wow, talk about an improvement!… This 
release made a huge difference for our slave 

lag. Thank you! We went from 10-15 
minute periods of slave lag with peaks about 

15 minute of slave lag every hour to 5 
minutes with under 1 minute of slave lag”

-Joe Piscatella, Limelight Networks
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There’s Still Work To do

• 5.5 still only has one thread
– Percona Server 5.6 has RFR with multi threads!!!!

• Binlog still doesn’t have great concurrency 
in 5.5
– Bottlenecks fsyncing log (very expensive)

– 5.6 has a much better “group commit algorithm”

• TokuDB v7.5.4 for Percona takes advantage of this
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InnoDB My.cnf Parameters

InnoDB

• innodb_flush_method

– Default is fdatasync

– How InnoDB performs IO

• innodb_file_per_table=true

– Put each table in it's own file (instead of putting all tables into a single 
file), TokuDB always creates 1 file per index.

• innodb_buffer_pool_size

– Default is 128M (Yikes!)

– Amount of RAM to allocate for cache

• innodb_flush_log_at_trx_commit

– Default is 1.

– Controls what InnoDB does at transaction commit
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TokuDB My.cnf Parameters

TokuDB
• tokudb_commit_sync

– Default "on"
– If on, log file is fsync()'d when transaction is committed.

• tokudb_fsync_log_period
– Default is 0 (milliseconds)
– Allows control of how frequently fsync() operations on the log occur, only valid if 

tokudb_commit_sync is on.

• tokudb_read_block_size
– Default is 64K
– Smallest unit of row data (think point queries).

• tokudb_cache_size
– Default is 50% RAM
– Amount of RAM to allocate for cache (i.e., 4G)

• tokudb_row_format
– Default is tokudb_zlib
– Valid values are tokudb_uncompressed, tokudb_quicklz, tokudb_zlib, 

tokudb_lzma

• tokudb_directio
– Default is 0
– Set to 1 to use directIO, not bufferedIO

48



TokuDB My.cnf Parameters

• tokudb_prelock_empty

– default is on

– set to off to disable bulk loading

– the bulk loader is a great way to load large tables

• only works if table is empty

• only advantageous if you are loading a good deal of data 
(>500,000 rows).

• overhead isn’t worth it for small loads

– be careful, bulk loading is triggered by the first insert into an 
empty table if this is set to on

• LOAD DATA [INFILE] ...

• INSERT INTO foo SELECT * FROM bar

• CREATE TABLE foo SELECT * FROM bar

• INSERT INTO foo VALUES (1,1,1);
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Tips for a Successful Eval

1. Define your success criteria before eval

2. Use data representative of your expected 
workload

3. Use like for like (hardware & parameters)

4. Bottlenecks may be different
– Inno = Disk bound

– Toku = CPU bound

5. Try “slaving” in a Toku machine to see 
relative difference

6. Evaluate your ‘unique’ indexes
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Links

• iiBench
– https://code.launchpad.net/~mdcallag/mysql-

patch/mytools

• Andy Pavlo’s Datasets
– http://www.cs.cmu.edu/~./pavlo/datasets/index.html

• TokuDB 7.5.5 Download
– http://www.tokutek.com/products/downloads/
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Any Questions?

THANK YOU!
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http://www.tokutek.com/category/tokuview/feed/
http://www.tokutek.com/category/tokuview/feed/
https://twitter.com/tokutek
https://twitter.com/tokutek
http://www.linkedin.com/company/tokutek
http://www.linkedin.com/company/tokutek
http://www.facebook.com/Tokutek
http://www.facebook.com/Tokutek
http://www.youtube.com/user/Tokutek
http://www.youtube.com/user/Tokutek
https://plus.google.com/101999678816894494109/videos
https://plus.google.com/101999678816894494109/videos

