
Chapter 8

Chart Parsing and Probabilistic Parsing

8.1 Introduction

Chapter 7 started with an introduction to constituent structure in English, showing how words in a
sentence group together in predictable ways. We showed how to describe this structure using syntactic
tree diagrams, and observed that it is sometimes desirable to assign more than one such tree to a given
string. In this case, we said that the string was structurally ambiguous; and example was old men and
women.

Treebanks are language resources in which the syntactic structure of a corpus of sentences has been
annotated, usually by hand. However, we would also like to be able to produce trees algorithmically. A
context-free phrase structure grammar (CFG) is a formal model for describing whether a given string
can be assigned a particular constituent structure. Given a set of syntactic categories, the CFG uses a
set of productions to say how a phrase of some category A can be analyzed into a sequence of smaller
parts α1 ... αn. But a grammar is a static description of a set of strings; it does not tell us what sequence
of steps we need to take to build a constituent structure for a string. For this, we need to use a parsing
algorithm. We presented two such algorithms: Top-Down Recursive Descent (7.5.1) and Bottom-Up
Shift-Reduce (7.5.2). As we pointed out, both parsing approaches suffer from important shortcomings.
The Recursive Descent parser cannot handle left-recursive productions (e.g., productions such as NP →
NP PP), and blindly expands categories top-down without checking whether they are compatible with
the input string. The Shift-Reduce parser is not guaranteed to find a valid parse for the input even if one
exists, and builds substructure without checking whether it is globally consistent with the grammar. As
we will describe further below, the Recursive Descent parser is also inefficient in its search for parses.

So, parsing builds trees over sentences, according to a phrase structure grammar. Now, all the
examples we gave in Chapter 7 only involved toy grammars containing a handful of productions. What
happens if we try to scale up this approach to deal with realistic corpora of language? Unfortunately,
as the coverage of the grammar increases and the length of the input sentences grows, the number of
parse trees grows rapidly. In fact, it grows at an astronomical rate.

Let’s explore this issue with the help of a simple example. The word fish is both a noun and a verb.
We can make up the sentence fish fish fish, meaning fish like to fish for other fish. (Try this with police
if you prefer something more sensible.) Here is a toy grammar for the “fish” sentences.

>>> grammar = nltk.parse_cfg("""
... S -> NP V NP
... NP -> NP Sbar
... Sbar -> NP V
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... NP -> ’fish’

... V -> ’fish’

... """)

Note

Remember that our program samples assume you begin your interactive session
or your program with: import nltk, re, pprint

Now we can try parsing a longer sentence, fish fish fish fish fish, which amongst other things, means
’fish that other fish fish are in the habit of fishing fish themselves’. We use the NLTK chart parser,
which is presented later on in this chapter. This sentence has two readings.

>>> tokens = ["fish"] * 5
>>> cp = nltk.ChartParser(grammar, nltk.parse.TD_STRATEGY)
>>> for tree in cp.nbest_parse(tokens):
... print tree
(S (NP (NP fish) (Sbar (NP fish) (V fish))) (V fish) (NP fish))
(S (NP fish) (V fish) (NP (NP fish) (Sbar (NP fish) (V fish))))

As the length of this sentence goes up (3, 5, 7, ...) we get the following numbers of parse trees: 1; 2;
5; 14; 42; 132; 429; 1,430; 4,862; 16,796; 58,786; 208,012; ... (These are the Catalan numbers, which
we saw in an exercise in Section 5.5). The last of these is for a sentence of length 23, the average length
of sentences in the WSJ section of Penn Treebank. For a sentence of length 50 there would be over
1012 parses, and this is only half the length of the Piglet sentence (Section (4)), which young children
process effortlessly. No practical NLP system could construct all millions of trees for a sentence and
choose the appropriate one in the context. It’s clear that humans don’t do this either!

Note that the problem is not with our choice of example. [Church & Patil, 1982] point out that
the syntactic ambiguity of PP attachment in sentences like (1) also grows in proportion to the Catalan
numbers.

(1) Put the block in the box on the table.

So much for structural ambiguity; what about lexical ambiguity? As soon as we try to construct
a broad-coverage grammar, we are forced to make lexical entries highly ambiguous for their part of
speech. In a toy grammar, a is only a determiner, dog is only a noun, and runs is only a verb.
However, in a broad-coverage grammar, a is also a noun (e.g. part a), dog is also a verb (meaning
to follow closely), and runs is also a noun (e.g. ski runs). In fact, all words can be referred to by name:
e.g. the verb ’ate’ is spelled with three letters; in speech we do not need to supply quotation marks.
Furthermore, it is possible to verb most nouns. Thus a parser for a broad-coverage grammar will be
overwhelmed with ambiguity. Even complete gibberish will often have a reading, e.g. the a are of I. As
[Klavans & Resnik}, 1996] has pointed out, this is not word salad but a grammatical noun phrase, in
which are is a noun meaning a hundredth of a hectare (or 100 sq m), and a and I are nouns designating
coordinates, as shown in Figure 8.1.
Even though this phrase is unlikely, it is still grammatical and a a broad-coverage parser should

be able to construct a parse tree for it. Similarly, sentences that seem to be unambiguous, such as
John saw Mary, turn out to have other readings we would not have anticipated (as Abney explains).
This ambiguity is unavoidable, and leads to horrendous inefficiency in parsing seemingly innocuous
sentences.

Let’s look more closely at this issue of efficiency. The top-down recursive-descent parser presented
in Chapter 7 can be very inefficient, since it often builds and discards the same sub-structure many
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Figure 8.1: The a are of I

times over. We see this in Figure 8.1, where a phrase the block is identified as a noun phrase several
times, and where this information is discarded each time we backtrack.

Note

You should try the recursive-descent parser demo if you haven’t already: nltk.
draw.srparser.demo()

a. Initial stage b. Backtracking

c. Failing to match on d. Completed parse

Table 8.1: Backtracking and Repeated Parsing of Subtrees

In this chapter, we will present two independent methods for dealing with ambiguity. The first is
chart parsing, which uses the algorithmic technique of dynamic programming to derive the parses of
an ambiguous sentence more efficiently. The second is probabilistic parsing, which allows us to rank
the parses of an ambiguous sentence on the basis of evidence from corpora.

8.2 Chart Parsing

In the introduction to this chapter, we pointed out that the simple parsers discussed in Chapter 7 suffered
from limitations in both completeness and efficiency. In order to remedy these, we will apply the
algorithm design technique of dynamic programming to the parsing problem. As we saw in Section
5.5.3, dynamic programming stores intermediate results and re-uses them when appropriate, achieving
significant efficiency gains. This technique can be applied to syntactic parsing, allowing us to store
partial solutions to the parsing task and then look them up as necessary in order to efficiently arrive at a
complete solution. This approach to parsing is known as chart parsing, and is the focus of this section.
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8.2.1 Well-Formed Substring Tables

Let’s start off by defining a simple grammar.

>>> grammar = nltk.parse_cfg("""
... S -> NP VP
... PP -> P NP
... NP -> Det N | NP PP
... VP -> V NP | VP PP
... Det -> ’the’
... N -> ’kids’ | ’box’ | ’floor’
... V -> ’opened’
... P -> ’on’
... """)

As you can see, this grammar allows the VP opened the box on the floor to be analyzed in two ways,
depending on where the PP is attached.

(2) a.

b.

Dynamic programming allows us to build the PP on the floor just once. The first time we build it we
save it in a table, then we look it up when we need to use it as a subconstituent of either the object NP

or the higher VP. This table is known as a well-formed substring table (or WFST for short). We will
show how to construct the WFST bottom-up so as to systematically record what syntactic constituents
have been found.

