facebook

XDB
Shared MySQL hosting at Facebook scale

Evan Elias
Percona Live MySQL Conference, April 2015

What is XDB?

* In-house system for self-service database creation

Web Ul
APl for automated creation and management

* Intended for production databases
replication, backups, monitoring, etc

supported by all standard Facebook MySQL automation

- Shared resources

several MySQL instances per host
many database schemas per MySQL instance

Motivations

- Facebook employs thousands of engineers across hundreds of teams

- Constant need for new special-purpose MySQL databases

A few hundred new specialized databases created every month
Most are unsharded, but a few with tens to thousands of shards

- MySQL Infrastructure team currently has a dozen engineers

Oneon-call atatime
Production issues take precedence

Facebook MySQL tiers

- Over adozen sharded “tiers”, each with own hostname scheme

Separate tiers for user data, timeline data, message data, etc
Vast majority of our database hosts belong to these tiers
Within one of these tiers, every shard is uniform

i.e.same tables, query pattern, sharding scheme

- Atiny fraction of database hosts are devoted to hosting “special
snowflake” databases that do not fall into these tiers

Special-purpose databases

- Thousands of distinct databases in this category
Each has a different workload and table schema

Mix of internal applications, backend data for services, experimental
features, offline/OLAP workloads, etc

Owned by wide range of teams

- Vast majority of these data sets are unsharded
For the few that are sharded, the sharding schemes vary

Why shared hosting?

- Different motivations than a public cloud

All internal
Teams don’t have to “pay” for their hardware :(

Easy to communicate with the “customers”

- Pack many databases per physical host
= Avoid overhead of virtualization
= Avoid complexity from too many MySQL instances on host

- Maximize utilization of resources

Before XDB

- Completely manual setup process

1. Obtain spare MySQL instances

2. Setupreplication

3. Create the database schema

4. Enterinto service discovery system

- Time-consuming
- Risk of human error

XDB vi1

- Web Ul, written in PHP, for creating MySQL databases

User submits form with db name, description, master region,
estimated max size, etc

Request goes into a queue

- Every 30 minutes, a Python cron processes the queued requests

Create database on an existing master that is at < 90% capacity
Inserts into service discovery system

- Massively better than CDB process — huge win for DBA time

XDB v1shortcomings

- Asynchronous creation is brittle, slow, and not automation-friendly
- Only shared hosting

- Allocation logic too naive

- No APl or centralized control

Each system (some PHP, some Python) directly manipulated XDB’s
metadata tables

No sane way to create a large sharded deployment

- No self-service way to drop unneeded databases
- No easy way for DBAs to add capacity

XDB v2

- Major refactor/ iterative rewrite, started in summer 2014

- Goals:

More self-service offerings = engineers can move faster
Reduce on-call burden for MySQL Infrastructure team

Better user experience, stability, resiliency

Handle sharded deployments without new hostname schemes

Design and Implementation

XDB software components

- Centralized service, written in Python

Real-time Thrift API
Background threads for periodic tasks
Multiple copies running, for HA

- Web Ul

Written in PHP / Hack
Interacts only with the APl — doesn’t touch underlying data directly

- Agent on each XDB database host
Track size/growth metadata

XDB data components

- Metadata store

MySQL DB with sizes, ownership, etc tracking all resources managed
by XDB

- Service discovery (SMC)

All Facebook systems use this to map service names to host:port

- Timeseries data (ODS)

Obtain historical sizes/growth per table, shard, replica set

XDB host layout

- Each host has N MySQL instances host

- Typically N=2, but we now support JiEees Epey LSelies e
other values

- Each MySQL instance can have many
database schemas

- We call each database schema a shard,
even ifitis atotally independent data
set (functional partition)

Replication topology

master/spare

- Areplica set consists of a
master instance, plus
some number of replicas

slave/spare

- Each XDB replica set is
either shared or replication replication
dedicated, with respect
to hostlng Shards from slave/spare slave/master
multiple owners

spare/slave

XDB API: shard endpoints

* Create shard

- Update shard metadata

- List summary information on many shards
- Get extended information about one shard
- List tables in a shard

- Queue a shard for deletion

- Revert a prior deletion request

- Generate numbered shard names for a sharded data set

XDB API: replica set endpoints

 Create replica set
- Delete empty replica set
- List replica sets

* Find a shared replica set capable of holding a given shard or size

Web Ul

- List shards (yours / someone else’s / all)
name, creator, table count, total size, links to graph dashboards
* Create shard
- View and edit metadata for a shard
- List tables (along with sizes) in a shard
 Delete shard

- Revert prior deletion request

Web Ul: create shard

K] XDB List shards Create an XDB shard

Create an XDB shard
Name

Description

Admins

Expected Max Size MB ~
_. Mfsle‘r’ R.c.:?ion - select == ¥

Workload Type | o) 1p (realtime transactions/r... ~

Web Ul: view and edit shard metadata

K] XDB List shards Create an XDB shard

Details for xdb.hello_percona_live

Description just a demonstration!

