Chapter 1

Appendix: Text Processing with Unicode

Our programs will often need to deal with different languages, and different character sets. The concept
of “plain text” is a fiction. If you live in the English-speaking world you probably use ASCII, possibly
without realizing it. If you live in Europe you might use one of the extended Latin character sets,
containing such characters as “@” for Danish and Norwegian, “6” for Hungarian, “f” for Spanish and
Breton, and “n” for Czech and Slovak. In this section, we will give an overview of how to use Unicode
for processing texts that use non-ASCII character sets.

1.1 What is Unicode?

Unicode supports over a million characters. Each of these characters is assigned a number, called a
code point. In Python, code points are written in the form \uXXXX, where XXXX is the number in
4-digit hexadecimal form.

Within a program, Unicode code points can be manipulated directly, but when Unicode characters
are stored in files or displayed on a terminal they must be encoded as one or more bytes. Some
encodings (such as ASCII and Latin-2) use a single byte, so they can only support a small subset
of Unicode, suited to a single language. Other encodings (such as UTF-8) use multiple bytes and can
represent the full range of Unicode.

Text in files will be in a particular encoding, so we need some mechanism for translating it into
Unicode — translation into Unicode is called decoding. Conversely, to write out Unicode to a file or a
terminal, we first need to translate it into a suitable encoding — this translation out of Unicode is called
encoding. The following diagram illustrates.

Do some Python processing GB2312

S

GB2312

encode

Latin-2

S

Latin-2

—""

Unicode

UTF-8
"""

File / Terminal In-memory program File / Terminal

From a Unicode perspective, characters are abstract entities which can be realized as one or more
glyphs. Only glyphs can appear on a screen or be printed on paper. A font is a mapping from characters
to glyphs.

1.2. Extracting encoded text from files

1.2 Extracting encoded text from files

Let’s assume that we have a small text file, and that we know how it is encoded. For example,
polish-lat2.txt, as the name suggests, is a snippet of Polish text (from the Polish Wikipedia;
see http://pl.wikipedia.org/wiki/Biblioteka_Pruska), encoded as Latin-2, also known as ISO-8859-2.
The function nltk.data.find () locates the file for us.

>>> nltk.data
>>> path = nltk.data.find(’samples/polish-lat2.txt’)

The Python codecs module provides functions to read encoded data into Unicode strings, and
to write out Unicode strings in encoded form. The codecs.open () function takes an encoding
parameter to specify the encoding of the file being read or written. So let’s import the codecs module,
and call it with the encoding ’ 1atin2’ to open our Polish file as Unicode.

>>> codecs
>>> f = codecs.open(path, encoding=’'latin2’)

For a list of encoding parameters allowed by codecs, see http://docs.python.org/lib/standard-
encodings.html.

Text read from the file object £ will be returned in Unicode. As we pointed out earlier, in order
to view this text on a terminal, we need to encode it, using a suitable encoding. The Python-specific
encoding unicode_escape is a dummy encoding that converts all non-ASCII characters into their
\uXXXX representations. Code points above the ASCII 0-127 range but below 256 are represented in
the two-digit form \ xXX.

>>> lines

f.readlines()

>>> 1 lines:
1l =1[:-1]
uni = l.encode(’'unicode_escape’)
uni

Pruska Biblioteka Pal\u0Ol44stwowa. Jej dawne zbiory znane pod nazw\u0105

"Berlinka" to skarb kultury i sztuki niemieckie]j. Przewiezione przez

Niemc\xf3w pod koniec II wojny \uOlS5bwiatowej na Dolny \u015al\u0105sk, zostal\u0142
odnalezione po 1945 r. na terytorium Polski. Trafi\u0142y do Biblioteki
Jagiello\u0l44skiej w Krakowie, obejmuj\u01l05 ponad 500 tys. zabytkowych
archiwali\xf3w, m.in. manuskrypty Goethego, Mozarta, Beethovena, Bacha.

