Chapter 1

Appendix: Regular Expressions

This section explores regular expressions in detail, with examples drawn from language processing. It
builds on the brief overview given in the introductory programming chapter.

We have already noted that a text can be viewed as a string of characters. What kinds of processing
are performed at the character level? Perhaps word games are the most familiar example of such
processing. In completing a crossword we may want to know which 3-letter English words end with
the letter ¢ (e.g. arc). We might want to know how many words can be formed from the letters:
a, c, e, o, and n (e.g. ocean). We may want to find out which unique English word contains the
substring gnt (left as an exercise for the reader). In all these examples, we are considering which word
- drawn from a large set of candidates - matches a given pattern. To put this in a more computational
framework, we could imagine searching through a large digital corpus in order to find all words that
match a particular pattern. There are many serious uses of this so-called pattern matching.

One instructive example is the task of finding all doubled words in a text; an example would be the
string example. Notice that we would be particularly interested in finding cases where the
words were split across a linebreak (in practice, most erroneously doubled words occur in this context).
Consequently, even with such a relatively banal task, we need to be able to describe patterns which
refer not just to “ordinary” characters, but also to formatting information.

There are conventions for indicating structure in strings, also known as formatting. For example,
there are a number of alternative ways of formatting a “date string”, such as 23/06/2002, 6/23/
02, 0r 2002-06-23. Whole texts may be formatted, such as an email message which contains header
fields followed by the message body. Another familiar form of formatting involves visual structure,
such as tabular format and bulleted lists.

Finally, texts may contain explicit “markup”, such as <abbrev>Phil</abbrev>, which pro-
vides information about the interpretation or presentation of some piece of text. To summarize, in
language processing, strings are ubiquitous, and they often contain important structure.

So far we have seen elementary examples of pattern matching, the matching of individual char-
acters. More often we are interested in matching sequences of characters. For example, part of the
operation of a naive spell-checker could be to remove a word-final s from a suspect word token, in
case the word is a plural, and see if the putative singular form exists in the dictionary. For this we
must locate s and remove it, but only if it precedes a word boundary. This requires matching a pattern
consisting of two characters.

Beyond this pattern matching on the content of a text, we often want to process the formatting
and markup of a text. We may want to check the formatting of a document (e.g. to ensure that every
sentence begins with a capital letter) or to reformat a document (e.g. replacing sequences of space

1.1. Simple Regular Expressions

characters with a single space). We may want to find all date strings and extract the year. We may want
to extract all words contained inside the <abbrev> </abbrev> markup in order to construct a list
of abbreviations.

Processing the content, format and markup of strings is a central task in most kinds of NLP. The
most widespread method for string processing uses regular expressions.

1.1 Simple Regular Expressions

In this section we will see the building blocks for simple regular expressions, along with a selection
of linguistic examples. We can think of a regular expression as a specialized notation for describing
patterns that we want to match. In order to make explicit when we are talking about a pattern patt, we
will use the notation «patt». The first thing to say about regular expressions is that most letters match
themselves. For example, the pattern «sing» exactly matches the string sing. In addition, regular
expressions provide us with a set of special characters' which give us a way to match sets of strings,
and we will now look at these.

1.1.1 The Wildcard

The “.” symbol is called a wildcard: it matches any single character. For example, the regular expres-
sion «s.ng» matches the following English words: sang, sing, song, and sung. Note that «.»
will match not only alphabetic characters, but also numeric and whitespace characters. Consequently,
«s . ng» will also match non-words such as s3ng.

We can also use the wildcard symbol for counting characters. For instance «. . . .zy» matches
six-letter strings that end in zy. The pattern «. . . .berry» finds words like cranberry. In our text
from Wall Street Journal below, the pattern «t . . .» will match the words that and term, and will
also match the word sequence to a (since the third “.” in the pattern can match the space character):

Paragraph 12 from wsj_0034:

It’s probably worth paying a premium for funds that invest in markets
that are partially closed to foreign investors, such as South Korea,
some specialists say. But some European funds recently have
skyrocketed; Spain Fund has surged to a startling 120% premium. It has
been targeted by Japanese investors as a good long-term play tied to
1992’ s European economic integration. And several new funds that aren’t
even fully invested yet have jumped to trade at big premiums.

"I'm very alarmed to see these rich valuations," says Smith Barney’s

Mr. Porter.

Note

Note that the wildcard matches exactly one character, and must be repeated for as
many characters as should be matched. To match a variable number of characters
we must use notation for optionality.

We can see exactly where a regular expression matches against a string using NLTK’s re_ show
function. Readers are encouraged to use re_show to explore the behavior of regular expressions.

