
Chapter 10

Feature Based Grammar

10.1 Introduction

Imagine you are building a spoken dialogue system to answer queries about train schedules in Europe.
(1) illustrates one of the input sentences that the system should handle.

(1) Which stations does the 9.00 express from Amsterdam to Paris stop at?

The information that the customer is seeking is not exotic — the system back-end just needs to look
up the list of stations on the route, and reel them off. But you have to be careful in giving the correct
semantic interpretation to (1). You don’t want to end up with the system trying to answer (2) instead:

(2) Which station does the 9.00 express from Amsterdam terminate at?

Part of your solution might use domain knowledge to figure out that if a speaker knows that the train
is a train to Paris, then she probably isn’t asking about the terminating station in (1). But the solution
will also involve recognizing the syntactic structure of the speaker’s query. In particular, your analyzer
must recognize that there is a syntactic connection between the question phrase which stations, and the
phrase stop at at the end (1). The required interpretation is made clearer in the “quiz question version
shown in (3), where the question phrase fills the ”gap“ that is implicit in (1):

(3) The 9.00 express from Amsterdam to Paris stops at which stations?

The long-distance dependency between an initial question phrase and the gap that it semantically
connects to cannot be recognized by techniques we have presented in earlier chapters. For example,
we can’t use n-gram based language models; in practical terms, it is infeasible to observe the n-grams
for a big enough value of n. Similarly, chunking grammars only attempt to capture local patterns, and
therefore just don’t ”see“ long-distance dependencies. In this chapter, we will show how syntactic
features can be used to provide a simple yet effective technique for keeping track of long-distance
dependencies in sentences.

Features are helpful too for dealing with purely local dependencies. Consider the German questions
(4).

(4)

The only way of telling which noun phrase is the subject of kennen (’know’) and which is the
object is by looking at the agreement inflection on the verb — word order is no help to us here. Since
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verbs in German agree in number with their subjects, the plural form kennen requires Welche Studenten
as subject, while the singular form kennt requires Franz as subject. The fact that subjects and verbs
must agree in number can be expressed within the CFGs that we presented in Chapter 7. But capturing
the fact that the interpretations of germanagra and germanagrb differ is more challenging. In this
chapter, we will only examine the syntactic aspect of local dependencies such as number agreement.
In Chapter 11, we will demonstrate how feature-based grammars can be extended so that they build a
representation of meaning in parallel with a representation of syntactic structure.

Note

Remember that our program samples assume you begin your interactive session
or your program with: import nltk, re, pprint

10.2 Why Features?

We have already used the term ”feature“ a few times, without saying what it means. What’s special
about feature-based grammars? The core ideas are probably already familiar to you. To make things
concrete, let’s look at the simple phrase these dogs. It’s composed of two words. We’ll be a bit abstract
for the moment, and call these words a and b. We’ll be modest, and assume that we do not know
everything about them, but we can at least give a partial description. For example, we know that the
orthography of a is these, its phonological form is DH IY Z, its part-of-speech is DET, and its number
is plural. We can use dot notation to record these observations:

(5) a.spelling = these
a.phonology = DH IY Z
a.pos = DET

a.number = plural

Thus (5) is a partial description of a word; it lists some attributes, or features, of the word, and
declares their values. There are other attributes that we might be interested in, which have not been
specified; for example, what head the word is dependent on (using the notion of dependency discussed
in Chapter 7), and what the lemma of the word is. But this omission of some attributes is exactly what
you would expect from a partial description!

We will start off this chapter by looking more closely at the phenomenon of syntactic agreement; we
will show how agreement constraints can be expressed elegantly using features, and illustrate their use
in a simple grammar. Feature structures are a general data structure for representing information of any
kind; we will briefly look at them from a more formal point of view, and explain how to create feature
structures in Python. In the final part of the chapter, we demonstrate that the additional expressiveness
of features opens out a wide spectrum of possibilities for describing sophisticated aspects of linguistic
structure.

