Preface

This is a book about Natural Language Processing. By natural language we mean a language that is
used for everyday communication by humans; languages like English, Hindi or Portuguese. In contrast
to artificial languages such as programming languages and logical formalisms, natural languages have
evolved as they pass from generation to generation, and are hard to pin down with explicit rules. We
will take Natural Language Processing (or NLP for short) in a wide sense to cover any kind of computer
manipulation of natural language. At one extreme, it could be as simple as counting the number of times
the letter t occurs in a paragraph of text. At the other extreme, NLP might involve “understanding”
complete human utterances, at least to the extent of being able to give useful responses to them.

Most human knowledge — and most human communication — is represented and expressed using
language. Technologies based on NLP are becoming increasingly widespread. For example, handheld
computers (PDAs) support predictive text and handwriting recognition; web search engines give access
to information locked up in unstructured text; machine translation allows us to retrieve texts written in
Chinese and read them in Spanish. By providing more natural human-machine interfaces, and more
sophisticated access to stored information, language processing has come to play a central role in the
multilingual information society.

This book provides a comprehensive introduction to the field of NLP. It can be used for individual
study or as the textbook a course on natural language processing or computational linguistics. The
book is intensely practical, containing hundreds of fully-worked examples and graded exercises. It is
based on the Python programming language together with an open source library called the Natural
Language Toolkit NLTK. NLTK includes software, data, and documentation, all freely downloadable
from http://nltk.org/. Distributions are provided for Windows, Macintosh and Unix platforms. We
encourage you, the reader, to download Python and NLTK, and try out the examples and exercises
along the way.

Audience

This book is intended for a diverse range of people who want to learn how to write programs that
analyze written language:

New to Programming?: The book is suitable for readers with no prior knowledge of
programming, and the early chapters contain many examples that you can simply
copy and try for yourself, together with graded exercises. If you decide you need
a more general introduction to Python, we recommend you read Learning Python
(O’Reilly) in conjunction with this book.

New to Python?: Experienced programmers can quickly learn enough Python using this
book to get immersed in natural language processing. All relevant Python features


http://nltk.org/

are carefully explained and exemplified, and you will quickly come to appreciate
Python’s suitability for this application area.

Already dreaming in Python?: Simply skip the Python introduction, and dig into the in-
teresting language analysis material that starts in Chapter 2. Soon you’ll be applying
your skills to this exciting new application area.

Emphasis

This book is a practical introduction to NLP. You will learn by example, write real programs, and grasp
the value of being able to test an idea through implementation. If you haven’t learnt already, this book
will teach you programming. Unlike other programming books, we provide extensive illustrations and
exercises from NLP. The approach we have taken is also principled, in that we cover the theoretical
underpinnings and don’t shy away from careful linguistic and computational analysis. We have tried
to be pragmatic in striking a balance between theory and application, and alternate between the two
several times each chapter, identifying the connections but also the tensions. Finally, we recognize that
you won’t get through this unless it is also pleasurable, so we have tried to include many applications
and examples that are interesting and entertaining, sometimes whimsical.

What You Will Learn

By digging into the material presented here, you will learn:

m how simple programs can help you manipulate and analyze language data, and how to write these
programs;

m how key concepts from NLP and linguistics are used to describe and analyse language;
m how data structures and algorithms are used in NLP;

m how language data is stored in standard formats, and how data can be used to evaluate the
performance of NLP techniques.

Depending on your background, and your motivation for being interested in NLP, you will gain
different kinds of skills and knowledge from this book, as set out below:

Goals Background
Arts and Humanities Science and Engineering

Language Programming to manage language data, | Language as a source of interesting

Analysis explore linguistic models, and test em- | problems in data modeling, data mining,
pirical claims and knowledge discovery

Language Learning to program, with applications | Knowledge of linguistic algorithms and

Technology to familiar problems, to work in lan- | data structures for high quality, main-
guage technology or other technical | tainable language processing software
field

Table 1:

August 27, 2008

Bird, Klein & Loper




Introduction to Natural Language Processing (DRAFT)

Organization

The book is structured into three parts, as follows:

Part 1: Basics In this part, we focus on processing text, recognizing and categorizing words, and how
to deal with large amounts of language data.