Let’s set our input to be the sentence the kids opened the box on the floor. It is helpful to think of
the input as being indexed like a Python list. We have illustrated this in Figure 8.2.
This allows us to say that, for instance, the word opened spans (2, 3) in the input. This is reminiscent

of the slice notation:
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Figure 8.2: Slice Points in the Input String

>>> tokens = ["the", "kids", "opened", "the", "box", "on", "the", "floor"]
>>> tokens[2:3]
[’opened’]

In a WFST, we record the position of the words by filling in cells in a triangular matrix: the vertical
axis will denote the start position of a substring, while the horizontal axis will denote the end position
(thus opened will appear in the cell with coordinates (2, 3)). To simplify this presentation, we will
assume each word has a unique lexical category, and we will store this (not the word) in the matrix. So
cell (2, 3) will contain the entry V. More generally, if our input string is a1a2 ... an, and our grammar
contains a production of the form A → a i, then we add A to the cell (i -1, i ).

So, for every word in tokens, we can look up in our grammar what category it belongs to.

>>> grammar.productions(rhs=tokens[2])
[V -> ’opened’]

For our WFST, we create an (n − 1) × (n − 1) matrix as a list of lists in Python, and initialize it with
the lexical categories of each token, in the init_wfst() function in Listing 8.1. We also define a
utility function display() to pretty-print the WFST for us. As expected, there is a V in cell (2, 3).

Returning to our tabular representation, given that we have DET in cell (0, 1), and N in cell (1, 2),
what should we put into cell (0, 2)? In other words, what syntactic category derives the kids? We have
already established that DET derives the and N derives kids, so we need to find a production of the form
A → DET N, that is, a production whose right hand side matches the categories in the cells we have
already found. From the grammar, we know that we can enter NP in cell (0,2).

More generally, we can enter A in (i, j) if there is a production A → B C, and we find nonterminal
B in (i, k) and C in (k, j). Listing 8.1 uses this inference step to complete the WFST.

Note

To help us easily retrieve productions by their right hand sides, we create an index
for the grammar. This is an example of a space-time trade-off: we do a reverse
lookup on the grammar, instead of having to check through entire list of productions
each time we want to look up via the right hand side.

We conclude that there is a parse for the whole input string once we have constructed an S node
that covers the whole input, from position 0 to position 8 ; i.e., we can conclude that S Ò* a1a2 ... an.

Notice that we have not used any built-in parsing functions here. We’ve implemented a complete,
primitive chart parser from the ground up!

8.2.2 Charts

By setting trace to True when calling the function complete_wfst(), we get additional output.
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Listing 8.1 Acceptor Using Well-Formed Substring Table (based on CYK algorithm)
def init_wfst(tokens, grammar):

numtokens = len(tokens)
wfst = [[’.’ for i in range(numtokens+1)] for j in range(numtokens+1)]
for i in range(numtokens):

productions = grammar.productions(rhs=tokens[i])
wfst[i][i+1] = productions[0].lhs()

return wfst
def complete_wfst(wfst, tokens, trace=False):

index = {}
for prod in grammar.productions():

index[prod.rhs()] = prod.lhs()
numtokens = len(tokens)
for span in range(2, numtokens+1):

for start in range(numtokens+1-span):
end = start + span
for mid in range(start+1, end):

nt1, nt2 = wfst[start][mid], wfst[mid][end]
if (nt1,nt2) in index:

if trace:
print "[%s] %3s [%s] %3s [%s] ==> [%s] %3s [%s]" % \
(start, nt1, mid, nt2, end, start, index[(nt1,nt2)], end)

wfst[start][end] = index[(nt1,nt2)]
return wfst

def display(wfst, tokens):
print ’\nWFST ’ + ’ ’.join([("%-4d" % i) for i in range(1, len(wfst))])
for i in range(len(wfst)-1):

print "%d " % i,
for j in range(1, len(wfst)):

print "%-4s" % wfst[i][j],
print

>>> wfst0 = init_wfst(tokens, grammar)
>>> display(wfst0, tokens)
WFST 1 2 3 4 5 6 7 8
0 Det . . . . . . .
1 . N . . . . . .
2 . . V . . . . .
3 . . . Det . . . .
4 . . . . N . . .
5 . . . . . P . .
6 . . . . . . Det .
7 . . . . . . . N
>>> wfst1 = complete_wfst(wfst0, tokens)
>>> display(wfst1, tokens)
WFST 1 2 3 4 5 6 7 8
0 Det NP . . S . . S
1 . N . . . . . .
2 . . V . VP . . VP
3 . . . Det NP . . NP
4 . . . . N . . .
5 . . . . . P . PP
6 . . . . . . Det NP
7 . . . . . . . N
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>>> wfst1 = complete_wfst(wfst0, tokens, trace=True)
[0] Det [1] N [2] ==> [0] NP [2]
[3] Det [4] N [5] ==> [3] NP [5]
[6] Det [7] N [8] ==> [6] NP [8]
[2] V [3] NP [5] ==> [2] VP [5]
[5] P [6] NP [8] ==> [5] PP [8]
[0] NP [2] VP [5] ==> [0] S [5]
[3] NP [5] PP [8] ==> [3] NP [8]
[2] V [3] NP [8] ==> [2] VP [8]
[2] VP [5] PP [8] ==> [2] VP [8]
[0] NP [2] VP [8] ==> [0] S [8]

For example, this says that since we found Det at wfst[0][1] and N at wfst[1][2], we can
add NP to wfst[0][2]. The same information can be represented in a directed acyclic graph, as
shown in Figure 8.2(a). This graph is usually called a chart. Figure 8.2(b) is the corresponding graph
representation, where we add a new edge labeled NP to cover the input from 0 to 2.

a. Initialized WFST

b. Adding an NP Edge

Table 8.2: A Graph Representation for the WFST

(Charts are more general than the WFSTs we have seen, since they can hold multiple hypotheses
for a given span.)

A WFST is a data structure that can be used by a variety of parsing algorithms. The particular
method for constructing a WFST that we have just seen and has some shortcomings. First, as you
can see, the WFST is not itself a parse tree, so the technique is strictly speaking recognizing that a
sentence is admitted by a grammar, rather than parsing it. Second, it requires every non-lexical grammar
production to be binary (see Section 8.5.1). Although it is possible to convert an arbitrary CFG into this
form, we would prefer to use an approach without such a requirement. Third, as a bottom-up approach
it is potentially wasteful, being able to propose constituents in locations that would not be licensed by
the grammar. Finally, the WFST did not represent the structural ambiguity in the sentence (i.e. the two
verb phrase readings). The VP in cell (2,8 ) was actually entered twice, once for a V NP reading, and
once for a VP PP reading. In the next section we will address these issues.
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8.2.3 Exercises

1. ☼ Consider the sequence of words: Buffalo buffalo Buffalo buffalo buffalo buffalo Buf-
falo buffalo. This is a grammatically correct sentence, as explained at http://en.
wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo
. Consider the tree diagram presented on this Wikipedia page, and write down a
suitable grammar. Normalize case to lowercase, to simulate the problem that a lis-
tener has when hearing this sentence. Can you find other parses for this sentence?
How does the number of parse trees grow as the sentence gets longer? (More ex-
amples of these sentences can be found at http://en.wikipedia.org/wiki/
List_of_homophonous_phrases).

2. Ñ Consider the algorithm in Listing 8.1. Can you explain why parsing context-free
grammar is proportional to n3?

3. Ñ Modify the functions init_wfst() and complete_wfst() so that the contents
of each cell in the WFST is a set of non-terminal symbols rather than a single non-terminal.

