
Chapter 3

Categorizing and Tagging Words

3.1 Introduction

In Chapter 2 we dealt with words in their own right. We looked at the distribution of often, identifying
the words that follow it; we noticed that often frequently modifies verbs. In fact, it is a member of a
whole class of verb-modifying words, the adverbs. Before we delve into this terminology, let’s write
a program that takes a word and finds other words that appear in the same context (Listing 3.1). For
example, given the word woman, the program will find all contexts where woman appears in the corpus,
such as the woman saw, then searches for other words that appear in those contexts.

When we run dist_sim() on a few words, we find other words having similar distribution:
searching for woman finds man and several other nouns; searching for bought finds verbs; searching
for over finds prepositions; searching for the finds determiners. These labels — which may be familiar
from grammar lessons — are not just terms invented by grammarians, but labels for groups of words
that arise directly from the text. These groups of words are so important that they have several names,
all in common use: word classes, lexical categories, and parts of speech. We’ll use these names
interchangeably.

One of the notable features of the Brown corpus is that all the words have been tagged for their
part-of-speech. Now, instead of just looking at the words that immediately follow often, we can look at
the part-of-speech tags (or POS tags). Table 3.1 lists the top eight, ordered by frequency, along with
explanations of each tag. As we can see, the majority of words following often are verbs.

Tag Freq Example Comment
vbn 61 burnt, gone verb: past participle
vb 51 make, achieve verb: base form
vbd 36 saw, looked verb: simple past tense
jj 30 ambiguous, acceptable adjective
vbz 24 sees, goes verb: third-person singular present
in 18 by, in preposition
at 18 a, this article
, 16 , comma

Table 3.1: Part of Speech Tags Following often in the Brown
Corpus

1

3.1. Introduction

Listing 3.1 Program for Distributional Similarity
def build_wc_map():

"""
Return a dictionary mapping words in the brown corpus to lists of
local lexical contexts, where a context is encoded as a tuple
(prevword, nextword).
"""
wc_map = nltk.defaultdict(list)
words = [word.lower() for word in nltk.corpus.brown.words()]
for i in range(1, len(words)-1):

prevword, word, nextword = words[i-1:i+2]
wc_map[word].append((prevword, nextword))

return wc_map

def dist_sim(wc_map, word, num=12):
if word in wc_map:

contexts = set(wc_map[word])
fd = nltk.FreqDist(w for w in wc_map for c in wc_map[w] if c in contexts)
return fd.sorted()[:num]

return []

>>> wc_map = build_wc_map()
>>> dist_sim(wc_map, ’woman’)
[’man’, ’number’, ’woman’, ’world’, ’time’, ’end’, ’house’, ’state’,
’matter’, ’kind’, ’result’, ’day’]

>>> dist_sim(wc_map, ’bought’)
[’able’, ’made’, ’been’, ’used’, ’found’, ’was’, ’had’, ’bought’, ’,’,
’done’, ’expected’, ’given’]

>>> dist_sim(wc_map, ’over’)
[’in’, ’over’, ’and’, ’of’, ’on’, ’to’, ’.’, ’,’, ’with’, ’at’, ’for’, ’but’]
>>> dist_sim(wc_map, ’the’)
[’the’, ’a’, ’his’, ’this’, ’and’, ’in’, ’their’, ’an’, ’her’, ’that’, ’no’, ’its’]

August 27, 2008 2 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

The process of classifying words into their parts-of-speech and labeling them accordingly is known
as part-of-speech tagging, POS-tagging, or simply tagging. The collection of tags used for a
particular task is known as a tag set. Our emphasis in this chapter is on exploiting tags, and tagging
text automatically.

Automatic tagging has several applications. We have already seen an example of how to exploit
tags in corpus analysis — we get a clear understanding of the distribution of often by looking at the tags
of adjacent words. Automatic tagging also helps predict the behavior of previously unseen words. For
example, if we encounter the word blogging we can probably infer that it is a verb, with the root blog,
and likely to occur after forms of the auxiliary to be (e.g. he was blogging). Parts of speech are also
used in speech synthesis and recognition. For example, wind/NN, as in the wind blew, is pronounced
with a short vowel, whereas wind/VB, as in to wind the clock, is pronounced with a long vowel. Other
examples can be found where the stress pattern differs depending on whether the word is a noun or a
verb, e.g. contest, insult, present, protest, rebel, suspect. Without knowing the part of speech we cannot
be sure of pronouncing the word correctly.

In the next section we will see how to access and explore the Brown Corpus. Following this we will
take a closer look at the linguistics of word classes. The rest of the chapter will deal with automatic
tagging: simple taggers, evaluation, and n-gram taggers.

Note

Remember that our program samples assume you begin your interactive session
or your program with: import nltk, re, pprint

3.2 Getting Started with Tagging

Several large corpora, such as the Brown Corpus and portions of the Wall Street Journal, have been
tagged for part-of-speech, and we will be able to process this tagged data. Tagged corpus files typically
contain text of the following form (this example is from the Brown Corpus):

The/at grand/jj jury/nn commented/vbd on/in a/at number/nn of/in
other/ap topics/nns ,/, among/in them/ppo the/at Atlanta/np and/cc
Fulton/np-tl County/nn-tl purchasing/vbg departments/nns which/wdt it/pps
said/vbd ‘‘/‘‘ are/ber well/ql operated/vbn and/cc follow/vb generally/rb
accepted/vbn practices/nns which/wdt inure/vb to/in the/at best/jjt

interest/nn of/in both/abx governments/nns ’’/’’ ./.

Note

The NLTK Brown Corpus reader converts part-of-speech tags to uppercase, as this
has become standard practice since the Brown Corpus was published.

3.2.1 Representing Tags and Reading Tagged Corpora

By convention in NLTK, a tagged token is represented using a Python tuple. Python tuples are just like
lists, except for one important difference: tuples cannot be changed in place, for example by sort()
or reverse(). In other words, like strings, they are immutable. Tuples are formed with the comma
operator, and typically enclosed using parentheses. Like lists, tuples can be indexed and sliced:

>>> t = (’walk’, ’fem’, 3)
>>> t[0]

Bird, Klein & Loper 3 August 27, 2008

3.2. Getting Started with Tagging

’walk’
>>> t[1:]
(’fem’, 3)
>>> t[0] = ’run’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object does not support item assignment

A tagged token is represented using a tuple consisting of just two items. We can create one of these
special tuples from the standard string representation of a tagged token, using the function str2tuple
():

>>> tagged_token = nltk.tag.str2tuple(’fly/NN’)
>>> tagged_token
(’fly’, ’NN’)
>>> tagged_token[0]
’fly’
>>> tagged_token[1]
’NN’

We can construct a list of tagged tokens directly from a string. The first step is to tokenize the
string to access the individual word/tag strings, and then to convert each of these into a tuple
(using str2tuple()). We do this in two ways. The first method, starting at line `, initializes
an empty list tagged_words, loops over the word/tag tokens, converts them into tuples, appends
them to tagged_words, and finally displays the result. The second method, on line a, uses a list
comprehension to do the same work in a way that is not only more compact, but also more readable.
(List comprehensions were introduced in section 2.3.3).