10.2.1 Syntactic Agreement

Consider the following contrasts:

(6) a. this dog

b. *these dog

(7) a. these dogs
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b. *this dogs

In English, nouns are usually morphologically marked as being singular or plural. The form of the
demonstrative also varies: this (singular) and these (plural). Examples (6b) and (7b) show that there
are constraints on the use of demonstratives and nouns within a noun phrase: either both are singular
or both are plural. A similar constraint holds between subjects and predicates:

(8) a. the dog runs

b. *the dog run

(9) a. the dogs run

b. *the dogs runs

Here we can see that morphological properties of the verb co-vary with syntactic properties of the
subject noun phrase. This co-variance is called agreement. If we look further at verb agreement in
English, we will see that present tense verbs typically have two inflected forms: one for third person
singular, and another for every other combination of person and number:

singular plural
1st per I run we run
2nd per you run you run
3rd per he/she/it runs they run

Table 10.1: Agreement Paradigm for English Regular Verbs

We can make the role of morphological properties a bit more explicit as illustrated in runs and run.
These representations indicate that the verb agrees with its subject in person and number. (We use ”3“
as an abbreviation for 3rd person, ”SG“ for singular and ”PL“ for plural.)

Let’s see what happens when we encode these agreement constraints in a context-free grammar.
We will begin with the simple CFG in (10).

(10) S → NP VP

NP → DET N

VP → V

DET → ’this’
N → ’dog’

V → ’runs’

Example (10) allows us to generate the sentence this dog runs; however, what we really want to do is
also generate these dogs run while blocking unwanted strings such as *this dogs run and *these dog
runs. The most straightforward approach is to add new non-terminals and productions to the grammar:

(11) S_SG → NP_SG VP_SG
S_PL → NP_PL VP_PL
NP_SG → DET_SG N_SG
NP_PL → DET_PL N_PL
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VP_SG → V_SG
VP_PL → V_PL

DET_SG → ’this’
DET_PL → ’these’
N_SG → ’dog’
N_PL → ’dogs’
V_SG → ’runs’

V_PL → ’run’

It should be clear that this grammar will do the required task, but only at the cost of duplicating our
previous set of productions.

10.2.2 Using Attributes and Constraints

We spoke informally of linguistic categories having properties; for example, that a noun has the
property of being plural. Let’s make this explicit:

(12) N[NUM=pl]

In (12), we have introduced some new notation which says that the category N has a feature called
NUM (short for ’number’) and that the value of this feature is pl (short for ’plural’). We can add similar
annotations to other categories, and use them in lexical entries:

(13) DET[NUM=sg] → ’this’
DET[NUM=pl] → ’these’
N[NUM=sg] → ’dog’
N[NUM=pl] → ’dogs’
V[NUM=sg] → ’runs’

V[NUM=pl] → ’run’

Does this help at all? So far, it looks just like a slightly more verbose alternative to what was specified
in (11). Things become more interesting when we allow variables over feature values, and use these to
state constraints:

(14) a. S → NP[NUM=?n] VP[NUM=?n]

b. NP[NUM=?n] → DET[NUM=?n] N[NUM=?n]

c. VP[NUM=?n] → V[NUM=?n]

We are using ”?n“ as a variable over values of NUM; it can be instantiated either to sg or pl. Its scope
is limited to individual productions. That is, within (14a), for example, ?n must be instantiated to the
same constant value; we can read the production as saying that whatever value NP takes for the feature
NUM, VP must take the same value.

In order to understand how these feature constraints work, it’s helpful to think about how one would
go about building a tree. Lexical productions will admit the following local trees (trees of depth one):

(15) a.
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b.

(16) a.

b.

Now (14b) says that whatever the NUM values of N and DET are, they have to be the same. Conse-
quently, (14b) will permit (15a) and (16a) to be combined into an NP as shown in (17a) and it will also
allow (15b) and (16b) to be combined, as in (17b). By contrast, (18a) and (18b) are prohibited because
the roots of their constituent local trees differ in their values for the NUM feature.

(17) a.

b.

(18) a.

b.

Production (14c) can be thought of as saying that the NUM value of the head verb has to be the
same as the NUM value of the VP mother. Combined with (14a), we derive the consequence that if the
NUM value of the subject head noun is pl, then so is the NUM value of the VP’s head verb.

(19)
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The grammar in listing 10.1 illustrates most of the ideas we have introduced so far in this chapter,
plus a couple of new ones.
Notice that a syntactic category can have more than one feature; for example, V[TENSE=pres,

NUM=pl]. In general, we can add as many features as we like.
Notice also that we have used feature variables in lexical entries as well as grammatical productions.