4. � Modify the functions init_wfst() and complete_wfst() so that when a non-
terminal symbol is added to a cell in the WFST, it includes a record of the cells from which
it was derived. Implement a function that will convert a WFST in this form to a parse tree.

8.3 Active Charts

One important aspect of the tabular approach to parsing can be seen more clearly if we look at the graph
representation: given our grammar, there are two different ways to derive a top-level VP for the input,
as shown in Table 8.3(a,b). In our graph representation, we simply combine the two sets of edges to
yield Table 8.3(c).

a. VP → V NP
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b. VP → VP PP

c. Merged Chart

Table 8.3: Combining Multiple Parses in a Single Chart

However, given a WFST we cannot necessarily read off the justification for adding a particular edge.
For example, in 8.3(b), [Edge: VP, 2:8] might owe its existence to a production VP → V NP PP.
Unlike phrase structure trees, a WFST does not encode a relation of immediate dominance. In order
to make such information available, we can label edges not just with a non-terminal category, but with
the whole production that justified the addition of the edge. This is illustrated in Figure 8.3.

Figure 8.3: Chart Annotated with Productions

In general, a chart parser hypothesizes constituents (i.e. adds edges) based on the grammar,
the tokens, and the constituents already found. Any constituent that is compatible with the current
knowledge can be hypothesized; even though many of these hypothetical constituents will never be
used in the final result. A WFST just records these hypotheses.
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All of the edges that we’ve seen so far represent complete constituents. However, as we will see, it
is helpful to hypothesize incomplete constituents. For example, the work done by a parser in processing
the production VP → V NP PP can be reused when processing VP → V NP. Thus, we will record the
hypothesis that “the V constituent likes is the beginning of a VP.”

We can record such hypotheses by adding a dot to the edge’s right hand side. Material to the left of
the dot specifies what the constituent starts with; and material to the right of the dot specifies what still
needs to be found in order to complete the constituent. For example, the edge in the Figure 8.4 records
the hypothesis that “a VP starts with the V likes, but still needs an NP to become complete”:

Figure 8.4: Chart Containing Incomplete VP Edge

These dotted edges are used to record all of the hypotheses that a chart parser makes about constituents
in a sentence. Formally a dotted edge [A → c1 … cd • cd+1 … cn, (i, j)] records the hypothesis that
a constituent of type A with span (i, j ) starts with children c1 … cd, but still needs children cd+1 …
cn to be complete (c1 … cd and cd+1 … cn may be empty). If d = n, then cd+1 … cn is empty and the
edge represents a complete constituent and is called a complete edge. Otherwise, the edge represents
an incomplete constituent, and is called an incomplete edge. In Figure 8.4(a), [VP → V NP •, (1, 3)] is
a complete edge, and [VP → V • NP, (1, 2)] is an incomplete edge.

If d = 0, then c1 … cn is empty and the edge is called a self-loop edge. This is illustrated in Table
8.4(b). If a complete edge spans the entire sentence, and has the grammar’s start symbol as its left-hand
side, then the edge is called a parse edge, and it encodes one or more parse trees for the sentence. In
Table 8.4(c), [S → NP VP •, (0, 3)] is a parse edge.

a. Incomplete Edge b. Self Loop Edge c. Parse Edge

Table 8.4: Chart Terminology

8.3.1 The Chart Parser

To parse a sentence, a chart parser first creates an empty chart spanning the sentence. It then finds
edges that are licensed by its knowledge about the sentence, and adds them to the chart one at a time
until one or more parse edges are found. The edges that it adds can be licensed in one of three ways:

1. The input can license an edge. In particular, each word w i in the input licenses the
complete edge [w i → •, (i, i+1)].

2. The grammar can license an edge. In particular, each grammar production A → α licenses
the self-loop edge [A → • α, (i, i)] for every i, 0 ≤ i < n.

3. The current chart contents can license an edge.
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However, it is not wise to add all licensed edges to the chart, since many of them will not be used
in any complete parse. For example, even though the edge in the following chart is licensed (by the
grammar), it will never be used in a complete parse:

Figure 8.5: Chart Containing Redundant Edge

Chart parsers therefore use a set of rules to heuristically decide when an edge should be added to a
chart. This set of rules, along with a specification of when they should be applied, forms a strategy.

8.3.2 The Fundamental Rule

One rule is particularly important, since it is used by every chart parser: the Fundamental Rule. This
rule is used to combine an incomplete edge that’s expecting a nonterminal B with a following, complete
edge whose left hand side is B.

(3) Fundamental Rule

If the chart contains the edges
[A → α • B β , (i, j)]
[B → γ • , (j, k)]

then add the new edge
[A → α B • β , (i, k)]

where α, β, and γ are (possibly empty) sequences

of terminals or non-terminals

Note that the dot has moved one place to the right, and the span of this new edge is the combined
span of the other two. Note also that in adding this new edge we do not remove the other two, because
they might be used again.

A somewhat more intuitive version of the operation of the Fundamental Rule can be given using
chart diagrams. Thus, if we have a chart of the form shown in Table 8.5(a), then we can add a new
complete edge as shown in Table 8.5(b).

a. Input b. Output

Table 8.5: Fundamental Rule

1The Fundamental Rule corresponds to the Completer function in the Earley algorithm; cf. [Jurafsky & Martin, 2008].

Bird, Klein & Loper 11 August 27, 2008

file:bibliography.html#jurafskymartin2008


8.3. Active Charts

8.3.3 Bottom-Up Parsing

As we saw in Chapter 7, bottom-up parsing starts from the input string, and tries to find sequences
of words and phrases that correspond to the right hand side of a grammar production. The parser
then replaces these with the left-hand side of the production, until the whole sentence is reduced to
an S. Bottom-up chart parsing is an extension of this approach in which hypotheses about structure
are recorded as edges on a chart. In terms of our earlier terminology, bottom-up chart parsing can be
seen as a parsing strategy; in other words, bottom-up is a particular choice of heuristics for adding new
edges to a chart.

The general procedure for chart parsing is inductive: we start with a base case, and then show how
we can move from a given state of the chart to a new state. Since we are working bottom-up, the base
case for our induction will be determined by the words in the input string, so we add new edges for
each word. Now, for the induction step, suppose the chart contains an edge labeled with constituent
A. Since we are working bottom-up, we want to build constituents that can have an A as a daughter.
In other words, we are going to look for productions of the form B → A β and use these to label new
edges.

Let’s look at the procedure a bit more formally. To create a bottom-up chart parser, we add to the
Fundamental Rule two new rules: the Bottom-Up Initialization Rule; and the Bottom-Up Predict
Rule. The Bottom-Up Initialization Rule says to add all edges licensed by the input.

(4) Bottom-Up Initialization Rule

For every word wi add the edge

[w i → • , (i, i+1)]

Table 8.6(a) illustrates this rule using the chart notation, while Table 8.6(b) shows the bottom-up
initialization for the input Lee likes coffee.

a. Generic b. Example

Table 8.6: Bottom-Up Initialization Rule

Notice that the dot on the right hand side of these productions is telling us that we have complete
edges for the lexical items. By including this information, we can give a uniform statement of how the
Fundamental Rule operates in Bottom-Up parsing, as we will shortly see.

Next, suppose the chart contains a complete edge e whose left hand category is A. Then the Bottom-
Up Predict Rule requires the parser to add a self-loop edge at the left boundary of e for each grammar
production whose right hand side begins with category A.