>>> sent = ’’’
... The/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/NN of/IN
... other/AP topics/NNS ,/, AMONG/IN them/PPO the/AT Atlanta/NP and/CC
... Fulton/NP-tl County/NN-tl purchasing/VBG departments/NNS which/WDT it/PPS
... said/VBD ‘‘/‘‘ ARE/BER well/QL operated/VBN and/CC follow/VB generally/RB
... accepted/VBN practices/NNS which/WDT inure/VB to/IN the/AT best/JJT
... interest/NN of/IN both/ABX governments/NNS ’’/’’ ./.
... ’’’
>>> tagged_words = [] `
>>> for t in sent.split():
... tagged_words.append(nltk.tag.str2tuple(t))
>>> tagged_words
[(’The’, ’AT’), (’grand’, ’JJ’), (’jury’, ’NN’), (’commented’, ’VBD’),
(’on’, ’IN’), (’a’, ’AT’), (’number’, ’NN’), ... (’.’, ’.’)]
>>> [nltk.tag.str2tuple(t) for t in sent.split()] a
[(’The’, ’AT’), (’grand’, ’JJ’), (’jury’, ’NN’), (’commented’, ’VBD’),
(’on’, ’IN’), (’a’, ’AT’), (’number’, ’NN’), ... (’.’, ’.’)]

We can access several tagged corpora directly from Python. If a corpus contains tagged text, then
it will have a tagged_words() method. Please see the README file included with each corpus for
documentation of its tagset.

>>> nltk.corpus.brown.tagged_words()
[(’The’, ’AT’), (’Fulton’, ’NP-TL’), ...]
>>> print nltk.corpus.nps_chat.tagged_words()

August 27, 2008 4 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

[(’now’, ’RB’), (’im’, ’PRP’), (’left’, ’VBD’), ...]
>>> nltk.corpus.conll2000.tagged_words()
[(’Confidence’, ’NN’), (’in’, ’IN’), (’the’, ’DT’), ...]
>>> nltk.corpus.treebank.tagged_words()
[(’Pierre’, ’NNP’), (’Vinken’, ’NNP’), (’,’, ’,’), ...]

Tagged corpora for several other languages are distributed with NLTK, including Chinese, Hindi,
Portuguese, Spanish, Dutch and Catalan. These usually contain non-ASCII text, and Python always
displays this in hexadecimal when printing a larger structure such as a list.

>>> nltk.corpus.sinica_treebank.tagged_words()
[(’\xe4\xb8\x80’, ’Neu’), (’\xe5\x8f\x8b\xe6\x83\x85’, ’Nad’), ...]
>>> nltk.corpus.indian.tagged_words()
[(’\xe0\xa6\xae\xe0\xa6\xb9\xe0\xa6\xbf\xe0\xa6\xb7\xe0\xa7\x87\xe0\xa6\xb0’, ’NN’),
(’\xe0\xa6\xb8\xe0\xa6\xa8\xe0\xa7\x8d\xe0\xa6\xa4\xe0\xa6\xbe\xe0\xa6\xa8’, ’NN’), ...]
>>> nltk.corpus.mac_morpho.tagged_words()
[(’Jersei’, ’N’), (’atinge’, ’V’), (’m\xe9dia’, ’N’), ...]
>>> nltk.corpus.conll2002.tagged_words()
[(’Sao’, ’NC’), (’Paulo’, ’VMI’), (’(’, ’Fpa’), ...]
>>> nltk.corpus.cess_cat.tagged_words()
[(’El’, ’da0ms0’), (’Tribunal_Suprem’, ’np0000o’), ...]

If your environment is set up correctly, with appropriate editors and fonts, you should be able to
display individual strings in a human-readable way. For example, Figure 3.1 shows the output of the
demonstration code (nltk.corpus.indian.demo()).

Figure 3.1: POS-Tagged Data from Four Indian Languages

If the corpus is also segmented into sentences, it will have a tagged_sents() method that
returns a list of tagged sentences. This will be useful when we come to training automatic taggers, as
they typically function on a sentence at a time.

3.2.2 Nouns and Verbs

Linguists recognize several major categories of words in English, such as nouns, verbs, adjectives and
determiners. In this section we will discuss the most important categories, namely nouns and verbs.

Nouns generally refer to people, places, things, or concepts, e.g.: woman, Scotland, book, intelli-
gence. Nouns can appear after determiners and adjectives, and can be the subject or object of the verb,
as shown in Table 3.2.

Bird, Klein & Loper 5 August 27, 2008

3.2. Getting Started with Tagging

Word After a determiner Subject of the verb
woman the woman who I saw yesterday ... the woman sat down
Scotland the Scotland I remember as a child ... Scotland has five million people
book the book I bought yesterday ... this book recounts the colonization of Aus-

tralia
intelligence the intelligence displayed by the child ... Mary’s intelligence impressed her teachers

Table 3.2: Syntactic Patterns involving some Nouns

Nouns can be classified as common nouns and proper nouns. Proper nouns identify particular
individuals or entities, e.g. Moses and Scotland. Common nouns are all the rest. Another distinction
exists between count nouns and mass nouns. Count nouns are thought of as distinct entities that can
be counted, such as pig (e.g. one pig, two pigs, many pigs). They cannot occur with the word much (i.e.
*much pigs). Mass nouns, on the other hand, are not thought of as distinct entities (e.g. sand). They
cannot be pluralized, and do not occur with numbers (e.g. *two sands, *many sands). However, they
can occur with much (i.e. much sand).

Verbs are words that describe events and actions, e.g. fall, eat in Table 3.3. In the context of a
sentence, verbs express a relation involving the referents of one or more noun phrases.

Word Simple With modifiers and adjuncts (italicized)
fall Rome fell Dot com stocks suddenly fell like a stone
eat Mice eat cheese John ate the pizza with gusto

Table 3.3: Syntactic Patterns involving some Verbs

August 27, 2008 6 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

Verbs can be classified according to the number of arguments (usually noun phrases) that they
require. The word fall is intransitive, requiring exactly one argument (the entity that falls). The word
eat is transitive, requiring two arguments (the eater and the eaten). Other verbs are more complex; for
instance put requires three arguments, the agent doing the putting, the entity being put somewhere, and
a location. We will return to this topic when we come to look at grammars and parsing (see Chapter 7).

In the Brown Corpus, verbs have a range of possible tags, e.g.: give/VB (present), gives/VBZ
(present, 3ps), giving/VBG (present continuous; gerund) gave/VBD (simple past), and given/
VBN (past participle). We will discuss these tags in more detail in a later section.

3.2.3 Nouns and Verbs in Tagged Corpora

Now that we are able to access tagged corpora, we can write simple programs to garner statistics about
the tags. In this section we will focus on the nouns and verbs.

What are the 10 most common verbs? We can write a program to find all words tagged with VB,
VBZ, VBG, VBD or VBN.