The first line above illustrates a Unicode escape string, namely preceded by the \u escape string,
namely \u0144 . The relevant Unicode character will be dislayed on the screen as the glyph 1. In the
third line of the preceding example, we see \ x £ 3, which corresponds to the glyph 0, and is within the
128-255 range.

In Python, a Unicode string literal can be specified by preceding an ordinary string literal with a u,
asinu’ hello’. Arbitrary Unicode characters are defined using the \ uXXXX escape sequence inside
a Unicode string literal. We find the integer ordinal of a character using ord () . For example:

>>> ord(’a’)
97

The hexadecimal 4 digit notation for 97 is 0061, so we can define a Unicode string literal with the
appropriate escape sequence:

August 27, 2008 2 Bird, Klein & Loper

http://pl.wikipedia.org/wiki/Biblioteka_Pruska
http://docs.python.org/lib/standard-encodings.html
http://docs.python.org/lib/standard-encodings.html

1. Appendix: Text Processing with Unicode Introduction to Natural Language Processing (DRAFT)

>>> a = u’ \u0061’

>>> a
u’a’
>>> a
a

Notice that the Python statement is assuming a default encoding of the Unicode character,
namely ASCII. However, 1 is outside the ASCII range, so cannot be printed unless we specify an
encoding. In the following example, we have specified that should use the repr () of the

string, which outputs the UTF-8 escape sequences (of the form \ xXX) rather than trying to render the
glyphs.

>>> nacute = u’\u0144’
>>> nacute

u’\u0144’

>>> nacute_utf = nacute.encode(’'utf8’)
>>> repr (nacute_utf)

"\xc5\x84’

If your operating system and locale are set up to render UTF-8 encoded characters, you ought to be
able to give the Python command

nacute_utf

and see 1 on your screen.

Note

There are many factors determining what glyphs are rendered on your screen.
If you are sure that you have the correct encoding, but your Python code is still
failing to produce the glyphs you expected, you should also check that you have
the necessary fonts installed on your system.

The module unicodedata lets us inspect the properties of Unicode characters. In the following
example, we select all characters in the third line of our Polish text outside the ASCII range and print
their UTF-8 escaped value, followed by their code point integer using the standard Unicode convention
(i.e., prefixing the hex digits with U+), followed by their Unicode name.

>>> unicodedata
>>> line = lines([2]
>>> line.encode (' unicode_ escape’)

Niemc\xf3w pod koniec II wojny \uOlS5bwiatowej na Dolny \u015al\u0105sk, zosta\u01l42y\n
>>> c line:
ord(c) > 127:
... "%r U+%04x %s’ % (c.encode('utf8’), ord(c), unicodedata.name(c))
"\xc3\xb3’ U+00£3 LATIN SMALL LETTER O WITH ACUTE
"\xc5\x9b’ U+015b LATIN SMALL LETTER S WITH ACUTE
"\xc5\x9%9a’ U+015a LATIN CAPITAL LETTER S WITH ACUTE
"\xc4\x85’ U+0105 LATIN SMALL LETTER A WITH OGONEK
"\xc5\x82’ U+0142 LATIN SMALL LETTER L WITH STROKE

If you replace the $r (which yields the repr () value) by %s in the format string of the code
sample above, and if your system supports UTF-8, you should see an output like the following:

Bird, Klein & Loper 3 August 27, 2008

1.3. Using your local encoding in Python

0 U+00f3 LATIN SMALL LETTER O WITH ACUTE

§ U+015b LATIN SMALL LETTER S WITH ACUTE

S U+015a LATIN CAPITAL LETTER S WITH ACUTE
a U+0105 LATIN SMALL LETTER A WITH OGONEK
1 U+0142 LATIN SMALL LETTER L WITH STROKE

Alternatively, you may need to replace the encoding ut £8’ in the example by " 1atin2’, again
depending on the details of your system.
The next examples illustrate how Python string methods and the re module accept Unicode strings.