(5) Bottom-Up Predict Rule

If the chart contains the complete edge
[A → α • , (i, j)]

and the grammar contains the production
B → A β

then add the self-loop edge
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[B → • A β , (i, i)]

Graphically, if the chart looks as in Figure 8.7(a), then the Bottom-Up Predict Rule tells the parser
to augment the chart as shown in Figure 8.7(b).

a. Input b. Output

Table 8.7: Bottom-Up Prediction Rule

To continue our earlier example, let’s suppose that our grammar contains the lexical productions
shown in (6a). This allows us to add three self-loop edges to the chart, as shown in (6b).

(6) a. NP → Lee | coffee
V → likes

b.

Once our chart contains an instance of the pattern shown in Figure 8.7(b), we can use the Fun-
damental Rule to add an edge where we have “moved the dot” one position to the right, as shown in
Figure 8.8 (we have omitted the self-loop edges for simplicity.)

a. Generic b. Example

Table 8.8: Fundamental Rule used in Bottom-Up Parsing

We will now be able to add new self-loop edges such as [S → • NP VP, (0, 0)] and [VP → • VP NP, (1,
1)], and use these to build more complete edges.

Using these three productions, we can parse a sentence as shown in (7).

(7) Bottom-Up Strategy
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Create an empty chart spanning the sentence.
Apply the Bottom-Up Initialization Rule to each word.
Until no more edges are added:

Apply the Bottom-Up Predict Rule everywhere it applies.
Apply the Fundamental Rule everywhere it applies.

Return all of the parse trees corresponding to the parse edges in the chart.

NLTK provides a useful interactive tool for visualizing the way in which charts are built, nltk
.draw.chart.demo(). The tool comes with a pre-defined input string and grammar, but both of
these can be readily modified with options inside the Edit menu. Figure 8.6 illustrates a window after
the grammar has been updated:

Figure 8.6: Modifying the demo() grammar

Note

To get the symbol Ò illustrated in Figure 8.6. you just have to type the keyboard
characters ’->’.

Figure 8.7 illustrates the tool interface. In order to invoke a rule, you simply click one of the green
buttons at the bottom of the window. We show the state of the chart on the input Lee likes coffee
after three applications of the Bottom-Up Initialization Rule, followed by successive applications of
the Bottom-Up Predict Rule and the Fundamental Rule.

Notice that in the topmost pane of the window, there is a partial tree showing that we have
constructed an S with an NP subject in the expectation that we will be able to find a VP.

8.3.4 Top-Down Parsing

Top-down chart parsing works in a similar way to the recursive descent parser discussed in Chapter 7,
in that it starts off with the top-level goal of finding an S. This goal is then broken into the subgoals
of trying to find constituents such as NP and VP that can be immediately dominated by S. To create a
top-down chart parser, we use the Fundamental Rule as before plus three other rules: the Top-Down
Initialization Rule, the Top-Down Expand Rule, and the Top-Down Match Rule. The Top-Down
Initialization Rule in (8) captures the fact that the root of any parse must be the start symbol S. It is
illustrated graphically in Table 8.9.

(8) Top-Down Initialization Rule

For every grammar production of the form:
S → α

add the self-loop edge:

[S → • α, (0, 0)]
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Figure 8.7: Incomplete chart for Lee likes coffee
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a. Generic b. Example

Table 8.9: Top-Down Initialization Rule

As we mentioned before, the dot on the right hand side of a production records how far our goals
have been satisfied. So in Figure 8.9(b), we are predicting that we will be able to find an NP and a
VP, but have not yet satisfied these subgoals. So how do we pursue them? In order to find an NP,
for instance, we need to invoke a production that has NP on its left hand side. The step of adding the
required edge to the chart is accomplished with the Top-Down Expand Rule (9). This tells us that if our
chart contains an incomplete edge whose dot is followed by a nonterminal B, then the parser should
add any self-loop edges licensed by the grammar whose left-hand side is B.

(9) Top-Down Expand Rule

If the chart contains the incomplete edge
[A → α • B β , (i, j)]

then for each grammar production
B → γ

add the edge

[B → • γ , (j, j)]

Thus, given a chart that looks like the one in Table 8.10(a), the Top-Down Expand Rule augments it
with the edge shown in Table 8.10(b). In terms of our running example, we now have the chart shown
in Table 8.10(c).

a. Input b. Output c. Example

Table 8.10: Top-Down Expand Rule

The Top-Down Match rule allows the predictions of the grammar to be matched against the input
string. Thus, if the chart contains an incomplete edge whose dot is followed by a terminal w, then the
parser should add an edge if the terminal corresponds to the current input symbol.

(10) Top-Down Match Rule
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If the chart contains the incomplete edge
[A → α • w j β, (i, j)],

where w j is the j th word of the input,
then add a new complete edge

[w j → • , (j, j+1)]

Graphically, the Top-Down Match rule takes us from Table 8.11(a), to Table 8.11(b).

a. Input b. Output

Table 8.11: Top-Down Match Rule

Figure 8.12(a) illustrates how our example chart after applying the Top-Down Match rule. What
rule is relevant now? The Fundamental Rule. If we remove the self-loop edges from Figure 8.12(a) for
simplicity, the Fundamental Rule gives us Figure 8.12(b).

a. Apply Top-Down Match Rule b. Apply Fundamental Rule

Table 8.12: Top-Down Example (cont)

Using these four rules, we can parse a sentence top-down as shown in (11).

(11) Top-Down Strategy

Create an empty chart spanning the sentence.
Apply the Top-Down Initialization Rule.
Until no more edges are added:

Apply the Top-Down Expand Rule everywhere it applies.
Apply the Top-Down Match Rule everywhere it applies.
Apply the Fundamental Rule everywhere it applies.

Return all of the parse trees corresponding to the parse edges in

the chart.

We encourage you to experiment with the NLTK chart parser demo, as before, in order to test out
the top-down strategy yourself.
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8.3.5 The Earley Algorithm

The Earley algorithm [Earley, 1970] is a parsing strategy that resembles the Top-Down Strategy, but
deals more efficiently with matching against the input string. Table 8.13 shows the correspondence
between the parsing rules introduced above and the rules used by the Earley algorithm.

Top-Down/Bottom-Up Earley
Top-Down Initialization Rule Top-
Down Expand Rule

Predictor Rule

Top-Down/Bottom-Up Match Rule Scanner Rule
Fundamental Rule Completer Rule

Table 8.13: Terminology for rules in the Earley algorithm

Let’s look in more detail at the Scanner Rule. Suppose the chart contains an incomplete edge with a
lexical category P immediately after the dot, the next word in the input is w, P is a part-of-speech label
for w. Then the Scanner Rule admits a new complete edge in which P dominates w. More precisely:

(12) Scanner Rule

If the chart contains the incomplete edge
[A → α • P β, (i, j)]

and w j is the jth word of the input,
and P is a valid part of speech for w j,
then add the new complete edges

[P → w j •, (j, j+1)]

[w j → •, (j, j+1)]

To illustrate, suppose the input is of the form I saw ..., and the chart already contains the edge [VP → •
V ..., (1, 1)]. Then the Scanner Rule will add to the chart the edges [V -> ’saw’, (1, 2)] and [’saw’→ •,
(1, 2)]. So in effect the Scanner Rule packages up a sequence of three rule applications: the Bottom-Up
Initialization Rule for [w → •, (j, j+1)], the Top-Down Expand Rule for [P → • w j, (j, j)], and the
Fundamental Rule for [P → w j •, (j, j+1))]. This is considerably more efficient than the Top-Down
Strategy, that adds a new edge of the form [P → • w , (j, j)] for every lexical rule P → w, regardless of
whether w can be found in the input. By contrast with Bottom-Up Initialization, however, the Earley
algorithm proceeds strictly left-to-right through the input, applying all applicable rules at that point in
the chart, and never backtracking. The NLTK chart parser demo, described above, allows the option of
parsing according to the Earley algorithm.