For example, the has been assigned the category DET[NUM=?n]. Why is this? Well, you know that
the definite article the can combine with both singular and plural nouns. One way of describing this
would be to add two lexical entries to the grammar, one each for the singular and plural versions of
the. However, a more elegant solution is to leave the NUM value underspecified and letting it agree in
number with whatever noun it combines with.

A final detail about 10.1 is the statement %start S. This a ”directive“ that tells the parser to take
S as the start symbol for the grammar.

In general, when we are trying to develop even a very small grammar, it is convenient to put the
productions in a file where they can be edited, tested and revised. We have saved 10.1 as a file named
’feat0.fcfg’ in the NLTK data distribution, and it can be accessed using nltk.data.load().
We can inspect the productions and the lexicon using the commands print g.earley_grammar
() and pprint(g.earley_lexicon()).

Next, we can tokenize a sentence and use the nbest_parse() function to invoke the Earley
chart parser.
Observe that the parser works directly with the underspecified productions given by the grammar. That
is, the Predictor rule does not attempt to compile out all admissible feature combinations before trying
to expand the non-terminals on the left hand side of a production. However, when the Scanner matches
an input word against a lexical production that has been predicted, the new edge will typically contain
fully specified features; e.g., the edge [PropN[NUM = sg] → ’Kim’, (0, 1)]. Recall from Chapter 7
that the Fundamental (or Completer) Rule in standard CFGs is used to combine an incomplete edge
that’s expecting a nonterminal B with a following, complete edge whose left hand side matches B. In
our current setting, rather than checking for a complete match, we test whether the expected category
B will unify with the left hand side B’ of a following complete edge. We will explain in more detail in
Section 10.3 how unification works; for the moment, it is enough to know that as a result of unification,
any variable values of features in B will be instantiated by constant values in the corresponding feature
structure in B’, and these instantiated values will be used in the new edge added by the Completer. This
instantiation can be seen, for example, in the edge [NP[NUM=sg] → PropN[NUM=sg] •, (0, 1)] in 10.2,
where the feature NUM has been assigned the value sg.

Finally, we can inspect the resulting parse trees (in this case, a single one).

>>> for tree in trees: print tree
(S[]

(NP[NUM=’sg’] (PropN[NUM=’sg’] Kim))
(VP[NUM=’sg’, TENSE=’pres’]

(TV[NUM=’sg’, TENSE=’pres’] likes)
(NP[NUM=’pl’] (N[NUM=’pl’] children))))

10.2.3 Terminology

So far, we have only seen feature values like sg and pl. These simple values are usually called atomic
— that is, they can’t be decomposed into subparts. A special case of atomic values are boolean values,
that is, values that just specify whether a property is true or false of a category. For example, we
might want to distinguish auxiliary verbs such as can, may, will and do with the boolean feature AUX.
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Listing 10.1 Example Feature-Based Grammar
>>> nltk.data.show_cfg(’grammars/feat0.fcfg’)
% start S
# ############################
# Grammar Rules
# ############################
# S expansion rules
S -> NP[NUM=?n] VP[NUM=?n]
# NP expansion rules
NP[NUM=?n] -> N[NUM=?n]
NP[NUM=?n] -> PropN[NUM=?n]
NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
NP[NUM=pl] -> N[NUM=pl]
# VP expansion rules
VP[TENSE=?t, NUM=?n] -> IV[TENSE=?t, NUM=?n]
VP[TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP
# ############################
# Lexical Rules
# ############################
Det[NUM=sg] -> ’this’ | ’every’
Det[NUM=pl] -> ’these’ | ’all’
Det -> ’the’ | ’some’
PropN[NUM=sg]-> ’Kim’ | ’Jody’
N[NUM=sg] -> ’dog’ | ’girl’ | ’car’ | ’child’
N[NUM=pl] -> ’dogs’ | ’girls’ | ’cars’ | ’children’
IV[TENSE=pres, NUM=sg] -> ’disappears’ | ’walks’
TV[TENSE=pres, NUM=sg] -> ’sees’ | ’likes’
IV[TENSE=pres, NUM=pl] -> ’disappear’ | ’walk’
TV[TENSE=pres, NUM=pl] -> ’see’ | ’like’
IV[TENSE=past, NUM=?n] -> ’disappeared’ | ’walked’
TV[TENSE=past, NUM=?n] -> ’saw’ | ’liked’
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Listing 10.2 Trace of Feature-Based Chart Parser
>>> tokens = ’Kim likes children’.split()
>>> from nltk.parse import load_earley
>>> cp = load_earley(’grammars/feat0.fcfg’, trace=2)
>>> trees = cp.nbest_parse(tokens)

