
XDB
Shared MySQL hosting at Facebook scale

Evan Elias 
Percona Live MySQL Conference, April 2015

What is XDB?
▪ In-house system for self-service database creation

▪ Web UI
▪ API for automated creation and management 

▪ Intended for production databases

▪ replication, backups, monitoring, etc
▪ supported by all standard Facebook MySQL automation 

▪ Shared resources

▪ several MySQL instances per host
▪ many database schemas per MySQL instance

Motivations
▪ Facebook employs thousands of engineers across hundreds of teams 

▪ Constant need for new special-purpose MySQL databases

▪ A few hundred new specialized databases created every month
▪ Most are unsharded, but a few with tens to thousands of shards 

▪ MySQL Infrastructure team currently has a dozen engineers

▪ One on-call at a time
▪ Production issues take precedence

!

Facebook MySQL tiers
▪ Over a dozen sharded “tiers”, each with own hostname scheme

▪ Separate tiers for user data, timeline data, message data, etc
▪ Vast majority of our database hosts belong to these tiers
▪ Within one of these tiers, every shard is uniform
▪ i.e. same tables, query pattern, sharding scheme

!
▪ A tiny fraction of database hosts are devoted to hosting “special

snowflake” databases that do not fall into these tiers 

Special-purpose databases

▪ Thousands of distinct databases in this category

▪ Each has a different workload and table schema

▪ Mix of internal applications, backend data for services, experimental
features, offline/OLAP workloads, etc

▪ Owned by wide range of teams 

▪ Vast majority of these data sets are unsharded

▪ For the few that are sharded, the sharding schemes vary

Why are “special snowflakes” hard to manage?

Why shared hosting?
▪ Different motivations than a public cloud

▪ All internal
▪ Teams don’t have to “pay” for their hardware :(
▪ Easy to communicate with the “customers” :) 

▪ Pack many databases per physical host

▪ Avoid overhead of virtualization

▪ Avoid complexity from too many MySQL instances on host

▪ Maximize utilization of resources

Before XDB

▪ Completely manual setup process

1. Obtain spare MySQL instances

2. Set up replication

3. Create the database schema

4. Enter into service discovery system 

▪ Time-consuming

▪ Risk of human error

CDB (“Central Database”) tier

XDB v1

▪ Web UI, written in PHP, for creating MySQL databases

▪ User submits form with db name, description, master region,
estimated max size, etc

▪ Request goes into a queue 

▪ Every 30 minutes, a Python cron processes the queued requests

▪ Create database on an existing master that is at < 90% capacity
▪ Inserts into service discovery system 

▪ Massively better than CDB process — huge win for DBA time

Live in early 2013

XDB v1 shortcomings
▪ Asynchronous creation is brittle, slow, and not automation-friendly

▪ Only shared hosting

▪ Allocation logic too naive 

▪ No API or centralized control

▪ Each system (some PHP, some Python) directly manipulated XDB’s
metadata tables

▪ No sane way to create a large sharded deployment 

▪ No self-service way to drop unneeded databases

▪ No easy way for DBAs to add capacity

XDB v2
▪ Major refactor / iterative rewrite, started in summer 2014 

▪ Goals:

▪ More self-service offerings = engineers can move faster
▪ Reduce on-call burden for MySQL Infrastructure team
▪ Better user experience, stability, resiliency
▪ Handle sharded deployments without new hostname schemes

Design and Implementation

XDB software components
▪ Centralized service, written in Python

▪ Real-time Thrift API
▪ Background threads for periodic tasks
▪ Multiple copies running, for HA 

▪ Web UI

▪ Written in PHP / Hack
▪ Interacts only with the API — doesn’t touch underlying data directly 

▪ Agent on each XDB database host

▪ Track size/growth metadata

XDB data components
▪ Metadata store

▪ MySQL DB with sizes, ownership, etc tracking all resources managed
by XDB 

▪ Service discovery (SMC)

▪ All Facebook systems use this to map service names to host:port 

▪ Timeseries data (ODS)

▪ Obtain historical sizes/growth per table, shard, replica set 

XDB host layout
▪ Each host has N MySQL instances

▪ Typically N=2, but we now support
other values 

▪ Each MySQL instance can have many
database schemas 

▪ We call each database schema a shard,
even if it is a totally independent data
set (functional partition)

host
instance :3308

shard

shard

shard

shard

shard

shard

instance :3307

shard

shard

shard

shard

shard

shard

shard

shard

Replication topology
▪ A replica set consists of a

master instance, plus
some number of replicas 

▪ Each XDB replica set is
either shared or
dedicated, with respect
to hosting shards from
multiple owners

master/spare

slave/master

slave/spare

spare/slave

slave/spare

replication replication

re
plic

atio
n

replication

XDB API: shard endpoints
▪ Create shard

▪ Update shard metadata

▪ List summary information on many shards

▪ Get extended information about one shard

▪ List tables in a shard

▪ Queue a shard for deletion

▪ Revert a prior deletion request

▪ Generate numbered shard names for a sharded data set

XDB API: replica set endpoints
▪ Create replica set

▪ Delete empty replica set

▪ List replica sets

▪ Find a shared replica set capable of holding a given shard or size

Web UI
▪ List shards (yours / someone else’s / all)

▪ name, creator, table count, total size, links to graph dashboards

▪ Create shard

▪ View and edit metadata for a shard

▪ List tables (along with sizes) in a shard

▪ Delete shard

▪ Revert prior deletion request

Web UI: create shard

Web UI: view and edit shard metadata

Web UI: delete shard

Allocation logic
▪ How to assign new shards to shared replica sets?