I'These are often called meta-characters; that is, characters which express properties of (ordinary) characters.

August 27, 2008 2 Bird, Klein & Loper

1. Appendix: Regular Expressions Introduction to Natural Language Processing (DRAFT)

>>> string = nmnn
It’s probably worth paying a premium for funds that invest in markets
that are partially closed to foreign investors, such as South Korea,

>>> nltk.re_show('t...’, string)
I{t's }probably wor{th p}laying a premium for funds {that} inves{t in} markets
{that} are par{tial}ly closed {to f}oreign inves{tors}, such as Sou{th K}orea,

1.1.2 Optionality and Repeatability

The “?” symbol indicates that the immediately preceding regular expression is optional. The regular
expression «colou?r» matches both British and American spellings, colour and color. The
expression that precedes the ? may be punctuation, such as an optional hyphen. For instance «e—?
mail» matches both e-mail and email.

The “+” symbol indicates that the immediately preceding expression is repeatable, up to an arbitrary
number of times. For example, the regular expression «coo+1» matches cool, coool, and so on.
This symbol is particularly effective when combined with the . symbol. For example, «f . +£» matches
all strings of length greater than two, that begin and end with the letter £ (e.g. foolproof). The
expression « . +ed» finds strings that potentially have the past-tense —ed suffix.

The “*” symbol indicates that the immediately preceding expression is both optional and repeat-
able. For example «. xgnt . »» matches all strings that contain gnt.

Occasionally we need to match material that spans a line-break. For example, we may want to strip
out the HTML markup from a document. To do this we must delete material between angle brackets.
The most obvious expression is: «<. x=>». However, this has two problems: it will not match an HTML
tag that contains a line-break, and the «. »» will consume as much material as possible (including the
> character). To permit matching over a line-break we must use Python’s DOTALL flag, and to ensure

that the > matches against the first instance of the character we must do non-greedy matching using
D

>>> text = """one two three four five"""
>>> re.sub(r’'<.*?>', ' ', text, re.DOTALL)

1.1.3 Choices

Patterns using the wildcard symbol are very effective, but there are many instances where we want
to limit the set of characters that the wildcard can match. In such cases we can use the [] notation,
which enumerates the set of characters to be matched - this is called a character class. For example,
we can match any English vowel, but no consonant, using « [aeiou]». Note that this pattern can be
interpreted as saying “match a or e or ... or u”; that is, the pattern resembles the wildcard in only
matching a string of length one; unlike the wildcard, it restricts the characters matched to a specific
class (in this case, the vowels). Note that the order of vowels in the regular expression is insignificant,
and we would have had the same result with the expression « [uoiea]». As a second example, the
expression «p [aeiou] t» matches the words: pat, pet, pit, pot, and put.

We can combine the [] notation with our notation for repeatability. For example, expression «p [
aeiou] +t» matches the words listed above, along with: peat, poet, and pout.

Often the choices we want to describe cannot be expressed at the level of individual characters. As
discussed in the tagging tutorial, different parts of speech are often ragged using labels from a tagset. In
the Brown tagset, for example, singular nouns have the tag NN1, while plural nouns have the tag NN2,

Bird, Klein & Loper 3 August 27, 2008

1.2. More Complex Regular Expressions

while nouns which are unspecified for number (e.g., aircraft) are tagged NNO. So we might use
«NN. *» as a pattern which will match any nominal tag. Now, suppose we were processing the output
of a tagger to extract string of tokens corresponding to noun phrases, we might want to find all nouns
(NN. %), adjectives (JJ . =) and determiners (DT), while excluding all other word types (e.g. verbs VB.
x). It is possible, using a single regular expression, to search for this set of candidates using the choice
operator *“|” as follows: «NN. * | JJ. » | DT». This says: match NN. x or JJ. = or DT.

As another example of multi-character choices, suppose that we wanted to create a program to
simplify English prose, replacing rare words (like abode) with a more frequent, synonymous word
(like home). In this situation, we need to map from a potentially large set of words to an individual
word. We can match the set of words using the choice operator. In the case of the word home, we
would want to match the regular expression «dwelling|domicile |abode».

Note

Note that the choice operator has wide scope, so that «123]456» is a choice
between 123 and 456, and not between 12356 and 12456. The latter choice
must be written using parentheses: «12 (3|4) 56».

1.2 More Complex Regular Expressions

In this section we will cover operators which can be used to construct more powerful and useful regular
expressions.