8.3.6 Chart Parsing in NLTK

NLTK defines a simple yet flexible chart parser, ChartParser. A new chart parser is constructed
from a grammar and a list of chart rules (also known as a strategy). These rules will be applied, in order,
until no new edges are added to the chart. In particular, ChartParser uses the algorithm shown in
(13).

(13) Until no new edges are added:
For each chart rule R:

Apply R to any applicable edges in the chart.

Return any complete parses in the chart.
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nltk.parse.chart defines two ready-made strategies: TD_STRATEGY, a basic top-down
strategy; and BU_STRATEGY, a basic bottom-up strategy. When constructing a chart parser, you can
use either of these strategies, or create your own.

The following example illustrates the use of the chart parser. We start by defining a simple grammar,
and tokenizing a sentence. We make sure it is a list (not an iterator), since we wish to use the same
tokenized sentence several times.

Listing 8.2 Chart Parsing with NLTK
grammar = nltk.parse_cfg(’’’

NP -> NNS | JJ NNS | NP CC NP
NNS -> "men" | "women" | "children" | NNS CC NNS
JJ -> "old" | "young"
CC -> "and" | "or"
’’’)

parser = nltk.ChartParser(grammar, nltk.parse.BU_STRATEGY)

>>> sent = ’old men and women’.split()
>>> for tree in parser.nbest_parse(sent):
... print tree
(NP (JJ old) (NNS (NNS men) (CC and) (NNS women)))
(NP (NP (JJ old) (NNS men)) (CC and) (NP (NNS women)))

The trace parameter can be specified when creating a parser, to turn on tracing (higher trace levels
produce more verbose output). Example 8.3 shows the trace output for parsing a sentence with the
bottom-up strategy. Notice that in this output, ’[-----]’ indicates a complete edge, ’>’ indicates
a self-loop edge, and ’[----->’ indicates an incomplete edge.

8.3.7 Exercises

1. ☼ Use the graphical chart-parser interface to experiment with different rule invocation
strategies. Come up with your own strategy that you can execute manually using the
graphical interface. Describe the steps, and report any efficiency improvements it has (e.g.
in terms of the size of the resulting chart). Do these improvements depend on the structure
of the grammar? What do you think of the prospects for significant performance boosts
from cleverer rule invocation strategies?

2. ☼ We have seen that a chart parser adds but never removes edges from a chart. Why?

3. Ñ Write a program to compare the efficiency of a top-down chart parser compared with
a recursive descent parser (Section 7.5.1). Use the same grammar and input sentences for
both. Compare their performance using the timeit module (Section 5.5.4).

8.4 Probabilistic Parsing

As we pointed out in the introduction to this chapter, dealing with ambiguity is a key challenge to broad
coverage parsers. We have shown how chart parsing can help improve the efficiency of computing
multiple parses of the same sentences. But the sheer number of parses can be just overwhelming. We
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Listing 8.3 Trace of Bottom-Up Parser
>>> parser = nltk.ChartParser(grammar, nltk.parse.BU_STRATEGY, trace=2)
>>> trees = parser.nbest_parse(sent)
|. old . men . and . women .|
Bottom Up Init Rule:
|[---------] . . .| [0:1] ’old’
|. [---------] . .| [1:2] ’men’
|. . [---------] .| [2:3] ’and’
|. . . [---------]| [3:4] ’women’
Bottom Up Predict Rule:
|> . . . .| [0:0] JJ -> * ’old’
|. > . . .| [1:1] NNS -> * ’men’
|. . > . .| [2:2] CC -> * ’and’
|. . . > .| [3:3] NNS -> * ’women’
Fundamental Rule:
|[---------] . . .| [0:1] JJ -> ’old’ *
|. [---------] . .| [1:2] NNS -> ’men’ *
|. . [---------] .| [2:3] CC -> ’and’ *
|. . . [---------]| [3:4] NNS -> ’women’ *
Bottom Up Predict Rule:
|> . . . .| [0:0] NP -> * JJ NNS
|. > . . .| [1:1] NP -> * NNS
|. > . . .| [1:1] NNS -> * NNS CC NNS
|. . . > .| [3:3] NP -> * NNS
|. . . > .| [3:3] NNS -> * NNS CC NNS
Fundamental Rule:
|[---------> . . .| [0:1] NP -> JJ * NNS
|. [---------] . .| [1:2] NP -> NNS *
|. [---------> . .| [1:2] NNS -> NNS * CC NNS
|[-------------------] . .| [0:2] NP -> JJ NNS *
|. [-------------------> .| [1:3] NNS -> NNS CC * NNS
|. . . [---------]| [3:4] NP -> NNS *
|. . . [--------->| [3:4] NNS -> NNS * CC NNS
|. [-----------------------------]| [1:4] NNS -> NNS CC NNS *
|. [-----------------------------]| [1:4] NP -> NNS *
|. [----------------------------->| [1:4] NNS -> NNS * CC NNS
|[=======================================]| [0:4] NP -> JJ NNS *
Bottom Up Predict Rule:
|. > . . .| [1:1] NP -> * NP CC NP
|> . . . .| [0:0] NP -> * NP CC NP
|. . . > .| [3:3] NP -> * NP CC NP
Fundamental Rule:
|. [---------> . .| [1:2] NP -> NP * CC NP
|[-------------------> . .| [0:2] NP -> NP * CC NP
|. . . [--------->| [3:4] NP -> NP * CC NP
|. [----------------------------->| [1:4] NP -> NP * CC NP
|[--------------------------------------->| [0:4] NP -> NP * CC NP
|. [-------------------> .| [1:3] NP -> NP CC * NP
|[-----------------------------> .| [0:3] NP -> NP CC * NP
|. [-----------------------------]| [1:4] NP -> NP CC NP *
|[=======================================]| [0:4] NP -> NP CC NP *
|. [----------------------------->| [1:4] NP -> NP * CC NP
|[--------------------------------------->| [0:4] NP -> NP * CC NP
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will show how probabilistic parsing helps to manage a large space of parses. However, before we deal
with these parsing issues, we must first back up and introduce weighted grammars.

8.4.1 Weighted Grammars

We begin by considering the verb give. This verb requires both a direct object (the thing being given)
and an indirect object (the recipient). These complements can be given in either order, as illustrated
in example (14b). In the “prepositional dative” form, the indirect object appears last, and inside a
prepositional phrase, while in the “double object” form, the indirect object comes first:

(14) a. Kim gave a bone to the dog

b. Kim gave the dog a bone

Using the Penn Treebank sample, we can examine all instances of prepositional dative and double
object constructions involving give, as shown in Listing 8.4.

We can observe a strong tendency for the shortest complement to appear first. However, this does
not account for a form like give NP: federal judges / NP: a raise, where animacy
may be playing a role. In fact there turn out to be a large number of contributing factors, as surveyed
by [Bresnan & Hay, 2006].

How can such tendencies be expressed in a conventional context free grammar? It turns out that they
cannot. However, we can address the problem by adding weights, or probabilities, to the productions
of a grammar.

A probabilistic context free grammar (or PCFG) is a context free grammar that associates
a probability with each of its productions. It generates the same set of parses for a text that the
corresponding context free grammar does, and assigns a probability to each parse. The probability
of a parse generated by a PCFG is simply the product of the probabilities of the productions used to
generate it.