>>> fd = nltk.FreqDist()
>>> for (wd, tg) in nltk.corpus.brown.tagged_words(categories=’a’):
... if tg[:2] == ’VB’:
... fd.inc(wd + "/" + tg)
>>> fd.sorted()[:20]
[’said/VBD’, ’get/VB’, ’made/VBN’, ’United/VBN-TL’, ’take/VB’,
’took/VBD’, ’told/VBD’, ’made/VBD’, ’make/VB’, ’got/VBD’,
’came/VBD’, ’go/VB’, ’see/VB’, ’went/VBD’, ’given/VBN’,
’expected/VBN’, ’began/VBD’, ’give/VB’, ’taken/VBN’, ’play/VB’]

Let’s study nouns, and find the most frequent nouns of each noun part-of-speech type. The program
in Listing 3.2 finds all tags starting with NN, and provides a few example words for each one. Observe
that there are many noun tags; the most important of these have $ for possessive nouns, S for plural
nouns (since plural nouns typically end in s), P for proper nouns.

Some tags contain a plus sign; these are compound tags, and are assigned to words that contain two
parts normally treated separately. Some tags contain a minus sign; this indicates disjunction.

3.2.4 The Default Tagger

The simplest possible tagger assigns the same tag to each token. This may seem to be a rather banal
step, but it establishes an important baseline for tagger performance. In order to get the best result, we
tag each word with the most likely word. (This kind of tagger is known as a majority class classifier).
What then, is the most frequent tag? We can find out using a simple program:

>>> fd = nltk.FreqDist()
>>> for (wd, tg) in nltk.corpus.brown.tagged_words(categories=’a’):
... fd.inc(tg)
>>> fd.max()
’NN’

Now we can create a tagger, called default_tagger, that tags everything as NN.

>>> tokens = ’John saw 3 polar bears .’.split()
>>> default_tagger = nltk.DefaultTagger(’NN’)
>>> default_tagger.tag(tokens)
[(’John’, ’NN’), (’saw’, ’NN’), (’3’, ’NN’), (’polar’, ’NN’),
(’bears’, ’NN’), (’.’, ’NN’)]

Bird, Klein & Loper 7 August 27, 2008

3.2. Getting Started with Tagging

Listing 3.2 Program to Find the Most Frequent Noun Tags
def findtags(tag_prefix, tagged_text):

cfd = nltk.ConditionalFreqDist()
for (wd, tg) in tagged_text:

if tg.startswith(tag_prefix):
cfd[tg].inc(wd)

tagdict = {}
for tg in cfd.conditions():

tagdict[tg] = cfd[tg].sorted()[:5]
return tagdict

>>> tagdict = findtags(’NN’, nltk.corpus.brown.tagged_words(categories=’a’))
>>> for tg in sorted(tagdict):
... print tg, tagdict[tg]
NN [’year’, ’time’, ’state’, ’week’, ’man’]
NN$ ["year’s", "world’s", "state’s", "nation’s", "company’s"]
NN$-HL ["Golf’s", "Navy’s"]
NN$-TL ["President’s", "University’s", "League’s", "Gallery’s", "Army’s"]
NN-HL [’cut’, ’Salary’, ’condition’, ’Question’, ’business’]
NN-NC [’eva’, ’ova’, ’aya’]
NN-TL [’President’, ’House’, ’State’, ’University’, ’City’]
NN-TL-HL [’Fort’, ’City’, ’Commissioner’, ’Grove’, ’House’]
NNS [’years’, ’members’, ’people’, ’sales’, ’men’]
NNS$ ["children’s", "women’s", "men’s", "janitors’", "taxpayers’"]
NNS$-HL ["Dealers’", "Idols’"]
NNS$-TL ["Women’s", "States’", "Giants’", "Officers’", "Bombers’"]
NNS-HL [’years’, ’idols’, ’Creations’, ’thanks’, ’centers’]
NNS-TL [’States’, ’Nations’, ’Masters’, ’Rules’, ’Communists’]
NNS-TL-HL [’Nations’]

August 27, 2008 8 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

This is a simple algorithm, and it performs poorly when used on its own. On a typical corpus, it
will tag only about an eighth of the tokens correctly:

>>> nltk.tag.accuracy(default_tagger, nltk.corpus.brown.tagged_sents(categories=’a’))
0.13089484257215028

Default taggers assign their tag to every single word, even words that have never been encountered
before. As it happens, most new words are nouns. Thus, default taggers help to improve the robustness
of a language processing system. We will return to them later, in the context of our discussion of
backoff.

3.2.5 Exercises

1. ☼ Working with someone else, take turns to pick a word that can be either a noun or a verb
(e.g. contest); the opponent has to predict which one is likely to be the most frequent in
the Brown corpus; check the opponent’s prediction, and tally the score over several turns.

2. Ñ Write programs to process the Brown Corpus and find answers to the following ques-
tions:

1) Which nouns are more common in their plural form, rather than their singular
form? (Only consider regular plurals, formed with the -s suffix.)

2) Which word has the greatest number of distinct tags. What are they, and what
do they represent?

3) List tags in order of decreasing frequency. What do the 20 most frequent tags
represent?

4) Which tags are nouns most commonly found after? What do these tags repre-
sent?

3. Ñ Generate some statistics for tagged data to answer the following questions:

a) What proportion of word types are always assigned the same part-of-speech
tag?

b) How many words are ambiguous, in the sense that they appear with at least two
tags?

c) What percentage of word occurrences in the Brown Corpus involve these am-
biguous words?

4. Ñ Above we gave an example of the nltk.tag.accuracy() function. It has two
arguments, a tagger and some tagged text, and it works out how accurately the tagger
performs on this text. For example, if the supplied tagged text was [(’the’, ’DT’),
(’dog’, ’NN’)] and the tagger produced the output [(’the’, ’NN’), (’dog
’, ’NN’)], then the accuracy score would be 0.5. Can you figure out how the nltk.
tag.accuracy() function works?

a) A tagger takes a list of words as input, and produces a list of tagged words
as output. However, nltk.tag.accuracy() is given correctly tagged text
as its input. What must the nltk.tag.accuracy() function do with this
input before performing the tagging?

Bird, Klein & Loper 9 August 27, 2008

3.3. Looking for Patterns in Words

b) Once the supplied tagger has created newly tagged text, how would nltk.
tag.accuracy() go about comparing it with the original tagged text and
computing the accuracy score?

3.3 Looking for Patterns in Words

3.3.1 Some Morphology

English nouns can be morphologically complex. For example, words like books and women are plural.
Words with the -ness suffix are nouns that have been derived from adjectives, e.g. happiness and illness.
The -ment suffix appears on certain nouns derived from verbs, e.g. government and establishment.

English verbs can also be morphologically complex. For instance, the present participle of a verb
ends in -ing, and expresses the idea of ongoing, incomplete action (e.g. falling, eating). The -ing suffix
also appears on nouns derived from verbs, e.g. the falling of the leaves (this is known as the gerund).
In the Brown corpus, these are tagged VBG.

The past participle of a verb often ends in -ed, and expresses the idea of a completed action (e.g.
walked, cried). These are tagged VBD.

Common tag sets often capture some morpho-syntactic information; that is, information about
the kind of morphological markings that words receive by virtue of their syntactic role. Consider,
for example, the selection of distinct grammatical forms of the word go illustrated in the following
sentences:

(1) a. Go away!

b. He sometimes goes to the cafe.

c. All the cakes have gone.

d. We went on the excursion.

Each of these forms — go, goes, gone, and went — is morphologically distinct from the others.
Consider the form, goes. This cannot occur in all grammatical contexts, but requires, for instance, a
third person singular subject. Thus, the following sentences are ungrammatical.