1.2.1 Ranges

Earlier we saw how the [] notation could be used to express a set of choices between individual
characters. Instead of listing each character, it is also possible to express a range of characters, using
the — operator. For example, «[a—-z]» matches any lowercase letter. This allows us to avoid the
over-permissive matching we noted above with the pattern «t . . . ». If we were to use the pattern «t [
a-z] [a-z] [a—z]», then we would no longer match the two word sequence to a.

As expected, ranges can be combined with other operators. For example «[A-Z] [a—z] *»
matches words that have an initial capital letter followed by any number of lowercase letters. The
pattern «20 [0—4] [0-9]1» matches year expressions in the range 2000 to 2049.

Ranges can be combined, e.g. « [a—zA~-Z]» which matches any lowercase or uppercase letter. The
expression « [b—df-hj—np-tv-z]+» matches words consisting only of consonants (e.g. pygmy).

1.2.2 Complementation

We just saw that the character class « [b—df-hj-np-tv-z]+» allows us to match sequences of
consonants. However, this expression is quite cumbersome. A better alternative is to say: let’s match
anything which isn’t a vowel. To do this, we need a way of expressing complementation. We do this
using the symbol “~” as the first character inside a class expression []. Let’s look at an example. The
regular expression « [~aeiou] » is just like our earlier character class « [aeiou]», except now the
set of vowels is preceded by ~. The expression as a whole is interpreted as matching anything which
fails to match «[aeiou]». In other words, it matches all lowercase consonants (plus all uppercase
letters and non-alphabetic characters).

As another example, suppose we want to match any string which is enclosed by the HTML tags
for boldface, namely and . We might try something like this: «.x». This would

August 27, 2008 4 Bird, Klein & Loper

1. Appendix: Regular Expressions Introduction to Natural Language Processing (DRAFT)

successfully match important, but would also match important urgent, since the «.» sub-pattern will happily match all the characters from the end of
important to the end of urgent. One way of ensuring that we only look at matched pairs of tags
would be to use the expression «[~<] «», where the character class matches anything other
than a left angle bracket.

Finally, note that character class complementation also works with ranges. Thus «["~a-z]»
matches anything other than the lower case alphabetic characters a through z.

1.2.3 Common Special Symbols

So far, we have only looked at patterns which match with the content of character strings. However, it
is also useful to be able to refer to formatting properties of texts. Two important symbols in this regard
are “~” and “$” which are used to anchor matches to the beginnings or ends of lines in a file.

Note

“~” has two quite distinct uses: it is interpreted as complementation when it occurs
as the first symbol within a character class, and as matching the beginning of lines
when it occurs elsewhere in a pattern.

For example, suppose we wanted to find all the words that occur at the beginning of lines in the WSJ
text above. Our first attempt might look like «~ [A-Za—z] +». This says: starting at the beginning of
a line, look for one or more alphabetic characters (upper or lower case), followed by a space. This will
match the words that, some, been, and even. However, it fails to match It’ s, since ’ isn’t an
alphabetic character. A second attempt might be «~ [~] +», which says to match any string starting at
the beginning of a line, followed by one or more characters which are not the space character, followed
by a space. This matches all the previous words, together with It’ s, skyrocketed, 1992s, I'm
and "Mr.. As a second example, « [a—z] * s $» will match words ending in s that occur at the end of
a line. Finally, consider the pattern «” $»; this matches strings where no character occurs between the
beginning and the end of a line - in other words, empty lines!

As we have seen, special characters like “.”, “+”, “+” and “$” give us powerful means to generalize
over character strings. But suppose we wanted to match against a string which itself contains one or
more special characters? An example would be the arithmetic statement $5.00 » ($3.05 + $0.
85) . In this case, we need to resort to the so-called escape character “\” (“backslash™). For example,
to match a dollar amount, we might use «\$[1-9] [0-9]1*\.[0-9] [0-9]». The same goes for
matching other special characters.

Special Sequences

\b Word boundary (zero width)

\d Any decimal digit (equivalent to [0-91)

\D Any non-digit character (equivalentto [*0-91])

\s Any whitespace character (equivalentto [\t\n\r\f\v]

\S Any non-whitespace character (equivalentto [~ \t\n\r\f\v])

\w Any alphanumeric character (equivalentto [a—zA-Z0-9_1)

\W Any non-alphanumeric character (equivalentto [~a-zA-Z0-9_1])
Table 1.1:

Bird, Klein & Loper 5 August 27, 2008

1.3. Python Interface

1.3 Python Interface

The Python re module provides a convenient interface to an underlying regular expression engine. The
module allows a regular expression pattern to be compiled into a object whose methods can then be
called. Let’s begin by getting a list of English words:

>>> wordlist = nltk.corpus.words.words(’'en’)
>>> len (wordlist)
45378

Now we can compile a regular expression for words containing a sequence of two ’a’s and find the
matches:

>>> rl = re.compile(’ .*aa.*")
>>> [w w wordlist rl.match (w)]

['Afrikaans’, ’'bazaar’, ’'bazaars’, ’'Canaan’, 'Haag’, 'Haas’, ’'Isaac’, ’'Isaacs’, 'Is

Suppose now that we want to find all three-letter words ending in the letter “c”. Our first attempt
might be as follows:

>>> rl = re.compile(’..c’)
>>> [w w wordlist rl.match(w)][:10]
["accede’, "'acceded’, 'accedes’, ’'accelerate’, ’'accelerated’, ’'accelerates’,

The problem is that we have matched words containing three-letter sequences ending in “c” which
occur anywhere within a word. For example, the pattern will match “c” in words like aback,
Aerobacter and albacore. Instead, we must revise our pattern so that it is anchored to the
beginning and ends of the word: «” . . . $»:

>>> r2 = re.compile(’'”*..c$’)
>>> [w w wordlist r2 .match (w)]
["are’, '"Doec’, 'Lac’, 'Mac’, ’'Vic’]

In the section on complementation, we briefly looked at the task of matching strings which were
enclosed by HTML markup. Our first attempt is illustrated in the following code example, where we
incorrectly match the whole string, rather than just the substring “important".

>>> html = ’important and urgent'
>>> r2 = re.compile(’'.*")
>>> r2.findall (html)

[/ important and urgent']

As we pointed out, one solution is to use a character class which matches with the complement of
6‘<”:

>>> r4 = re.compile(’'[*<]*")
>>> r4.findall (html)
[/ important’, ’urgent']

However, there is another way of approaching this problem. «. x» gets the wrong results
because the «x» operator tries to consume as much input as possible. That is, the matching is said to
be greedy. In the current case, «x» matches everything after the first , including the following </
B> and . If we instead use the non-greedy star operator « ?», we get the desired match, since «x*
?» tries to consume as little input as possible.

August 27, 2008 6 Bird, Klein & Loper

"accel

1. Appendix: Regular Expressions Introduction to Natural Language Processing (DRAFT)

1.3.1 Exercises

2. Pig Latin is a simple transliteration of English: words starting with a vowel have way ap-
pended (e.g. becomes isway); words beginning with a consonant have all consonants
up to the first vowel moved to the end of the word, and then ay is appended (e.g. start
becomes artstay).

a) Write a program to convert English text to Pig Latin.
b) Extend the program to convert text, instead of individual words.

¢) Extend it further to preserve capitalization, to keep qu together (i.e. so that
quiet becomes ietquay), and to detect when vy is used as a consonant (e.g.
yellow) vs avowel (e.g. style).

3. An interesting challenge for tokenization is words that have been split across a line-break.
E.g. if long-term is split, then we have the string long—\nterm.

a) Write a regular expression that identifies words that are hyphenated at a line-
break. The expression will need to include the \n character.

b) Use re.sub () toremove the \n character from these words.

4. Write a utility function that takes a URL as its argument, and returns the contents of the
URL, with all HTML markup removed. Use ur11ib.urlopen to access the contents of
the URL, e.g. raw_contents = urllib.urlopen(’http://nltk.org/’).
read ().

5. Write a program to guess the number of syllables from the orthographic representation of
words (e.g. English text).

6. Download some text from a language that has vowel harmony (e.g. Hungarian), extract
the vowel sequences of words, and create a vowel bigram table.

7. Obtain a pronunciation lexicon, and try generating nonsense rhymes.

1.4 Further Reading

A.M. Kuchling. Regular Expression HOWTO, http://www.amk.ca/python/howto/regex/

About this document...

This chapter is a draft from Natural Language Processing
[http://nltk.org/book.html], by Steven Bird, Ewan Klein and Edward Loper,
Copyright © 2008 the authors. It is distributed with the Natural Language
Toolkit [http://nltk.org/], Version 0.9.5, under the terms of the Creative Commons
Attribution-Noncommercial-No Derivative Works 3.0 United States License
[http://creativecommons.org/licenses/by-nc-nd/3.0/us/].

This document is

Bird, Klein & Loper 7 August 27, 2008

http://www.amk.ca/python/howto/regex/
http://nltk.org/book.html
http://www.csse.unimelb.edu.au/~sb/
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

	Appendix: Regular Expressions
	Simple Regular Expressions
	The Wildcard
	Optionality and Repeatability
	Choices

	More Complex Regular Expressions
	Ranges
	Complementation
	Common Special Symbols

	Python Interface
	Exercises

	Further Reading

