
Writing Application Code
for MySQL High Availability

Jay Janssen
PLMCE 2015

EXAMPLE APPLICATIONS
Writing Application Code for MySQL High Availability

2

Our Application

• Based on Sakila MySQL sample database
• Summary table about film rentals data
• "Cronjob" to update the summaries
• Webservice to report data about movie

titles

3

Cronjob Barebones

• Points directly to a single server
• Not smart enough to deal with longer

failures
• Doesn't notice read_only issues
• Can't deal with results set going away

4

Webservice Barebones

• Clients timeout and get no server error
• General freakout on MySQL down
• Services requests, but errors on writes

with no log warnings
• Log writes are synchronous to the client

request, adding latency

5

DEALING WITH ERRORS
Writing Application Code for MySQL High Availability

6

Types of Database Errors

• Database not available
• Database disconnected
• Read-only for Writes
• Deadlocks and Replication conflicts (Galera)
• Very slow responses
• Max Connections
• etc.

7

Dealing with those errors

• Timeouts
• Give up (with Grace)
• Continue anyway
• Retry (how many times)
• Operational vs Application errors
• Service is down vs Deadlock error

8

Thinking about our Cronjob

• Retry on any operational errors
• Prevent multi-instances somehow
• Monitor the last successful run
• Summaries based on a consistent view?
• Writer for inserting the summary
• Reads otherwise?

9

Cronjob Improved

• Error checking on all database interaction
• Recursive retries baked in
• Concurrency included
• Missing:
• Consistent read view
• Split reads/writes
• Any checking for multi-instances

10

Thinking about our Webservice

• Clients are intolerant of latency
• quick errors vs slow answers

• Some operations are less critical
• access logging vs returning an answer
• Writer low priority

• High concurrency essential
• Reads can be distributed across read pool

11

Webservice Improved

• Errors return as http 50* codes quickly
• Tolerates mysql down
• Access log is async and ok to fail
• Missing:
• Split reads/writes
• Better concurrency on many results

12

QUIRKS OF REPLICATION
Writing Application Code for MySQL High Availability

13

Asynchronous Replication

• Assume replication has small lag
• Ops: Monitor for large amounts

• A pool of slaves is great for
• Read capacity
• Availability

14

Most Common Solutions for Lag

• Don't worry about it so much
• Use the master when reads are critical
• Rely on another datastore for high-volume

read/write critical data

15

Monitoring replication lag in the App

• while !slave->has ($some_data);
• then #read
• Extra round trips
• Slower response
• Useful with expensive critical reads

16

Galera Replication

• Read/Write on any node
• Replication conflicts == Deadlocks
• handle those anyway and retry
• hotspots cause lots of conflicts

• wsrep_sync_wait for critical reads
• or just use the same server to read

17

READ WRITE SPLITTING
Writing Application Code for MySQL High Availability

18

Concerns

• Replication lag
• Simplistic splitting
• $query =~ m/^select/ -> slaves
• Transactions? Critical reads?

• Balancing traffic well
• Capacity after failure

19

Proxies

• Adds latency, scalability snags, operational costs
• 95%+ apps split within the code
• TCP (L4) proxies only work with App splits

• Haven't seen a smart L7 hardware proxy
• L7 Software proxies
• Try: ScaleArc($), MaxScale
• Avoid: MySQL Proxy. Suspect all others

20

Conclusion

• Plan for service problems from the start
• Tailor the reaction to problems based on

the type of application
• Watch out for the "shortcuts" to problems

like HA and read/write splitting
• https://github.com/jayjanssen/

app_mysql_ha

21

https://github.com/jayjanssen/app_mysql_ha