(2) a. *They sometimes goes to the cafe.

b. *I sometimes goes to the cafe.

By contrast, gone is the past participle form; it is required after have (and cannot be replaced in this
context by goes), and cannot occur as the main verb of a clause.

(3) a. *All the cakes have goes.

b. *He sometimes gone to the cafe.

We can easily imagine a tag set in which the four distinct grammatical forms just discussed were
all tagged as VB. Although this would be adequate for some purposes, a more fine-grained tag set will
provide useful information about these forms that can be of value to other processors that try to detect
syntactic patterns from tag sequences. As we noted at the beginning of this chapter, the Brown tag set
does in fact capture these distinctions, as summarized in Table 3.4.

August 27, 2008 10 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

Form Category Tag
go base VB
goes 3rd singular present VBZ
gone past participle VBN
going gerund VBG
went simple past VBD

Table 3.4: Some morphosyntactic distinctions in the Brown tag
set

In addition to this set of verb tags, the various forms of the verb to be have special tags: be/
BE, being/BEG, am/BEM, been/BEN and was/BEDZ. All told, this fine-grained tagging of
verbs means that an automatic tagger that uses this tag set is in effect carrying out a limited amount of
morphological analysis.

Most part-of-speech tag sets make use of the same basic categories, such as noun, verb, adjective,
and preposition. However, tag sets differ both in how finely they divide words into categories, and in
how they define their categories. For example, is might be tagged simply as a verb in one tag set; but as
a distinct form of the lexeme BE in another tag set (as in the Brown Corpus). This variation in tag sets
is unavoidable, since part-of-speech tags are used in different ways for different tasks. In other words,
there is no one ’right way’ to assign tags, only more or less useful ways depending on one’s goals.
More details about the Brown corpus tag set can be found in the Appendix at the end of this chapter.

3.3.2 The Regular Expression Tagger

The regular expression tagger assigns tags to tokens on the basis of matching patterns. For instance,
we might guess that any word ending in ed is the past participle of a verb, and any word ending with ’s
is a possessive noun. We can express these as a list of regular expressions:

>>> patterns = [
... (r’.*ing$’, ’VBG’), # gerunds
... (r’.*ed$’, ’VBD’), # simple past
... (r’.*es$’, ’VBZ’), # 3rd singular present
... (r’.*ould$’, ’MD’), # modals
... (r’.*\’s$’, ’NN$’), # possessive nouns
... (r’.*s$’, ’NNS’), # plural nouns
... (r’^-?[0-9]+(.[0-9]+)?$’, ’CD’), # cardinal numbers
... (r’.*’, ’NN’) # nouns (default)
...]

Note that these are processed in order, and the first one that matches is applied.
Now we can set up a tagger and use it to tag some text.

>>> regexp_tagger = nltk.RegexpTagger(patterns)
>>> regexp_tagger.tag(nltk.corpus.brown.sents(categories=’a’)[3])
[(’‘‘’, ’NN’), (’Only’, ’NN’), (’a’, ’NN’), (’relative’, ’NN’),
(’handful’, ’NN’), (’of’, ’NN’), (’such’, ’NN’), (’reports’, ’NNS’),
(’was’, ’NNS’), (’received’, ’VBD’), ("’’", ’NN’), (’,’, ’NN’),
(’the’, ’NN’), (’jury’, ’NN’), (’said’, ’NN’), (’,’, ’NN’), (’‘‘’, ’NN’),
(’considering’, ’VBG’), (’the’, ’NN’), (’widespread’, ’NN’), ..., (’.’, ’NN’)]

How well does this do?

Bird, Klein & Loper 11 August 27, 2008

3.3. Looking for Patterns in Words

>>> nltk.tag.accuracy(regexp_tagger, nltk.corpus.brown.tagged_sents(categories=’a’))
0.20326391789486245

The regular expression is a catch-all that tags everything as a noun. This is equivalent to the default
tagger (only much less efficient). Instead of re-specifying this as part of the regular expression tagger,
is there a way to combine this tagger with the default tagger? We will see how to do this later, under
the heading of backoff taggers.

3.3.3 Exercises

1. ☼ Search the web for “spoof newspaper headlines”, to find such gems as: British Left
Waffles on Falkland Islands, and Juvenile Court to Try Shooting Defendant. Manually tag
these headlines to see if knowledge of the part-of-speech tags removes the ambiguity.

2. ☼ Satisfy yourself that there are restrictions on the distribution of go and went, in the sense
that they cannot be freely interchanged in the kinds of contexts illustrated in (1d).

3. Ñ Write code to search the Brown Corpus for particular words and phrases according to
tags, to answer the following questions:

a) Produce an alphabetically sorted list of the distinct words tagged as MD.

b) Identify words that can be plural nouns or third person singular verbs (e.g.
deals, flies).

c) Identify three-word prepositional phrases of the form IN + DET + NN (eg. in
the lab).

d) What is the ratio of masculine to feminine pronouns?

4. Ñ In the introduction we saw a table involving frequency counts for the verbs adore, love,
like, prefer and preceding qualifiers such as really. Investigate the full range of qualifiers
(Brown tag QL) that appear before these four verbs.

5. Ñ We defined the regexp_tagger that can be used as a fall-back tagger for unknown
words. This tagger only checks for cardinal numbers. By testing for particular prefix or
suffix strings, it should be possible to guess other tags. For example, we could tag any
word that ends with -s as a plural noun. Define a regular expression tagger (using nltk.
RegexpTagger) that tests for at least five other patterns in the spelling of words. (Use
inline documentation to explain the rules.)

6. Ñ Consider the regular expression tagger developed in the exercises in the previous
section. Evaluate the tagger using nltk.tag.accuracy(), and try to come up with
ways to improve its performance. Discuss your findings. How does objective evaluation
help in the development process?

7. � There are 264 distinct words in the Brown Corpus having exactly three possible tags.

a) Print a table with the integers 1..10 in one column, and the number of distinct
words in the corpus having 1..10 distinct tags.

b) For the word with the greatest number of distinct tags, print out sentences from
the corpus containing the word, one for each possible tag.

August 27, 2008 12 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

8. � Write a program to classify contexts involving the word must according to the tag of
the following word. Can this be used to discriminate between the epistemic and deontic
uses of must?

3.4 Baselines and Backoff

So far the performance of our simple taggers has been disappointing. Before we embark on a process
to get 90+% performance, we need to do two more things. First, we need to establish a more principled
baseline performance than the default tagger, which was too simplistic, and the regular expression
tagger, which was too arbitrary. Second, we need a way to connect multiple taggers together, so that if
a more specialized tagger is unable to assign a tag, we can “back off” to a more generalized tagger.