Tables 3

Admins (paren Seagrave Evan Elias

Current Size 18.0 MB
Expected Max Size 100.0 M8
Master Region prn

Workload Type OLTP

Deletion Status None. Delete it?

Web Ul: delete shard

K] XDB List shards Create an XDB shard

Please confirm you want to delete xdb.hello_percona_live

Upon hitting the "Delete” button below, this XDB shard will be queued for deletion. All
tables in the database will immediately be renamed, so If any application code Is still
accessing these tables, the error spew should become apparent to you. Shortly after
clicking the "Delete” button, please monitor your application’s error logs.

XDB provides a one-week grace period before permanently dropping your data. You
may revert (abort) the deletion process at any point during this period. Reverting the
deletion will restore your database to its previous state, removing it from the deletion
queue and immediately renaming your tables back to their original names.

After one week, your database will be fully dropped. If you need to recover it after that
point, it may be possible to restore it from backups for several months, but this is a
slower and more complex process.

Be advised that this XDB shard does NOT have a recent backup!
If you want to proceed with deletion anyway, check the box
below to acknowledge that restoring from backup (after the
one-week grace period) will not be possible!

Most Recent Backup None

Proceed despite lack
of recent backup

canco

Allocation logic

- How to assign new shards to shared replica sets?

Too many shards: risk of filling disk, excessive I/0, replication lag
Too few shards: waste of hardware
Can move shards later, but not light-weight

 Current logic
Skip replica sets where actual size is over 50% of disk space
Skip replica sets with too many shards
Down-weight user-supplied size info over time

Capacity management

- Periodic server thread checks available shared capacity per region

- Create new shared replica set if insufficient capacity

Escalate failures to a human
Intentionally rate-limited

- Spare instance pool is maintained by non-XDB-specific automation
Balance spares between tiers / hostname schemes

Bad neighbors

* Instance-level problems

Replication lag

Purge lag

Too many connections
Spiky workloads

- Host-level problems

Full disk
Resource saturation (network, i/o, cpu)

Dedicated replica sets

- Allow whitelisted teams to “own” replica sets
- Shards may only be placed here deliberately by owner teams

- Supports different levels of instance density per host

1instance per host, for workloads requiring full isolation
8 instances per host, for smaller data sets
2 instances per host, for everyone else

Lessons Learned

Managing support burden

- XDB creation volume is skyrocketing

More bad neighbors
More support questions
More dedicated resource requests

- Good docs and FAQ are essential

- Answer generic questions in public

- Encourage use of the official MySQL manual

- Teach MySQL best practices at new engineer onboarding

Conflicting sources of truth

- Discrepancies between key data stores, re: which databases exist and
where

XDB metadata
Service discovery (SMC)
Each replica set’s master

- Pesky engineers may be creating/dropping things out-of-band
Catch this via automated monitoring

* Creation and deletion processes must handle failures gracefully

Database deletion flow

- Must be low-friction and self-service

.. but also needs effective safeguards!
- Confirm that recent backup exists before proceeding

- Don’t drop the database right away

Tables are immediately renamed, but not dropped
One-week grace period before actual drop occurs
Self-service revert restores table names

- User can override the backup check or grace period, but not by accident

Resource management and quotas

- Don’t take creator-supplied size expectations at face value

- Everyone wants dedicated resources

Most don’t actually need it

Create new databases on shared replica sets by default

Move one-off DBs to dedicated replica sets only if/when justified
Sharded data sets should go to dedicated resources from the start

 Tools to track usage per team

- Automation to identify abandoned databases

Sharding support

- Generic foundation for sharding at the allocation/provisioning level

- Automation to move shards is simpler than automation to split them
Prefer many small shards to fewer huge shards

- Offering generic sharding support at the application level is a separate,
much more complex can of worms

Future Directions

Shard migration automation

- Self-service master region change requests

- Quota-triggered shard moves

- Bad neighbor isolation

- Offload shards from oversubscribed replica sets

User/ grant management

- Create one user per database, and have application use it automatically

- Powerful in combination with information_schema.user_statistics (FB
patch in WebScaleSQL or Percona Server)

- Lock down default set of grants

Good neighbor enforcement

* Integrate with company systems to auto-task an appropriate on-call
rotation

Replication lag offenders
Excessive workloads via user stats

- Enforce size quotas

Self-service interface for requesting increases, trigger shard move if
needed

Task owners at soft limit, revoke write privileges after hard limit

- Experiment with cgroups

Dedicated replica sets
Run 32x instance density and make dedicated default?

DEDICATE
’
ALLTHBRTHINGS

Dedicated replica sets
Or just move shards when they hit a certain size?

IIEIIIOATEII REPLICA SETS FOR SOME

‘MINIA'I'IIIIE AMEHIGAN
FLAGS FOR OTHERS

Open source efforts

- Many dependencies will need to be abstracted away

Hardware asset tracker

Hardware provisioning system

Service discovery

Employee /team directory

Timeseries data

Alerting / monitoring

Python service framework, packaging, containerization
MySQL automation systems and libraries

- Many permutations of MySQL branch, MySQL version, Linux
distributions, Python versions

Questions?

facebook

) 2007 Facebook, Inc. orits licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