The simplest way to define a PCFG is to load it from a specially formatted string consisting of a
sequence of weighted productions, where weights appear in brackets, as shown in Listing 8.5.

It is sometimes convenient to combine multiple productions into a single line, e.g. VP -> TV NP
[0.4] | IV [0.3] | DatV NP NP [0.3]. In order to ensure that the trees generated by the
grammar form a probability distribution, PCFG grammars impose the constraint that all productions
with a given left-hand side must have probabilities that sum to one. The grammar in Listing 8.5 obeys
this constraint: for S, there is only one production, with a probability of 1.0; for VP, 0.4+0.3+0.3=1.0;
and for NP, 0.8+0.2=1.0. The parse tree returned by parse() includes probabilities:

>>> viterbi_parser = nltk.ViterbiParser(grammar)
>>> print viterbi_parser.parse([’Jack’, ’saw’, ’telescopes’])
(S (NP Jack) (VP (TV saw) (NP telescopes))) (p=0.064)

The next two sections introduce two probabilistic parsing algorithms for PCFGs. The first is an
A* parser that uses Viterbi-style dynamic programming to find the single most likely parse for a given
text. Whenever it finds multiple possible parses for a subtree, it discards all but the most likely parse.
The second is a bottom-up chart parser that maintains a queue of edges, and adds them to the chart one
at a time. The ordering of this queue is based on the probabilities associated with the edges, allowing
the parser to expand more likely edges before less likely ones. Different queue orderings are used to
implement a variety of different search strategies. These algorithms are implemented in the nltk.
parse.viterbi and nltk.parse.pchart modules.
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Listing 8.4 Usage of Give and Gave in the Penn Treebank sample
def give(t):

return t.node == ’VP’ and len(t) > 2 and t[1].node == ’NP’\
and (t[2].node == ’PP-DTV’ or t[2].node == ’NP’)\
and (’give’ in t[0].leaves() or ’gave’ in t[0].leaves())

def sent(t):
return ’ ’.join(token for token in t.leaves() if token[0] not in ’*-0’)

def print_node(t, width):
output = "%s %s: %s / %s: %s" %\

(sent(t[0]), t[1].node, sent(t[1]), t[2].node, sent(t[2]))
if len(output) > width:

output = output[:width] + "..."
print output

>>> for tree in nltk.corpus.treebank.parsed_sents():
... for t in tree.subtrees(give):
... print_node(t, 72)
gave NP: the chefs / NP: a standing ovation
give NP: advertisers / NP: discounts for maintaining or increasing ad sp...
give NP: it / PP-DTV: to the politicians
gave NP: them / NP: similar help
give NP: them / NP:
give NP: only French history questions / PP-DTV: to students in a Europe...
give NP: federal judges / NP: a raise
give NP: consumers / NP: the straight scoop on the U.S. waste crisis
gave NP: Mitsui / NP: access to a high-tech medical product
give NP: Mitsubishi / NP: a window on the U.S. glass industry
give NP: much thought / PP-DTV: to the rates she was receiving , nor to ...
give NP: your Foster Savings Institution / NP: the gift of hope and free...
give NP: market operators / NP: the authority to suspend trading in futu...
gave NP: quick approval / PP-DTV: to $ 3.18 billion in supplemental appr...
give NP: the Transportation Department / NP: up to 50 days to review any...
give NP: the president / NP: such power
give NP: me / NP: the heebie-jeebies
give NP: holders / NP: the right , but not the obligation , to buy a cal...
gave NP: Mr. Thomas / NP: only a ‘‘ qualified ’’ rating , rather than ‘‘...
give NP: the president / NP: line-item veto power
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8.4.2 A* Parser

An A* Parser is a bottom-up PCFG parser that uses dynamic programming to find the single most
likely parse for a text [Klein & Manning, 2003]. It parses texts by iteratively filling in a most likely
constituents table. This table records the most likely tree for each span and node value. For example,
after parsing the sentence “I saw the man with the telescope” with the grammar cfg.toy_pcfg1,
the most likely constituents table contains the following entries (amongst others):

Span
Node

Tree Prob

[0:1] NP (NP I) 0.15
[6:7] NP (NN telescope) 0.5
[5:7] NP (NP the telescope) 0.2
[4:7] PP (PP with (NP the telescope)) 0.122
[0:4] S (S (NP I) (VP saw (NP the man))) 0.01365
[0:7] S (S (NP I) (VP saw (NP (NP the man) (PP with (NP the telescope))))) 0.0004163250

Table 8.14: Fragment of Most Likely Constituents Table

Once the table has been completed, the parser returns the entry for the most likely constituent that
spans the entire text, and whose node value is the start symbol. For this example, it would return the
entry with a span of [0:6] and a node value of “S”.

Note that we only record the most likely constituent for any given span and node value. For example,
in the table above, there are actually two possible constituents that cover the span [1:6] and have “VP”
node values.

1. “saw the man, who has the telescope”:

(VP saw
(NP (NP John) (PP with (NP the telescope))))

2. “used the telescope to see the man”:

(VP saw (NP John) (PP with (NP the telescope)))

Since the grammar we are using to parse the text indicates that the first of these tree structures has a
higher probability, the parser discards the second one.

Filling in the Most Likely Constituents Table: Because the grammar used by ViterbiParse
is a PCFG, the probability of each constituent can be calculated from the probabilities of its children.
Since a constituent’s children can never cover a larger span than the constituent itself, each entry of
the most likely constituents table depends only on entries for constituents with shorter spans (or equal
spans, in the case of unary and epsilon productions).

ViterbiParse takes advantage of this fact, and fills in the most likely constituent table incre-
mentally. It starts by filling in the entries for all constituents that span a single element of text. After it
has filled in all the table entries for constituents that span one element of text, it fills in the entries for
constituents that span two elements of text. It continues filling in the entries for constituents spanning
larger and larger portions of the text, until the entire table has been filled.
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To find the most likely constituent with a given span and node value, ViterbiParse considers
all productions that could produce that node value. For each production, it checks the most likely
constituents table for sequences of children that collectively cover the span and that have the node
values specified by the production’s right hand side. If the tree formed by applying the production
to the children has a higher probability than the current table entry, then it updates the most likely
constituents table with the new tree.

Handling Unary Productions and Epsilon Productions: A minor difficulty is introduced by
unary productions and epsilon productions: an entry of the most likely constituents table might depend
on another entry with the same span. For example, if the grammar contains the production V → VP,
then the table entries for VP depend on the entries for V with the same span. This can be a problem if
the constituents are checked in the wrong order. For example, if the parser tries to find the most likely
constituent for a VP spanning [1:3] before it finds the most likely constituents for V spanning [1:3],
then it can’t apply the V→ VP production.

To solve this problem, ViterbiParse repeatedly checks each span until it finds no new table
entries. Note that cyclic grammar productions (e.g. V→ V) will not cause this procedure to enter an
infinite loop. Since all production probabilities are less than or equal to 1, any constituent generated by
a cycle in the grammar will have a probability that is less than or equal to the original constituent; so
ViterbiParse will discard it.

In NLTK, we create Viterbi parsers using ViterbiParse(). Note that since ViterbiParse
only finds the single most likely parse, that nbest_parse() will never return more than one parse.

The trace method can be used to set the level of tracing output that is generated when parsing a
text. Trace output displays the constituents that are considered, and indicates which ones are added to
the most likely constituent table. It also indicates the likelihood for each constituent.

>>> viterbi_parser.trace(3)
>>> print viterbi_parser.parse(sent)
Inserting tokens into the most likely constituents table...