3.4.1 The Lookup Tagger

A lot of high-frequency words do not have the NN tag. Let’s find some of these words and their tags.
The following code takes a list of sentences and counts up the words, and prints the 100 most frequent
words:

>>> fd = nltk.FreqDist(nltk.corpus.brown.words(categories=’a’))
>>> most_freq_words = fd.sorted()[:100]
>>> most_freq_words
[’the’, ’,’, ’.’, ’of’, ’and’, ’to’, ’a’, ’in’, ’for’, ’The’, ’that’, ’‘‘’,
’is’, ’was’, "’’", ’on’, ’at’, ’with’, ’be’, ’by’, ’as’, ’he’, ’said’, ’his’,
’will’, ’it’, ’from’, ’are’, ’;’, ’has’, ’an’, ’--’, ’had’, ’who’, ’have’,
’not’, ’Mrs.’, ’were’, ’this’, ’would’, ’which’, ’their’, ’been’, ’they’, ’He’,
’one’, ’I’, ’its’, ’but’, ’or’, ’more’, ’)’, ’Mr.’, ’up’, ’(’, ’all’, ’last’,
’out’, ’two’, ’:’, ’other’, ’new’, ’first’, ’year’, ’than’, ’A’, ’about’, ’there’,
’when’, ’home’, ’after’, ’In’, ’also’, ’over’, ’It’, ’into’, ’no’, ’But’, ’made’,
’her’, ’only’, ’years’, ’time’, ’three’, ’them’, ’some’, ’can’, ’New’, ’him’,
’state’, ’?’, ’any’, ’President’, ’could’, ’before’, ’week’, ’under’, ’against’,
’we’, ’now’]

Next, let’s inspect the tags that these words have. First we will do this in the most obvious (but highly
inefficient) way:

>>> [(w,t) for (w,t) in nltk.corpus.brown.tagged_words(categories=’a’)
... if w in most_freq_words]
[(’The’, ’AT’), (’said’, ’VBD’), (’an’, ’AT’), (’of’, ’IN’),
(’‘‘’, ’‘‘’), (’no’, ’AT’), ("’’", "’’"), (’that’, ’CS’),
(’any’, ’DTI’), (’.’, ’.’), ..., ("’’", "’’")]

A much better approach is to set up a dictionary that maps each of the 100 most frequent words to its
most likely tag. We can do this by setting up a frequency distribution cfd over the tagged words, i.e.
the frequency of the different tags that occur with each word.

>>> cfd = nltk.ConditionalFreqDist(nltk.corpus.brown.tagged_words(categories=’a’))

Now for any word that appears in this section of the corpus, we can determine its most likely tag:

>>> likely_tags = dict((word, cfd[word].max()) for word in most_freq_words)
>>> likely_tags[’The’]
’AT’

Bird, Klein & Loper 13 August 27, 2008

3.4. Baselines and Backoff

Finally, we can create and evaluate a simple tagger that assigns tags to words based on this table:

>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags)
>>> nltk.tag.accuracy(baseline_tagger, nltk.corpus.brown.tagged_sents(categories=’a’))
0.45578495136941344

This is surprisingly good; just knowing the tags for the 100 most frequent words enables us to tag
nearly half of all words correctly! Let’s see what it does on some untagged input text:

>>> baseline_tagger.tag(nltk.corpus.brown.sents(categories=’a’)[3])
[(’‘‘’, ’‘‘’), (’Only’, None), (’a’, ’AT’), (’relative’, None),
(’handful’, None), (’of’, ’IN’), (’such’, None), (’reports’, None),
(’was’, ’BEDZ’), (’received’, None), ("’’", "’’"), (’,’, ’,’),
(’the’, ’AT’), (’jury’, None), (’said’, ’VBD’), (’,’, ’,’),
(’‘‘’, ’‘‘’), (’considering’, None), (’the’, ’AT’), (’widespread’, None),
(’interest’, None), (’in’, ’IN’), (’the’, ’AT’), (’election’, None),
(’,’, ’,’), (’the’, ’AT’), (’number’, None), (’of’, ’IN’),
(’voters’, None), (’and’, ’CC’), (’the’, ’AT’), (’size’, None),
(’of’, ’IN’), (’this’, ’DT’), (’city’, None), ("’’", "’’"), (’.’, ’.’)]

Notice that a lot of these words have been assigned a tag of None. That is because they were not
among the 100 most frequent words. In these cases we would like to assign the default tag of NN, a
process known as backoff.

3.4.2 Backoff

How do we combine these taggers? We want to use the lookup table first, and if it is unable to assign
a tag, then use the default tagger. We do this by specifying the default tagger as an argument to the
lookup tagger. The lookup tagger will call the default tagger just in case it can’t assign a tag itself.

>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags, backoff=nltk.DefaultTagger(’NN’))
>>> nltk.tag.accuracy(baseline_tagger, nltk.corpus.brown.tagged_sents(categories=’a’))
0.58177695566561249

We will return to this technique in the context of a broader discussion on combining taggers in
Section 3.5.6.

3.4.3 Choosing a Good Baseline

We can put all this together to write a simple (but somewhat inefficient) program to create and evaluate
lookup taggers having a range of sizes, as shown in Listing 3.3. We include a backoff tagger that tags
everything as a noun. A consequence of using this backoff tagger is that the lookup tagger only has to
store word/tag pairs for words other than nouns.

Observe that performance initially increases rapidly as the model size grows, eventually reaching
a plateau, when large increases in model size yield little improvement in performance. (This example
used the pylab plotting package; we will return to this later in Section 5.3.4).

3.4.4 Exercises

1. Ñ Explore the following issues that arise in connection with the lookup tagger:

a) What happens to the tagger performance for the various model sizes when a
backoff tagger is omitted?

August 27, 2008 14 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

Listing 3.3 Lookup Tagger Performance with Varying Model Size
def performance(cfd, wordlist):

lt = dict((word, cfd[word].max()) for word in wordlist)
baseline_tagger = nltk.UnigramTagger(model=lt, backoff=nltk.DefaultTagger(’NN’))
return nltk.tag.accuracy(baseline_tagger, nltk.corpus.brown.tagged_sents(categories=’a’))

def display():
import pylab
words_by_freq = nltk.FreqDist(nltk.corpus.brown.words(categories=’a’)).sorted()
cfd = nltk.ConditionalFreqDist(nltk.corpus.brown.tagged_words(categories=’a’))
sizes = 2 ** pylab.arange(15)
perfs = [performance(cfd, words_by_freq[:size]) for size in sizes]
pylab.plot(sizes, perfs, ’-bo’)
pylab.title(’Lookup Tagger Performance with Varying Model Size’)
pylab.xlabel(’Model Size’)
pylab.ylabel(’Performance’)
pylab.show()

>>> display()

Figure 3.2: Lookup Tagger

Bird, Klein & Loper 15 August 27, 2008

3.5. Getting Better Coverage

b) Consider the curve in Figure 3.2; suggest a good size for a lookup tagger that
balances memory and performance. Can you come up with scenarios where it
would be preferable to minimize memory usage, or to maximize performance
with no regard for memory usage?

2. Ñ What is the upper limit of performance for a lookup tagger, assuming no limit to the
size of its table? (Hint: write a program to work out what percentage of tokens of a word
are assigned the most likely tag for that word, on average.)

3.5 Getting Better Coverage

3.5.1 More English Word Classes

Two other important word classes are adjectives and adverbs. Adjectives describe nouns, and can
be used as modifiers (e.g. large in the large pizza), or in predicates (e.g. the pizza is large). English
adjectives can be morphologically complex (e.g. fallV+ing in the falling stocks). Adverbs modify verbs
to specify the time, manner, place or direction of the event described by the verb (e.g. quickly in the
stocks fell quickly). Adverbs may also modify adjectives (e.g. really in Mary’s teacher was really nice).