Part 2: Parsing Here, we deal with grammatical structure in text: how words combine to make
phrases and sentences, and how to automatically parse text into such structures.

Part 3: Advanced Topics This final part of the book contains chapters that address selected topics in
NLP in more depth and to a more advanced level. By design, the chapters in this part can be read
independently of each other.

The three parts have a common structure: they start off with a chapter on programming, followed by
three chapters on various topics in NLP. The programming chapters are foundational, and you must
master this material before progressing further.

Each chapter consists of an introduction, a sequence of sections that progress from elementary to
advanced material, and finally a summary and suggestions for further reading. Most sections include
exercises that are graded according to the following scheme: %t is for easy exercises that involve minor
modifications to supplied code samples or other simple activities; (B is for intermediate exercises
that explore an aspect of the material in more depth, requiring careful analysis and design; % is for
difficult, open-ended tasks that will challenge your understanding of the material and force you to think
independently (readers new to programming are encouraged to skip these); © is for non-programming
exercises for reflection or discussion. The exercises are important for consolidating the material in each
section, and we strongly encourage you to try a few before continuing with the rest of the chapter.

Why Python?

Python is a simple yet powerful programming language with excellent functionality for processing
linguistic data. Python can be downloaded for free from http://www.python.org/.
Here is a five-line Python program that takes text input and prints all the words ending in ing:

>>> sys # load the system library
>>> line sys.stdin: # for each line of input text
word line.split(): # for each word in the line
word.endswith(’'ing’): # does the word end in ’'ing’?
word # if so, print the word

This program illustrates some of the main features of Python. First, whitespace is used to nest lines
of code, thus the line starting with 1 £ falls inside the scope of the previous line starting with ; this
ensures that the ing test is performed for each word. Second, Python is object-oriented; each variable
is an entity that has certain defined attributes and methods. For example, the value of the variable
line is more than a sequence of characters. It is a string object that has a method (or operation)
called split () that we can use to break a line into its words. To apply a method to an object, we
write the object name, followed by a period, followed by the method name; i.e., 1ine.split ().
Third, methods have arguments expressed inside parentheses. For instance, in the example above,
split () had no argument because we were splitting the string wherever there was white space, and
we could therefore use empty parentheses. To split a string into sentences delimited by a period, we

Bird, Klein & Loper 3 August 27, 2008


http://www.python.org/

would write split (’ .’ ). Finally, and most importantly, Python is highly readable, so much so that
it is fairly easy to guess what the above program does even if you have never written a program before.

We chose Python because it has a shallow learning curve, its syntax and semantics are transparent,
and it has good string-handling functionality. As a scripting language, Python facilitates interactive
exploration. As an object-oriented language, Python permits data and methods to be encapsulated and
re-used easily. As a dynamic language, Python permits attributes to be added to objects on the fly,
and permits variables to be typed dynamically, facilitating rapid development. Python comes with an
extensive standard library, including components for graphical programming, numerical processing,
and web data processing.

Python is heavily used in industry, scientific research, and education around the world. Python is
often praised for the way it facilitates productivity, quality, and maintainability of software. A collection
of Python success stories is posted at http://www.python.org/about/success/.

NLTK defines an infrastructure that can be used to build NLP programs in Python. It provides
basic classes for representing data relevant to natural language processing; standard interfaces for
performing tasks such as word tokenization, part-of-speech tagging, and syntactic parsing; and standard
implementations for each task which can be combined to solve complex problems.

NLTK comes with extensive documentation. In addition to the book you are reading right now, the
website http://nltk.org/ provides API documentation which covers every module, class and function in
the toolkit, specifying parameters and giving examples of usage. The website also provides module
guides; these contain extensive examples and test cases, and are intended for users, developers and
instructors.

Learning Python for Natural Language Processing

This book contains self-paced learning materials including many examples and exercises. An effective
way to learn is simply to work through the materials. The program fragments can be copied directly into
a Python interactive session. Any questions concerning the book, or Python and NLP more generally,
can be posted to the NLTK-Users mailing list (see http://nltk.org/).

Python Environments: The easiest way to start developing Python code, and to run
interactive Python demonstrations, is to use the simple editor and interpreter GUI
that comes with Python called IDLE, the Integrated DevelLopment Environment for
Python.