Insert: |=...| old
Insert: |.=..| men
Insert: |..=.| and
Insert: |...=| women

Finding the most likely constituents spanning 1 text elements...
Insert: |=...| JJ -> ’old’ [0.4] 0.4000000000
Insert: |.=..| NNS -> ’men’ [0.1] 0.1000000000
Insert: |.=..| NP -> NNS [0.5] 0.0500000000
Insert: |..=.| CC -> ’and’ [0.9] 0.9000000000
Insert: |...=| NNS -> ’women’ [0.2] 0.2000000000
Insert: |...=| NP -> NNS [0.5] 0.1000000000

Finding the most likely constituents spanning 2 text elements...
Insert: |==..| NP -> JJ NNS [0.3] 0.0120000000

Finding the most likely constituents spanning 3 text elements...
Insert: |.===| NP -> NP CC NP [0.2] 0.0009000000
Insert: |.===| NNS -> NNS CC NNS [0.4] 0.0072000000
Insert: |.===| NP -> NNS [0.5] 0.0036000000

Discard: |.===| NP -> NP CC NP [0.2] 0.0009000000
Discard: |.===| NP -> NP CC NP [0.2] 0.0009000000

Finding the most likely constituents spanning 4 text elements...
Insert: |====| NP -> JJ NNS [0.3] 0.0008640000

Discard: |====| NP -> NP CC NP [0.2] 0.0002160000
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Listing 8.5 Defining a Probabilistic Context Free Grammar (PCFG)
grammar = nltk.parse_pcfg("""

S -> NP VP [1.0]
VP -> TV NP [0.4]
VP -> IV [0.3]
VP -> DatV NP NP [0.3]
TV -> ’saw’ [1.0]
IV -> ’ate’ [1.0]
DatV -> ’gave’ [1.0]
NP -> ’telescopes’ [0.8]
NP -> ’Jack’ [0.2]
""")

>>> print grammar
Grammar with 9 productions (start state = S)

S -> NP VP [1.0]
VP -> TV NP [0.4]
VP -> IV [0.3]
VP -> DatV NP NP [0.3]
TV -> ’saw’ [1.0]
IV -> ’ate’ [1.0]
DatV -> ’gave’ [1.0]
NP -> ’telescopes’ [0.8]
NP -> ’Jack’ [0.2]

Listing 8.6
grammar = nltk.parse_pcfg(’’’

NP -> NNS [0.5] | JJ NNS [0.3] | NP CC NP [0.2]
NNS -> "men" [0.1] | "women" [0.2] | "children" [0.3] | NNS CC NNS [0.4]
JJ -> "old" [0.4] | "young" [0.6]
CC -> "and" [0.9] | "or" [0.1]
’’’)

viterbi_parser = nltk.ViterbiParser(grammar)

>>> sent = ’old men and women’.split()
>>> print viterbi_parser.parse(sent)
(NP (JJ old) (NNS (NNS men) (CC and) (NNS women))) (p=0.000864)
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Discard: |====| NP -> NP CC NP [0.2] 0.0002160000
(NP (JJ old) (NNS (NNS men) (CC and) (NNS women))) (p=0.000864)

8.4.3 A Bottom-Up PCFG Chart Parser

The A* parser described in the previous section finds the single most likely parse for a given text.
However, when parsers are used in the context of a larger NLP system, it is often necessary to produce
several alternative parses. In the context of an overall system, a parse that is assigned low probability
by the parser might still have the best overall probability.

For example, a probabilistic parser might decide that the most likely parse for “I saw John with
the cookie” is is the structure with the interpretation “I used my cookie to see John”; but that parse
would be assigned a low probability by a semantic system. Combining the probability estimates from
the parser and the semantic system, the parse with the interpretation “I saw John, who had my cookie”
would be given a higher overall probability.

This section describes a probabilistic bottom-up chart parser. It maintains an edge queue, and adds
these edges to the chart one at a time. The ordering of this queue is based on the probabilities associated
with the edges, and this allows the parser to insert the most probable edges first. Each time an edge
is added to the chart, it may become possible to insert new edges, so these are added to the queue.
The bottom-up chart parser continues adding the edges in the queue to the chart until enough complete
parses have been found, or until the edge queue is empty.

Like an edge in a regular chart, a probabilistic edge consists of a dotted production, a span, and a
(partial) parse tree. However, unlike ordinary charts, this time the tree is weighted with a probability.
Its probability is the product of the probability of the production that generated it and the probabilities
of its children. For example, the probability of the edge [Edge: S → NP • VP, 0:2] is the
probability of the PCFG production S→ NP VP multiplied by the probability of its NP child. (Note
that an edge’s tree only includes children for elements to the left of the edge’s dot. Thus, the edge’s
probability does not include probabilities for the constituents to the right of the edge’s dot.)

8.4.4 Bottom-Up PCFG Strategies

The edge queue is a sorted list of edges that can be added to the chart. It is initialized with a single edge
for each token in the text, with the form [Edge: token |rarr| |dot|]. As each edge from
the queue is added to the chart, it may become possible to add further edges, according to two rules:
(i) the Bottom-Up Initialization Rule can be used to add a self-loop edge whenever an edge whose dot
is in position 0 is added to the chart; or (ii) the Fundamental Rule can be used to combine a new edge
with edges already present in the chart. These additional edges are queued for addition to the chart.

By changing the sort order used by the queue, we can control the strategy that the parser
uses to explore the search space. Since there are a wide variety of reasonable search strategies,
BottomUpChartParser() does not define any sort order. Instead, different strategies are im-
plemented in subclasses of BottomUpChartParser().

Lowest Cost First: The simplest way to order the edge queue is to sort edges by the probabilities
of their associated trees (nltk.InsideChartParser()). This ordering concentrates the efforts
of the parser on those edges that are more likely to be correct analyses of their underlying tokens.

The probability of an edge’s tree provides an upper bound on the probability of any parse produced
using that edge. The probabilistic “cost” of using an edge to form a parse is one minus its tree’s
probability. Thus, inserting the edges with the most likely trees first results in a lowest-cost-first
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search strategy. Lowest-cost-first search is optimal: the first solution it finds is guaranteed to be the
best solution.

However, lowest-cost-first search can be rather inefficient. Recall that a tree’s probability is the
product of the probabilities of all the productions used to generate it. Consequently, smaller trees tend
to have higher probabilities than larger ones. Thus, lowest-cost-first search tends to work with edges
having small trees before considering edges with larger trees. Yet any complete parse of the text will
necessarily have a large tree, and so this strategy will tend to produce complete parses only once most
other edges are processed.

Let’s consider this problem from another angle. The basic shortcoming with lowest-cost-first search
is that it ignores the probability that an edge’s tree will be part of a complete parse. The parser will try
parses that are locally coherent even if they are unlikely to form part of a complete parse. Unfortunately,
it can be quite difficult to calculate the probability that a tree is part of a complete parse. However, we
can use a variety of techniques to approximate that probability.

Best-First Search: This method sorts the edge queue in descending order of the edges’ span, no
the assumption that edges having a larger span are more likely to form part of a complete parse. Thus,
LongestParse employs a best-first search strategy, where it inserts the edges that are closest to
producing complete parses before trying any other edges. Best-first search is not an optimal search
strategy: the first solution it finds is not guaranteed to be the best solution. However, it will usually find
a complete parse much more quickly than lowest-cost-first search.