English has several categories of closed class words in addition to prepositions, such as articles
(also often called determiners) (e.g., the, a), modals (e.g., should, may), and personal pronouns
(e.g., she, they). Each dictionary and grammar classifies these words differently.

Part-of-speech tags are closely related to the notion of word class used in syntax. The assumption
in linguistics is that every distinct word type will be listed in a lexicon (or dictionary), with information
about its pronunciation, syntactic properties and meaning. A key component of the word’s properties
will be its class. When we carry out a syntactic analysis of an example like fruit flies like a banana, we
will look up each word in the lexicon, determine its word class, and then group it into a hierarchy of
phrases, as illustrated in the following parse tree.

Syntactic analysis will be dealt with in more detail in Part II. For now, we simply want to make the
connection between the labels used in syntactic parse trees and part-of-speech tags. Table 3.5 shows
the correspondence:

Word Class Label Brown Tag Word Class

Det AT article
N NN noun
V VB verb
Adj JJ adjective
P IN preposition
Card CD cardinal number
-- . sentence-ending punctuation

August 27, 2008 16 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

Word Class Label Brown Tag Word Class

Table 3.5: Word Class Labels and Brown Corpus Tags

3.5.2 Some Diagnostics

Now that we have examined word classes in detail, we turn to a more basic question: how do we decide
what category a word belongs to in the first place? In general, linguists use three criteria: morphological
(or formal); syntactic (or distributional); semantic (or notional). A morphological criterion is one that
looks at the internal structure of a word. For example, -ness is a suffix that combines with an adjective
to produce a noun. Examples are happy → happiness, ill → illness. So if we encounter a word that
ends in -ness, this is very likely to be a noun.

A syntactic criterion refers to the contexts in which a word can occur. For example, assume that
we have already determined the category of nouns. Then we might say that a syntactic criterion for an
adjective in English is that it can occur immediately before a noun, or immediately following the words
be or very. According to these tests, near should be categorized as an adjective:

(4) a. the near window

b. The end is (very) near.

A familiar example of a semantic criterion is that a noun is “the name of a person, place or thing”.
Within modern linguistics, semantic criteria for word classes are treated with suspicion, mainly because
they are hard to formalize. Nevertheless, semantic criteria underpin many of our intuitions about word
classes, and enable us to make a good guess about the categorization of words in languages that we are
unfamiliar with. For example, if we all we know about the Dutch verjaardag is that it means the same
as the English word birthday, then we can guess that verjaardag is a noun in Dutch. However, some
care is needed: although we might translate zij is vandaag jarig as it’s her birthday today, the word
jarig is in fact an adjective in Dutch, and has no exact equivalent in English!

All languages acquire new lexical items. A list of words recently added to the Oxford Dictionary
of English includes cyberslacker, fatoush, blamestorm, SARS, cantopop, bupkis, noughties, muggle,
and robata. Notice that all these new words are nouns, and this is reflected in calling nouns an open
class. By contrast, prepositions are regarded as a closed class. That is, there is a limited set of words
belonging to the class (e.g., above, along, at, below, beside, between, during, for, from, in, near, on,
outside, over, past, through, towards, under, up, with), and membership of the set only changes very
gradually over time.

3.5.3 Unigram Tagging

Unigram taggers are based on a simple statistical algorithm: for each token, assign the tag that is most
likely for that particular token. For example, it will assign the tag JJ to any occurrence of the word
frequent, since frequent is used as an adjective (e.g. a frequent word) more often than it is used as a
verb (e.g. I frequent this cafe). A unigram tagger behaves just like a lookup tagger (Section 3.4.1),
except there is a more convenient technique for setting it up, called training. In the following code
sample, we initialize and train a unigram tagger (line `), use it to tag a sentence, then finally compute
the tagger’s overall accuracy:

Bird, Klein & Loper 17 August 27, 2008

3.5. Getting Better Coverage

>>> brown_a = nltk.corpus.brown.tagged_sents(categories=’a’)
>>> unigram_tagger = nltk.UnigramTagger(brown_a) `
>>> sent = nltk.corpus.brown.sents(categories=’a’)[2007]
>>> unigram_tagger.tag(sent)
[(’Various’, None), (’of’, ’IN’), (’the’, ’AT’), (’apartments’, ’NNS’), (’are’, ’BER’),
(’of’, ’IN’), (’the’, ’AT’), (’terrace’, ’NN’), (’type’, ’NN’), (’,’, ’,’),
(’being’, ’BEG’), (’on’, ’IN’), (’the’, ’AT’), (’ground’, ’NN’), (’floor’, ’NN’),
(’so’, ’QL’), (’that’, ’CS’), (’entrance’, ’NN’), (’is’, ’BEZ’), (’direct’, ’JJ’), (’.’, ’.’)]
>>> nltk.tag.accuracy(unigram_tagger, brown_a)
0.8550331165343994

3.5.4 Affix Taggers

Affix taggers are like unigram taggers, except they are trained on word prefixes or suffixes of a specified
length. (NB. Here we use prefix and suffix in the string sense, not the morphological sense.) For
example, the following tagger will consider suffixes of length 3 (e.g. -ize, -ion), for words having at
least 5 characters.

>>> affix_tagger = nltk.AffixTagger(brown_a, affix_length=-2, min_stem_length=3)
>>> affix_tagger.tag(sent)
[(’Various’, ’JJ’), (’of’, None), (’the’, None), (’apartments’, ’NNS’), (’are’, None),
(’of’, None), (’the’, None), (’terrace’, ’NN’), (’type’, None), (’,’, None),
(’being’, ’VBG’), (’on’, None), (’the’, None), (’ground’, ’NN’), (’floor’, ’NN’),
(’so’, None), (’that’, None), (’entrance’, ’NN’), (’is’, None), (’direct’, ’NN’),
(’.’, None)]

3.5.5 N-Gram Taggers

When we perform a language processing task based on unigrams, we are using one item of context.
In the case of tagging, we only consider the current token, in isolation from any larger context. Given
such a model, the best we can do is tag each word with its a priori most likely tag. This means we
would tag a word such as wind with the same tag, regardless of whether it appears in the context the
wind or to wind.

An n-gram tagger is a generalization of a unigram tagger whose context is the current word
together with the part-of-speech tags of the n-1 preceding tokens, as shown in Figure 3.3. The tag
to be chosen, tn, is circled, and the context is shaded in grey. In the example of an n-gram tagger shown
in Figure 3.3, we have n=3; that is, we consider the tags of the two preceding words in addition to the
current word. An n-gram tagger picks the tag that is most likely in the given context.

Figure 3.3: Tagger Context

August 27, 2008 18 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

Note

A 1-gram tagger is another term for a unigram tagger: i.e., the context used to tag
a token is just the text of the token itself. 2-gram taggers are also called bigram
taggers, and 3-gram taggers are called trigram taggers.