NLTK Community: NLTK has a large and growing user base. There are mailing lists
for announcements about NLTK, for developers and for teachers. http://nltk.org/ lists
many courses around the world where NLTK and materials from this book have been
adopted, a useful source of extra materials including slides and exercises.

The Design of NLTK

NLTK was designed with four primary goals in mind:

Simplicity: We have tried to provide an intuitive and appealing framework along with
substantial building blocks, so you can gain a practical knowledge of NLP without
getting bogged down in the tedious house-keeping usually associated with processing
annotated language data. We have provided software distributions for several plat-
forms, along with platform-specific instructions, to make the toolkit easy to install.

August 27, 2008 4 Bird, Klein & Loper


http://www.python.org/about/success/
http://nltk.org/
http://nltk.org/
http://nltk.org/

Introduction to Natural Language Processing (DRAFT)

Consistency: We have made a significant effort to ensure that all the data structures and
interfaces are consistent, making it easy to carry out a variety of tasks using a uniform
framework.

Extensibility: The toolkit easily accommodates new components, whether those compo-
nents replicate or extend existing functionality. Moreover, the toolkit is organized so
that it is usually obvious where extensions would fit into the toolkit’s infrastructure.

Modularity: The interaction between different components of the toolkit uses simple,
well-defined interfaces. It is possible to complete individual projects using small
parts of the toolkit, without needing to understand how they interact with the rest
of the toolkit. This allows students to learn how to use the toolkit incrementally
throughout a course. Modularity also makes it easier to change and extend the toolkit.

Contrasting with these goals are three non-requirements — potentially useful features that we have
deliberately avoided. First, while the toolkit provides a wide range of functions, it is not intended
to be encyclopedic; there should be a wide variety of ways in which students can extend the toolkit.
Second, while the toolkit should be efficient enough that students can use their NLP systems to perform
meaningful tasks, it does not need to be highly optimized for runtime performance; such optimizations
often involve more complex algorithms, and sometimes require the use of programming languages like
C or C++. This would make the toolkit less accessible and more difficult to install. Third, we have
tried to avoid clever programming tricks, since clear implementations are preferable to ingenious yet
indecipherable ones.

For Instructors

Natural Language Processing (NLP) is often taught within the confines of a single-semester course at
advanced undergraduate level or postgraduate level. Many instructors have found that it is difficult
to cover both the theoretical and practical sides of the subject in such a short span of time. Some
courses focus on theory to the exclusion of practical exercises, and deprive students of the challenge and
excitement of writing programs to automatically process language. Other courses are simply designed
to teach programming for linguists, and do not manage to cover any significant NLP content. NLTK
was originally developed to address this problem, making it feasible to cover a substantial amount
of theory and practice within a single-semester course, even if students have no prior programming
experience.

A significant fraction of any NLP syllabus deals with algorithms and data structures. On their
own these can be rather dry, but NLTK brings them to life with the help of interactive graphical user
interfaces making it possible to view algorithms step-by-step. Most NLTK components include a
demonstration which performs an interesting task without requiring any special input from the user.
An effective way to deliver the materials is through interactive presentation of the examples, entering
them in a Python session, observing what they do, and modifying them to explore some empirical or
theoretical issue.

The book contains hundreds of examples and exercises which can be used as the basis for student
assignments. The simplest exercises involve modifying a supplied program fragment in a specified
way in order to answer a concrete question. At the other end of the spectrum, NLTK provides a flexible
framework for graduate-level research projects, with standard implementations of all the basic data
structures and algorithms, interfaces to dozens of widely used data-sets (corpora), and a flexible and
extensible architecture.

Bird, Klein & Loper 5 August 27, 2008



We believe this book is unique in providing a comprehensive framework for students to learn about
NLP in the context of learning to program. What sets these materials apart is the tight coupling of the
chapters and exercises with NLTK, giving students — even those with no prior programming experience
— a practical introduction to NLP. Once completing these materials, students will be ready to attempt
one of the more advanced textbooks, such as Speech and Language Processing, by Jurafsky and Martin
(Prentice Hall, 2008).