Beam Search: When large grammars are used to parse a text, the edge queue can grow quite long.
The edges at the end of a large well-sorted queue are unlikely to be used. Therefore, it is reasonable to
remove (or prune) these edges from the queue. This strategy is known as beam search; it only keeps
the best partial results. The bottom-up chart parsers take an optional parameter beam_size; whenever
the edge queue grows longer than this, it is pruned. This parameter is best used in conjunction with
InsideChartParser(). Beam search reduces the space requirements for lowest-cost-first search,
by discarding edges that are not likely to be used. But beam search also loses many of lowest-cost-first
search’s more useful properties. Beam search is not optimal: it is not guaranteed to find the best
parse first. In fact, since it might prune a necessary edge, beam search is not even complete: it is not
guaranteed to return a parse if one exists.

In NLTK we can construct these parsers using InsideChartParser, LongestChartParser,
RandomChartParser.

The trace method can be used to set the level of tracing output that is generated when parsing
a text. Trace output displays edges as they are added to the chart, and shows the probability for each
edges’ tree.

>>> inside_parser.trace(3)
>>> trees = inside_parser.nbest_parse(sent)

|. . . [-]| [3:4] ’women’ [1.0]
|. . [-] .| [2:3] ’and’ [1.0]
|. [-] . .| [1:2] ’men’ [1.0]
|[-] . . .| [0:1] ’old’ [1.0]
|. . [-] .| [2:3] CC -> ’and’ * [0.9]
|. . > . .| [2:2] CC -> * ’and’ [0.9]
|[-] . . .| [0:1] JJ -> ’old’ * [0.4]
|> . . . .| [0:0] JJ -> * ’old’ [0.4]
|> . . . .| [0:0] NP -> * JJ NNS [0.3]
|. . . [-]| [3:4] NNS -> ’women’ * [0.2]
|. . . > .| [3:3] NP -> * NNS [0.5]
|. . . > .| [3:3] NNS -> * NNS CC NNS [0.4]
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Listing 8.7
inside_parser = nltk.InsideChartParser(grammar)
longest_parser = nltk.LongestChartParser(grammar)
beam_parser = nltk.InsideChartParser(grammar, beam_size=20)

>>> print inside_parser.parse(sent)
(NP (JJ old) (NNS (NNS men) (CC and) (NNS women))) (p=0.000864)
>>> for tree in inside_parser.nbest_parse(sent):
... print tree
(NP

(JJ old)
(NNS (NNS men) (CC and) (NNS women))) (p=0.000864)

(NP
(NP (JJ old) (NNS men))
(CC and)
(NP (NNS women))) (p=0.000216)

|. . . > .| [3:3] NNS -> * ’women’ [0.2]
|[-> . . .| [0:1] NP -> JJ * NNS [0.12]
|. . . [-]| [3:4] NP -> NNS * [0.1]
|. . . > .| [3:3] NP -> * NP CC NP [0.2]
|. [-] . .| [1:2] NNS -> ’men’ * [0.1]
|. > . . .| [1:1] NP -> * NNS [0.5]
|. > . . .| [1:1] NNS -> * NNS CC NNS [0.4]
|. > . . .| [1:1] NNS -> * ’men’ [0.1]
|. . . [->| [3:4] NNS -> NNS * CC NNS [0.08]
|. [-] . .| [1:2] NP -> NNS * [0.05]
|. > . . .| [1:1] NP -> * NP CC NP [0.2]
|. [-> . .| [1:2] NNS -> NNS * CC NNS [0.04]
|. [---> .| [1:3] NNS -> NNS CC * NNS [0.036]
|. . . [->| [3:4] NP -> NP * CC NP [0.02]
|[---] . .| [0:2] NP -> JJ NNS * [0.012]
|> . . . .| [0:0] NP -> * NP CC NP [0.2]
|. [-> . .| [1:2] NP -> NP * CC NP [0.01]
|. [---> .| [1:3] NP -> NP CC * NP [0.009]
|. [-----]| [1:4] NNS -> NNS CC NNS * [0.0072]
|. [-----]| [1:4] NP -> NNS * [0.0036]
|. [----->| [1:4] NNS -> NNS * CC NNS [0.00288]
|[---> . .| [0:2] NP -> NP * CC NP [0.0024]
|[-----> .| [0:3] NP -> NP CC * NP [0.00216]
|. [-----]| [1:4] NP -> NP CC NP * [0.0009]
|[=======]| [0:4] NP -> JJ NNS * [0.000864]
|. [----->| [1:4] NP -> NP * CC NP [0.00072]
|[=======]| [0:4] NP -> NP CC NP * [0.000216]
|. [----->| [1:4] NP -> NP * CC NP [0.00018]
|[------->| [0:4] NP -> NP * CC NP [0.0001728]
|[------->| [0:4] NP -> NP * CC NP [4.32e-05]
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8.5 Grammar Induction

As we have seen, PCFG productions are just like CFG productions, adorned with probabilities. So far,
we have simply specified these probabilities in the grammar. However, it is more usual to estimate
these probabilities from training data, namely a collection of parse trees or treebank.

The simplest method uses Maximum Likelihood Estimation, so called because probabilities are
chosen in order to maximize the likelihood of the training data. The probability of a production VP→
V NP PP is p(V,NP,PP | VP). We calculate this as follows:

count(VP -> V NP PP)
P(V,NP,PP | VP) = --------------------

count(VP -> ...)

Here is a simple program that induces a grammar from the first three parse trees in the Penn
Treebank corpus:

>>> from itertools import islice
>>> productions = []
>>> S = nltk.Nonterminal(’S’)
>>> for tree in nltk.corpus.treebank.parsed_sents(’wsj_0002.mrg’):
... productions += tree.productions()
>>> grammar = nltk.induce_pcfg(S, productions)
>>> for production in grammar.productions()[:10]:
... print production
CC -> ’and’ [1.0]
NNP -> ’Agnew’ [0.166666666667]
JJ -> ’industrial’ [0.2]
NP -> CD NNS [0.142857142857]
, -> ’,’ [1.0]
S -> NP-SBJ NP-PRD [0.5]
VP -> VBN S [0.5]
NNP -> ’Rudolph’ [0.166666666667]
NP -> NP PP [0.142857142857]
NNP -> ’PLC’ [0.166666666667]

8.5.1 Normal Forms

Grammar induction usually involves normalizing the grammar in various ways. NLTK trees support
binarization (Chomsky Normal Form), parent annotation, Markov order-N smoothing, and unary col-
lapsing:

>>> treebank_string = """(S (NP-SBJ (NP (QP (IN at) (JJS least) (CD nine) (NNS tenths)) )
... (PP (IN of) (NP (DT the) (NNS students) ))) (VP (VBD passed)))"""
>>> t = nltk.bracket_parse(treebank_string)
>>> print t
(S

(NP-SBJ
(NP (QP (IN at) (JJS least) (CD nine) (NNS tenths)))
(PP (IN of) (NP (DT the) (NNS students))))

(VP (VBD passed)))
>>> t.collapse_unary(collapsePOS=True)
>>> print t
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(S
(NP-SBJ

(NP+QP (IN at) (JJS least) (CD nine) (NNS tenths))
(PP (IN of) (NP (DT the) (NNS students))))

(VP+VBD passed))
>>> t.chomsky_normal_form()
>>> print t
(S

(NP-SBJ
(NP+QP

(IN at)
(NP+QP|<JJS-CD-NNS>

(JJS least)
(NP+QP|<CD-NNS> (CD nine) (NNS tenths))))

(PP (IN of) (NP (DT the) (NNS students))))
(VP+VBD passed))

These trees are shown in (15c).

(15) a.

b.

c.
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8.6 Conclusion

8.7 Further Reading

Section 13.4 of [Jurafsky & Martin, 2008] covers chart parsing, and Chapter 14 contains a more formal
presentation of statistical parsing.

� [Manning, 2003]

� [Klein & Manning, 2003]
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