The NgramTagger class uses a tagged training corpus to determine which part-of-speech tag is
most likely for each context. Here we see a special case of an n-gram tagger, namely a bigram tagger.
First we train it, then use it to tag untagged sentences:

>>> bigram_tagger = nltk.BigramTagger(brown_a, cutoff=0)
>>> bigram_tagger.tag(sent)
[(’Various’, ’JJ’), (’of’, ’IN’), (’the’, ’AT’), (’apartments’, ’NNS’), (’are’, ’BER’),
(’of’, ’IN’), (’the’, ’AT’), (’terrace’, ’NN’), (’type’, ’NN’), (’,’, ’,’),
(’being’, ’BEG’), (’on’, ’IN’), (’the’, ’AT’), (’ground’, ’NN’), (’floor’, ’NN’),
(’so’, ’CS’), (’that’, ’CS’), (’entrance’, ’NN’), (’is’, ’BEZ’), (’direct’, ’JJ’),
(’.’, ’.’)]

As with the other taggers, n-gram taggers assign the tag NONE to any token whose context was not
seen during training.

As n gets larger, the specificity of the contexts increases, as does the chance that the data we wish
to tag contains contexts that were not present in the training data. This is known as the sparse data
problem, and is quite pervasive in NLP. Thus, there is a trade-off between the accuracy and the coverage
of our results (and this is related to the precision/recall trade-off in information retrieval).

Note

n-gram taggers should not consider context that crosses a sentence boundary.
Accordingly, NLTK taggers are designed to work with lists of sentences, where
each sentence is a list of words. At the start of a sentence, tn−1 and preceding tags
are set to None.

3.5.6 Combining Taggers

One way to address the trade-off between accuracy and coverage is to use the more accurate algorithms
when we can, but to fall back on algorithms with wider coverage when necessary. For example, we
could combine the results of a bigram tagger, a unigram tagger, and a regexp_tagger, as follows:

1. Try tagging the token with the bigram tagger.

2. If the bigram tagger is unable to find a tag for the token, try the unigram tagger.

3. If the unigram tagger is also unable to find a tag, use a default tagger.

Most NLTK taggers permit a backoff-tagger to be specified. The backoff-tagger may itself have a
backoff tagger:

>>> t0 = nltk.DefaultTagger(’NN’)
>>> t1 = nltk.UnigramTagger(brown_a, backoff=t0)
>>> t2 = nltk.BigramTagger(brown_a, backoff=t1)
>>> nltk.tag.accuracy(t2, brown_a)
0.88565347972233821

Bird, Klein & Loper 19 August 27, 2008

3.5. Getting Better Coverage

Note

We specify the backoff tagger when the tagger is initialized, so that training can take
advantage of the backoff tagger. Thus, if the bigram tagger would assign the same
tag as its unigram backoff tagger in a certain context, the bigram tagger discards
the training instance. This keeps the bigram tagger model as small as possible. We
can further specify that a tagger needs to see more than one instance of a context
in order to retain it, e.g. nltk.BigramTagger(sents, cutoff=2, backoff
=t1) will discard contexts that have only been seen once or twice.

3.5.7 Tagging Unknown Words

Our approach to tagging unknown words still uses backoff to a regular-expression tagger or a default
tagger. These are unable to make use of context. Thus, if our tagger encountered the word blog, not
seen during training, it would assign it a tag regardless of whether this word appeared in the context the
blog or to blog. How can we do better with these unknown words, or out-of-vocabulary items?

A useful method to tag unknown words based on context is to limit the vocabulary of a tagger to the
most frequent n words, and to replace every other word with a special word UNK. During training, a
unigram tagger will probably learn that this “word” is usually a noun. However, the n-gram taggers will
detect contexts in which it has some other tag. For example, if the preceding word is to (tagged TO),
then UNK will probably be tagged as a verb. Full exploration of this method is left to the exercises.

3.5.8 Storing Taggers

Training a tagger on a large corpus may take several minutes. Instead of training a tagger every time
we need one, it is convenient to save a trained tagger in a file for later re-use. Let’s save our tagger t2
to a file t2.pkl.

>>> from cPickle import dump
>>> output = open(’t2.pkl’, ’wb’)
>>> dump(t2, output, -1)
>>> output.close()

Now, in a separate Python process, we can load our saved tagger.

>>> from cPickle import load
>>> input = open(’t2.pkl’, ’rb’)
>>> tagger = load(input)
>>> input.close()

Now let’s check that it can be used for tagging.

>>> text = """The board’s action shows what free enterprise
... is up against in our complex maze of regulatory laws ."""
>>> tokens = text.split()
>>> tagger.tag(tokens)
[(’The’, ’AT’), ("board’s", ’NN$’), (’action’, ’NN’), (’shows’, ’NNS’),
(’what’, ’WDT’), (’free’, ’JJ’), (’enterprise’, ’NN’), (’is’, ’BEZ’),
(’up’, ’RP’), (’against’, ’IN’), (’in’, ’IN’), (’our’, ’PP$’), (’complex’, ’JJ’),
(’maze’, ’NN’), (’of’, ’IN’), (’regulatory’, ’NN’), (’laws’, ’NNS’), (’.’, ’.’)]

August 27, 2008 20 Bird, Klein & Loper

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

3.5.9 Exercises

1. ☼ Train a unigram tagger and run it on some new text. Observe that some words are not
assigned a tag. Why not?

2. ☼ Train an affix tagger AffixTagger() and run it on some new text. Experiment with
different settings for the affix length and the minimum word length. Can you find a setting
that seems to perform better than the one described above? Discuss your findings.

3. ☼ Train a bigram tagger with no backoff tagger, and run it on some of the training data.
Next, run it on some new data. What happens to the performance of the tagger? Why?

4. Ñ Write a program that calls AffixTagger() repeatedly, using different settings for
the affix length and the minimum word length. What parameter values give the best overall
performance? Why do you think this is the case?

5. Ñ How serious is the sparse data problem? Investigate the performance of n-gram taggers
as n increases from 1 to 6. Tabulate the accuracy score. Estimate the training data required
for these taggers, assuming a vocabulary size of 105 and a tagset size of 102.

6. Ñ Obtain some tagged data for another language, and train and evaluate a variety of
taggers on it. If the language is morphologically complex, or if there are any orthographic
clues (e.g. capitalization) to word classes, consider developing a regular expression tagger
for it (ordered after the unigram tagger, and before the default tagger). How does the
accuracy of your tagger(s) compare with the same taggers run on English data? Discuss
any issues you encounter in applying these methods to the language.

7. � Create a default tagger and various unigram and n-gram taggers, incorporating backoff,
and train them on part of the Brown corpus.

a) Create three different combinations of the taggers. Test the accuracy of each
combined tagger. Which combination works best?

b) Try varying the size of the training corpus. How does it affect your results?

8. � Our approach for tagging an unknown word has been to consider the letters of the word
(using RegexpTagger() and AffixTagger()), or to ignore the word altogether and
tag it as a noun (using nltk.DefaultTagger()). These methods will not do well for
texts having new words that are not nouns. Consider the sentence I like to blog on Kim’s
blog. If blog is a new word, then looking at the previous tag (TO vs NP$) would probably
be helpful. I.e. we need a default tagger that is sensitive to the preceding tag.

a) Create a new kind of unigram tagger that looks at the tag of the previous word,
and ignores the current word. (The best way to do this is to modify the source
code for UnigramTagger(), which presumes knowledge of Python classes
discussed in Section 9.)

b) Add this tagger to the sequence of backoff taggers (including ordinary trigram
and bigram taggers that look at words), right before the usual default tagger.

c) Evaluate the contribution of this new unigram tagger.

