
NanoXML/Lite 2.2

Marc De Scheemaecker <cyberelf@mac.com>

February 1, 2003

2

Contents

1 Introduction 5
1.1 About XML . 5
1.2 About NanoXML . 6
1.3 NanoXML 2 . 6

2 Retrieving Data From An XML Datasource 7
2.1 A Very Simple Example . 7
2.2 Analyzing The Data . 8
2.3 Generating XML . 9

3

4 CONTENTS

Chapter 1

Introduction

This chapter gives a short introduction to XML and NanoXML.

1.1 About XML

The extensible markup language, XML, is a way to mark up text in a structured
document.

XML is a simplification of the complex SGML standard. SGML, the Stan-
dard Generalized Markup Language, is an international (ISO) standard for
marking up text and graphics. The best known application of SGML is HTML.

Although SGML data is very easy to write, it’s very difficult to write a
generic SGML parser. When designing XML however, the authors removed
much of the flexibility of SGML making it much easier to parse XML documents
correctly.

XML data is structured as a tree of entities. An entity can be a string of
character data or an element which can contain other entities. Elements can
optionally have a set of attributes. Attributes are key/value pairs which set
some properties of an element.

The following example shows some XML data:

<book>

<chapter id="my chapter">

<title>The title</title>

Some text.

</chapter>

</book>

At the root of the tree, you can find the element “book”. This element
contains one child element: “chapter”. The chapter element has one attribute
which maps the key “id” to “my chapter”. The chapter element has two child
entities: the element “title” and the character data “Some text.”. Finally, the
title element has one child, the string “The title”.

5

http://www.w3c.org/TR/REC-xml

6 CHAPTER 1. INTRODUCTION

1.2 About NanoXML

In April 2000, NanoXML was first released as a spin-off project of AUIT, the
Abstract User Interface Toolkit.

The intent of NanoXML was to be a small parser which was easy to use.
SAX and DOM are much too complex for what I needed and the mainstream
parsers were either much too big or had a very restrictive license.

NanoXML 1 has all the features I needed: it is very small (about 6K),
is reasonably fast for small XML documents, is very easy to use and is free
(zlib/libpng license). As I never intended to use NanoXML to parse DocBook
documents, there was no support for mixed data or DTD parsing.

NanoXML was released as a SourceForge project and, because of the very
good response from its users, it matured to a small and stable parser. The final
version, release 1.6.8 was released in May 2001.

Because of its small size, people started to use NanoXML for embedded
systems (KVM, J2ME) and kindly submitted patches to make NanoXML work
in such restricted environment.

1.3 NanoXML 2

In July 2001, NanoXML 2 has been released. Unlike NanoXML 1, speed and
XML compliancy were considered to be very important when the new parser
was designed. NanoXML 2 is also very modular: you can easily replace the
different components in the parser to customize it to your needs. The modularity
of NanoXML 2 also benefits extensions like e.g. SAX support which can now
directly access the parser. In NanoXML 1, the SAX adapter had to iterate the
data structure built by the base product.

Although many features were added to NanoXML, the second release was
still very small. The full parser with builder fits in a JAR file of about 32K.
This is still very tiny, especially when you compare this with the “standard”
parsers of more than four times its size.

As there is still need for a tiny parser like NanoXML 1, there is a special
branch of NanoXML 2: NanoXML/Lite. This parser is source compatible with
NanoXML 1 but features a new parsing algorithm which makes it more than
twice as fast as the older version. It is however more restrictive on the XML
data it parses: the older version allowed some not-wellformed data to be parsed.

There are three branches of NanoXML 2:

• NanoXML/Lite is the successor of NanoXML 1. It features an almost
compatible parser which is extremely small.

• NanoXML/Java is the standard parser.

• NanoXML/SAX is the SAX adapter for NanoXML/Java.

The latest version of NanoXML is NanoXML 2.2.1, which has been released
in February 2002.

Chapter 2

Retrieving Data From An
XML Datasource

This chapter shows how to retrieve XML data from a standard data source.
Such source can be a file, an HTTP object or a text string.

2.1 A Very Simple Example

This section describes a very simple XML application. It parses XML data from
a stream and dumps it to the standard output. While its use is very limited, it
shows how to set up a parser and parse an XML document.

import nanoxml.*; 1©
import java.io.*;

public class DumpXML

{
public static void main(String[] args)

throws Exception

{
XMLElement xml = new XMLElement(); 2©
FileReader reader = new FileReader("test.xml");

xml.parseFromReader(reader); 3©
System.out.println(xml); 4©

}
}

1© The NanoXML classes are located in the package nanoxml.

2© This command creates an empty XML element.

3© The method parseFromReader parses the data in the file test.xml and fills
the empty element.

4© The XML element is dumped to the standard output.

7

8 CHAPTER 2. RETRIEVING DATA FROM AN XML DATASOURCE

2.2 Analyzing The Data

You can easily traverse the logical tree generated by the parser. By calling
one of the parse* methods, you fill an empty XML element with the parsed
contents. Every such object can have a name, attributes, #PCDATA content
and child objects.

The following XML data:

<FOO attr1="fred" attr2="barney">
<BAR a1="flintstone" a2="rubble">

Some data.

</BAR>
<QUUX/>

</FOO>

is parsed to the following objects:

Element FOO:

Attributes = { ”attr1”=”fred”, ”attr2”=”barney” }
Children = { BAR, QUUX }
PCData = null

Element BAR:

Attributes = { ”a1”=”flintstone”, ”a2”=”rubble” }
Children = {}
PCData = ”Some data.”

Element QUUX:

Attributes = {}
Children = {}
PCData = null

You can retrieve the name of an element using the method getName, thus:

FOO.getName() → "FOO"

You can enumerate the attribute names using the method enumerateAttributeNames:

Enumeration enum = FOO.enumerateAttributeNames();

while (enum.hasMoreElements()) {
System.out.print(enum.nextElement());

System.out.print(’ ’);

}
→ attr1 attr2

You can retrieve the value of an attribute using getAttribute:

FOO.getAttribute("attr1") → "fred"

The child elements can be enumerated using the method enumerateChildren:

Enumeration enum = FOO.enumerateChildren();

while (enum.hasMoreElements()) {

2.3. GENERATING XML 9

XMLElement child = (XMLElement) enum.nextElement();

System.out.print(child.getName() + ’ ’);

}
→ BAR QUUX

If the element contains parsed character data (#PCDATA) as its only child.
You can retrieve that data using getContent:

BAR.getContent() → "Some data."

Note that in NanoXML/Lite, a child cannot have children and #PCDATA
content at the same time.

2.3 Generating XML

You can very easily create a tree of XML elements or modify an existing one.
To create a new tree, just create an XMLElement object:

XMLElement elt = new XMLElement("ElementName");

You can add an attribute to the element by calling setAttribute:

elt.setAttribute("key", "value");

You can add a child element to an element by calling addChild:

XMLElement child = new XMLElement("Child");

elt.addChild(child);

If an element has no children, you can add #PCDATA content to it using
setContent:

child.setContent("Some content");

Note that in NanoXML/Lite, a child cannot have children and #PCDATA
content at the same time.

When you have created or edited the XML element tree, you can write it
out to an output stream or writer using the method toString:

java.io.PrintWriter output = ...;

XMLElement xmltree = ...;

output.println(xmltree);

	Introduction
	About XML
	About NanoXML
	NanoXML 2

	Retrieving Data From An XML Datasource
	A Very Simple Example
	Analyzing The Data
	Generating XML