Suggested Course Plans; Lectures/Lab Sessions per Chapter

Chapter Linguists Computer Scientists

1 Introduction 1 1

2 Programming 4 1

3 Words 2-3 2

4 Tagging 2 2

5 Data-Intensive Language Processing 0-2 2

6 Structured Programming 2-4 1

7 Chunking 2 2

8 Grammars and Parsing 2-6 2-4

9 Advanced Parsing 1-4 3

10-14 Advanced Topics 2-8 2-16

Total 18-36 18-36

Table 2:

Acknowledgments

NLTK was originally created as part of a computational linguistics course in the Department of Com-
puter and Information Science at the University of Pennsylvania in 2001. Since then it has been
developed and expanded with the help of dozens of contributors. It has now been adopted in courses in
dozens of universities, and serves as the basis of many research projects.

In particular, we’re grateful to the following people for their feedback, comments on earlier drafts,
advice, contributions: Michaela Atterer, Greg Aumann, Kenneth Beesley, Ondrej Bojar, Trevor Cohn,
Grev Corbett, James Curran, Jean Mark Gawron, Baden Hughes, Gwillim Law, Mark Liberman,
Christopher Maloof, Stefan Miiller, Stuart Robinson, Jussi Salmela, Rob Speer. Many others have
contributed to the toolkit, and they are listed at http://nltk.org/. We are grateful to many colleagues and
students for feedback on the text.

We are grateful to the US National Science Foundation, the Linguistic Data Consortium, and the
Universities of Pennsylvania, Edinburgh, and Melbourne for supporting our work on this book.

About the Authors

Steven Bird is Associate Professor in the Department of Computer Science and Software Engineering
at the University of Melbourne, and Senior Research Associate in the Linguistic Data Consortium
at the University of Pennsylvania. After completing his undergraduate training in computer science
and mathematics at the University of Melbourne, Steven went to the University of Edinburgh to study
computational linguistics, and completed his PhD in 1990 under the supervision of Ewan Klein. He
later moved to Cameroon to conduct linguistic fieldwork on the Grassfields Bantu languages. More

August 27, 2008 6 Bird, Klein & Loper


http://nltk.org/

Introduction to Natural Language Processing (DRAFT)

Figure 1: Edward Loper, Ewan Klein, and Steven Bird, Stanford, July 2007

recently, he spent several years as Associate Director of the Linguistic Data Consortium where he led
an R&D team to create models and tools for large databases of annotated text. Back at Melbourne
University, he leads a language technology research group and lectures in algorithms and Python
programming. Steven is Vice President of the Association for Computational Linguistics.

Ewan Klein is Professor of Language Technology in the School of Informatics at the University of
Edinburgh. He completed a PhD on formal semantics at the University of Cambridge in 1978. After
some years working at the Universities of Sussex and Newcastle upon Tyne, Ewan took up a teaching
position at Edinburgh. He was involved in the establishment of Edinburgh’s Language Technology
Group 1993, and has been closely associated with it ever since. From 2000-2002, he took leave from
the University to act as Research Manager for the Edinburgh-based Natural Language Research Group
of Edify Corporation, Santa Clara, and was responsible for spoken dialogue processing. Ewan is a past
President of the European Chapter of the Association for Computational Linguistics and was a founding
member and Coordinator of the European Network of Excellence in Human Language Technologies
(ELSNET). He has been involved in leading numerous academic-industrial collaborative projects, the
most recent of which is a biological text mining initiative funded by ITI Life Sciences, Scotland, in
collaboration with Cognia Corporation, NY.

Edward Loper is a doctoral student in the Department of Computer and Information Sciences at
the University of Pennsylvania, conducting research on machine learning in natural language process-
ing. Edward was a student in Steven’s graduate course on computational linguistics in the fall of 2000,
and went on to be a TA and share in the development of NLTK. In addition to NLTK, he has helped
develop other major packages for documenting and testing Python software, epydoc and doctest.

About this document...

This chapter is a draft from Natural Language  Processing
[http://nltk.org/book.html], by Steven Bird, Ewan Klein and Edward Loper,
Copyright © 2008 the authors. It is distributed with the Natural Language
Toolkit [http://nltk.org/], Version 0.9.5, under the terms of the Creative Commons
Attribution-Noncommercial-No Derivative Works 3.0 United States License
[http://creativecommons.org/licenses/by-nc-nd/3.0/us/].

This document is

Bird, Klein & Loper 7 August 27, 2008


http://nltk.org/book.html
http://www.csse.unimelb.edu.au/~sb/
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