Bird, Klein & Loper 21 August 27, 2008

3.6. Summary

9. � Write code to preprocess tagged training data, replacing all but the most frequent n
words with the special word UNK. Train an n-gram backoff tagger on this data, then use
it to tag some new text. Note that you will have to preprocess the text to replace unknown
words with UNK, and post-process the tagged output to replace the UNK words with the
words from the original input.

3.6 Summary

� Words can be grouped into classes, such as nouns, verbs, adjectives, and adverbs. These classes
are known as lexical categories or parts of speech. Parts of speech are assigned short labels, or
tags, such as NN, VB,

� The process of automatically assigning parts of speech to words in text is called part-of-speech
tagging, POS tagging, or just tagging.

� Some linguistic corpora, such as the Brown Corpus, have been POS tagged.

� A variety of tagging methods are possible, e.g. default tagger, regular expression tagger, unigram
tagger and n-gram taggers. These can be combined using a technique known as backoff.

� Taggers can be trained and evaluated using tagged corpora.

� Part-of-speech tagging is an important, early example of a sequence classification task in NLP: a
classification decision at any one point in the sequence makes use of words and tags in the local
context.

3.7 Further Reading

For more examples of tagging with NLTK, please see the guide at http://nltk.org/doc/
guides/tag.html. Chapters 4 and 5 of [Jurafsky & Martin, 2008] contain more advanced material
on n-grams and part-of-speech tagging.

There are several other important approaches to tagging involving Transformation-Based Learning,
Markov Modeling, and Finite State Methods. (We will discuss some of these in Chapter 4.) In Chapter
6 we will see a generalization of tagging called chunking in which a contiguous sequence of words is
assigned a single tag.

Part-of-speech tagging is just one kind of tagging, one that does not depend on deep linguistic
analysis. There are many other kinds of tagging. Words can be tagged with directives to a speech
synthesizer, indicating which words should be emphasized. Words can be tagged with sense numbers,
indicating which sense of the word was used. Words can also be tagged with morphological features.
Examples of each of these kinds of tags are shown below. For space reasons, we only show the tag
for a single word. Note also that the first two examples use XML-style tags, where elements in angle
brackets enclose the word that is tagged.

1. Speech Synthesis Markup Language (W3C SSML): That is a <emphasis>big</
emphasis> car!

2. SemCor: Brown Corpus tagged with WordNet senses: Space in any <wf pos="NN
" lemma="form" wnsn="4">form</wf> is completely measured by the

August 27, 2008 22 Bird, Klein & Loper

file:bibliography.html#jurafskymartin2008

3. Categorizing and Tagging Words Introduction to Natural Language Processing (DRAFT)

three dimensions. (Wordnet form/nn sense 4: “shape, form, configuration, contour,
conformation”)

3. Morphological tagging, from the Turin University Italian Treebank: E’ italiano ,
come progetto e realizzazione , il primo (PRIMO ADJ ORDIN M SING
) porto turistico dell’ Albania .

Tagging exhibits several properties that are characteristic of natural language processing. First,
tagging involves classification: words have properties; many words share the same property (e.g. cat
and dog are both nouns), while some words can have multiple such properties (e.g. wind is a noun and
a verb). Second, in tagging, disambiguation occurs via representation: we augment the representation
of tokens with part-of-speech tags. Third, training a tagger involves sequence learning from annotated
corpora. Finally, tagging uses simple, general, methods such as conditional frequency distributions and
transformation-based learning.

Note that tagging is also performed at higher levels. Here is an example of dialogue act tagging,
from the NPS Chat Corpus [Forsyth & Martell, 2007], included with NLTK.

Statement User117 Dude..., I wanted some of that
ynQuestion User120 m I missing something?
Bye User117 I’m gonna go fix food, I’ll be back later.
System User122 JOIN
System User2 slaps User122 around a bit with a large trout.
Statement User121 18/m pm me if u tryin to chat

List of available taggers: http://www-nlp.stanford.edu/links/statnlp.html

3.8 Appendix: Brown Tag Set

Table 3.6 gives a sample of closed class words, following the classification of the Brown Corpus.
(Note that part-of-speech tags may be presented as either upper-case or lower-case strings — the case
difference is not significant.)

AP determiner/pronoun,
post-determiner

many other next more last former little several enough most least only
very few fewer past same

AT article the an no a every th’ ever’ ye
CC conjunction, coordi-

nating
and or but plus & either neither nor yet ’n’ and/or minus an’

CS conjunction, subor-
dinating

that as after whether before while like because if since for than until so
unless though providing once lest till whereas whereupon supposing albeit
then

IN preposition of in for by considering to on among at through with under into regarding
than since despite ...

MD modal auxiliary should may might will would must can could shall ought need wilt
PN pronoun, nominal none something everything one anyone nothing nobody everybody every-

one anybody anything someone no-one nothin’

Bird, Klein & Loper 23 August 27, 2008

file:bibliography.html#forsyth2007

3.8. Appendix: Brown Tag Set

PPL pronoun, singular,
reflexive

itself himself myself yourself herself oneself ownself

PP$ determiner, posses-
sive

our its his their my your her out thy mine thine

PP$$ pronoun, possessive ours mine his hers theirs yours
PPS pronoun, personal,

nom, 3rd pers sng
it he she thee

PPSSpronoun, personal,
nom, not 3rd pers
sng

they we I you ye thou you’uns

WDTWH-determiner which what whatever whichever
WPS WH-pronoun, nom-

inative
that who whoever whosoever what whatsoever

Table 3.6: Some English Closed Class Words, with Brown Tag

3.8.1 Acknowledgments

About this document...
This chapter is a draft from Natural Language Processing
[http://nltk.org/book.html], by Steven Bird, Ewan Klein and Edward Loper,
Copyright © 2008 the authors. It is distributed with the Natural Language
Toolkit [http://nltk.org/], Version 0.9.5, under the terms of the Creative Commons
Attribution-Noncommercial-No Derivative Works 3.0 United States License
[http://creativecommons.org/licenses/by-nc-nd/3.0/us/].
This document is

August 27, 2008 24 Bird, Klein & Loper

http://nltk.org/book.html
http://www.csse.unimelb.edu.au/~sb/
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

	Categorizing and Tagging Words
	Introduction
	Getting Started with Tagging
	Representing Tags and Reading Tagged Corpora
	Nouns and Verbs
	Nouns and Verbs in Tagged Corpora
	The Default Tagger
	Exercises

	Looking for Patterns in Words
	Some Morphology
	The Regular Expression Tagger
	Exercises

	Baselines and Backoff
	The Lookup Tagger
	Backoff
	Choosing a Good Baseline
	Exercises

	Getting Better Coverage
	More English Word Classes
	Some Diagnostics
	Unigram Tagging
	Affix Taggers
	N-Gram Taggers
	Combining Taggers
	Tagging Unknown Words
	Storing Taggers
	Exercises

	Summary
	Further Reading
	Appendix: Brown Tag Set
	Acknowledgments