▪ Too many shards: risk of filling disk, excessive I/O, replication lag
▪ Too few shards: waste of hardware
▪ Can move shards later, but not light-weight 

▪ Current logic

▪ Skip replica sets where actual size is over 50% of disk space
▪ Skip replica sets with too many shards
▪ Down-weight user-supplied size info over time

Capacity management
▪ Periodic server thread checks available shared capacity per region 

▪ Create new shared replica set if insufficient capacity

▪ Escalate failures to a human
▪ Intentionally rate-limited 

▪ Spare instance pool is maintained by non-XDB-specific automation

▪ Balance spares between tiers / hostname schemes

Bad neighbors
▪ Instance-level problems

▪ Replication lag
▪ Purge lag
▪ Too many connections
▪ Spiky workloads 

▪ Host-level problems

▪ Full disk
▪ Resource saturation (network, i/o, cpu)

Dedicated replica sets
▪ Allow whitelisted teams to “own” replica sets 

▪ Shards may only be placed here deliberately by owner teams 

▪ Supports different levels of instance density per host

▪ 1 instance per host, for workloads requiring full isolation
▪ 8 instances per host, for smaller data sets
▪ 2 instances per host, for everyone else

Lessons Learned

Managing support burden
▪ XDB creation volume is skyrocketing

▪ More bad neighbors
▪ More support questions
▪ More dedicated resource requests 

▪ Good docs and FAQ are essential

▪ Answer generic questions in public

▪ Encourage use of the official MySQL manual

▪ Teach MySQL best practices at new engineer onboarding

Conflicting sources of truth
▪ Discrepancies between key data stores, re: which databases exist and

where

▪ XDB metadata
▪ Service discovery (SMC)
▪ Each replica set’s master 

▪ Pesky engineers may be creating/dropping things out-of-band

▪ Catch this via automated monitoring 

▪ Creation and deletion processes must handle failures gracefully

Database deletion flow
▪ Must be low-friction and self-service

▪ … but also needs effective safeguards! 

▪ Confirm that recent backup exists before proceeding 

▪ Don’t drop the database right away

▪ Tables are immediately renamed, but not dropped
▪ One-week grace period before actual drop occurs
▪ Self-service revert restores table names 

▪ User can override the backup check or grace period, but not by accident

Resource management and quotas
▪ Don’t take creator-supplied size expectations at face value 

▪ Everyone wants dedicated resources

▪ Most don’t actually need it
▪ Create new databases on shared replica sets by default
▪ Move one-off DBs to dedicated replica sets only if/when justified
▪ Sharded data sets should go to dedicated resources from the start

!
▪ Tools to track usage per team 

▪ Automation to identify abandoned databases

Sharding support
▪ Generic foundation for sharding at the allocation/provisioning level 

▪ Automation to move shards is simpler than automation to split them

▪ Prefer many small shards to fewer huge shards 

▪ Offering generic sharding support at the application level is a separate,
much more complex can of worms

Future Directions

Shard migration automation

▪ Self-service master region change requests

▪ Quota-triggered shard moves

▪ Bad neighbor isolation

▪ Offload shards from oversubscribed replica sets

Automatic migration opens many possibilities

User / grant management
▪ Create one user per database, and have application use it automatically 

▪ Powerful in combination with information_schema.user_statistics (FB
patch in WebScaleSQL or Percona Server) 

▪ Lock down default set of grants

Good neighbor enforcement
▪ Integrate with company systems to auto-task an appropriate on-call

rotation

▪ Replication lag offenders
▪ Excessive workloads via user stats 

▪ Enforce size quotas

▪ Self-service interface for requesting increases, trigger shard move if
needed

▪ Task owners at soft limit, revoke write privileges after hard limit 

▪ Experiment with cgroups

Dedicated replica sets
Run 32x instance density and make dedicated default?

Dedicated replica sets
Or just move shards when they hit a certain size?

Open source efforts
▪ Many dependencies will need to be abstracted away

▪ Hardware asset tracker
▪ Hardware provisioning system
▪ Service discovery
▪ Employee / team directory
▪ Timeseries data
▪ Alerting / monitoring
▪ Python service framework, packaging, containerization
▪ MySQL automation systems and libraries

▪ Many permutations of MySQL branch, MySQL version, Linux
distributions, Python versions

Questions?

(c) 2007 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