>>> line.find(u’ zosta\u0142y’)

54
>>> line = line.lower()
>>> line.encode (' unicode_escape’)

niemc\xf3w pod koniec ii wojny \uOl5bwiatowej na dolny \u01l5bl\u0105sk, zosta\u01l42
>>> re

>>> m = re.search(u’\u01l5b\w*’, line)

>>> m.group ()

u’ \uOl5bwiatowej’

The NLTK tokenizer module allows Unicode strings as input, and correspondingly yields
Unicode strings as output.

>>> nltk.tokenize WordTokenizer

>>> tokenizer = WordTokenizer ()

>>> tokenizer.tokenize (line)

[u’'niemc\x£f3w’, u’'pod’, u’koniec’, u’ii’, u’wojny’, u’\uOlS5bwiatowej’,
u’'na’, u’dolny’, u’\u0l15bl\u0105sk’, u’zosta\u0l42y’]

1.3 Using your local encoding in Python

If you are used to working with characters in a particular local encoding, you probably want to be able
to use your standard methods for inputting and editing strings in a Python file. In order to do this, you
need to include the string ’ # —+— coding: <coding> —«-' asthe first or second line of your
file. Note that <coding> has to be a string like " 1atin-1’, " big5’ or "utf-8".

Note

If you are using Emacs as your editor, the coding specification will also be inter-
preted as a specification of the editor’s coding for the file. Not all of the valid Python
names for codings are accepted by Emacs.

The following screenshot illustrates the use of UTF-8 encoded string literals within the IDLE editor:

August 27, 2008 4 Bird, Klein & Loper

1. Appendix: Text Processing with Unicode Introduction to Natural Language Processing (DRAFT)

[o . , ,) =
aen polish-utf8.py - [Users/ewan/svn/nltk/doc/images/polish-utf8.py

-*- coding: utf-8 -=*-

re
sent = """
Przewiezione przez Niemcdw pod koniee II wojny Swiatowej na Dolny
Slask, zostaly odnalezione po 1945 r. na terytorium Polski.

u = sent.decode(utfg')
u.lower()
u.encode('utfs')

SACUTE = re.compile('5|5')

replaced = re.sub(SACUTE, '[sacute]', sent)
replaced

Ln: 17|Col28

Note

The above example requires that an appropriate font is set in IDLE’s preferences.
In this case, we chose Courier CE.

The above example also illustrates how regular expressions can use encoded strings.

1.3.1 Further Reading

There are a number of online discussions of Unicode in general, and of Python facilities for handling
Unicode. The following are worth consulting:

m Jason Orendorff, Unicode for Programmers, http://www.jorendorff.com/articles/unicode/.
m A. M. Kuchling, Unicode HOWTO, http://www.amk.ca/python/howto/unicode
m Frederik Lundh, Python Unicode Objects, http://effbot.org/zone/unicode-objects.htm

m Joel Spolsky, The Absolute Minimum Every Software Developer Absolutely, Positively Must
Know About Unicode and Character Sets (No Excuses!), http://www.joelonsoftware.com/articles/Unicode.html

About this document...

This chapter is a draft from Natural Language Processing
[http://nltk.org/book.html], by Steven Bird, Ewan Klein and Edward Loper,
Copyright © 2008 the authors. It is distributed with the Natural Language
Toolkit [http://nltk.org/], Version 0.9.5, under the terms of the Creative Commons
Attribution-Noncommercial-No Derivative Works 3.0 United States License
[http://creativecommons.org/licenses/by-nc-nd/3.0/us/].

This document is

Bird, Klein & Loper 5 August 27, 2008

http://www.jorendorff.com/articles/unicode/
http://www.amk.ca/python/howto/unicode
http://effbot.org/zone/unicode-objects.htm
http://www.joelonsoftware.com/articles/Unicode.html
http://nltk.org/book.html
http://www.csse.unimelb.edu.au/~sb/
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

	Appendix: Text Processing with Unicode
	What is Unicode?
	Extracting encoded text from files
	Using your local encoding in Python
	Further Reading

