for MySQL High Availability

Jay Janssen PERCONA

PLMCE 2015

Writing Application Code for MySQL High Availability

EXAMPLE APPLICATIONS

Our Application

Based on Sakila MySQL sample database
Summary table about film rentals data
"Cronjob” to update the summaries

Webservice to report data about movie
titles

Cronjob Barebones

Points directly to a single server

Not smart enough to deal with longer
failures

Doesn't notice read_only issues
Can't deal with results set going away

Webservice Barebones

Clients timeout and get no server error
General freakout on MySQL down

Services requests, but errors on writes
with no log warnings

Log writes are synchronous to the client
request, adding latency

Writing Application Code for MySQL High Availability

DEALING WITH ERRORS

Types of Database Errors

Database not available

Database disconnected

Read-only for Writes

Deadlocks and Replication conflicts (Galera)
Very slow responses

Max Connections

etc. po=—..

Dealing with those errors

Timeouts

Give up (with Grace)

Continue anyway

Retry (how many times)

Operational vs Application errors
Service is down vs Deadlock error

Thinking about our Cronjob

Retry on any operational errors
Prevent multi-instances somehow
Monitor the last successful run
Summaries based on a consistent view?
Writer for inserting the summary
Reads otherwise?

Cronjob Improved

Error checking on all database interaction
Recursive retries baked in
Concurrency included
Missing:
Consistent read view
Split reads/writes
Any checking for multi-instances p—

Thinking about our Webservice

Clients are intolerant of latency
quick errors vs slow answers
Some operations are less critical
access logging vs returning an answer
Writer low priority
High concurrency essential
Reads can be distributed across read pool g

Webservice Improved

Errors return as http 50* codes quickly

Tolerates mysqgl down
Access log is async and ok to fail
Missing:

Split reads/writes

Better concurrency on many results

PERCONA
LIVE

Writing Application Code for MySQL High Availability

QUIRKS OF REPLICATION

Asynchronous Replication

Assume replication has small lag
Ops: Monitor for large amounts
A pool of slaves is great for
Read capacity
Availability

Most Common Solutions for Lag

Don't worry about it so much
Use the master when reads are critical

Rely on another datastore for high-volume
read/write critical data

Monitoring replication lag in the App

while !slave->has (Ssome_data);
then #read

Extra round trips
Slower response
Useful with expensive critical reads

Galera Replication

Read/Write on any node

Replication conflicts == Deadlocks
handle those anyway and retry
hotspots cause lots of conflicts

wsrep_sync_wait for critical reads
or just use the same server to read

Writing Application Code for MySQL High Availability

READ WRITE SPLITTING

Concerns

Replication lag
Simplistic splitting
Squery =~ m/"select/ -> slaves
Transactions? Critical reads?
Balancing traffic well
Capacity after failure

Proxies

Adds latency, scalability snags, operational costs
95%+ apps split within the code
TCP (L4) proxies only work with App splits
Haven't seen a smart L7 hardware proxy
L7 Software proxies
Try: ScaleArc(S), MaxScale
Avoid: MySQL Proxy. Suspect all others

Conclusion

Plan for service problems from the start

Tailor the reaction to problems based on
the type of application

Watch out for the "shortcuts” to problems
like HA and read/write splitting |

https://github.com/jayjanssen/
app_mysqgl_ha

http://ceilingcat.ninja

PERCONA
LIVE

https://github.com/jayjanssen/app_mysql_ha