|.K.l.c.|
Processing queue 0
Predictor |> . . .| [0:0] S[] -> * NP[NUM=?n] VP[NUM=?n] {}
Predictor |> . . .| [0:0] NP[NUM=?n] -> * N[NUM=?n] {}
Predictor |> . . .| [0:0] NP[NUM=?n] -> * PropN[NUM=?n] {}
Predictor |> . . .| [0:0] NP[NUM=?n] -> * Det[NUM=?n] N[NUM=?n] {}
Predictor |> . . .| [0:0] NP[NUM=’pl’] -> * N[NUM=’pl’] {}
Scanner |[-] . .| [0:1] ’Kim’
Scanner |[-] . .| [0:1] PropN[NUM=’sg’] -> ’Kim’ *
Processing queue 1
Completer |[-] . .| [0:1] NP[NUM=’sg’] -> PropN[NUM=’sg’] *
Completer |[-> . .| [0:1] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: ’sg’}
Predictor |. > . .| [1:1] VP[NUM=?n, TENSE=?t] -> * IV[NUM=?n, TENSE=?t] {}
Predictor |. > . .| [1:1] VP[NUM=?n, TENSE=?t] -> * TV[NUM=?n, TENSE=?t] NP[] {}
Scanner |. [-] .| [1:2] ’likes’
Scanner |. [-] .| [1:2] TV[NUM=’sg’, TENSE=’pres’] -> ’likes’ *
Processing queue 2
Completer |. [-> .| [1:2] VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] * NP[] {?n: ’sg’, ?t: ’pres’}
Predictor |. . > .| [2:2] NP[NUM=?n] -> * N[NUM=?n] {}
Predictor |. . > .| [2:2] NP[NUM=?n] -> * PropN[NUM=?n] {}
Predictor |. . > .| [2:2] NP[NUM=?n] -> * Det[NUM=?n] N[NUM=?n] {}
Predictor |. . > .| [2:2] NP[NUM=’pl’] -> * N[NUM=’pl’] {}
Scanner |. . [-]| [2:3] ’children’
Scanner |. . [-]| [2:3] N[NUM=’pl’] -> ’children’ *
Processing queue 3
Completer |. . [-]| [2:3] NP[NUM=’pl’] -> N[NUM=’pl’] *
Completer |. [---]| [1:3] VP[NUM=’sg’, TENSE=’pres’] -> TV[NUM=’sg’, TENSE=’pres’] NP[] *
Completer |[=====]| [0:3] S[] -> NP[NUM=’sg’] VP[NUM=’sg’] *
Completer |[=====]| [0:3] [INIT][] -> S[] *
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Then our lexicon for verbs could include entries such as (20). (Note that we follow the convention that
boolean features are not written F +, F − but simply +F, -F, respectively.)

(20) V[TENSE=pres, +AUX=+] → ’can’
V[TENSE=pres, +AUX=+] → ’may’

V[TENSE=pres, -AUX −] → ’walks’

V[TENSE=pres, -AUX −] → ’likes’

We have spoken informally of attaching ”feature annotations“ to syntactic categories. A more
general approach is to treat the whole category — that is, the non-terminal symbol plus the annotation
— as a bundle of features. Consider, for example, the object we have written as (21).

(21) N[NUM=sg]

The syntactic category N, as we have seen before, provides part of speech information. This informa-
tion can itself be captured as a feature value pair, using POS to represent ”part of speech“:

(22) [POS=N, NUM=sg]

In fact, we regard (22) as our ”official“ representation of a feature-based linguistic category, and (21) as
a convenient abbreviation. A bundle of feature-value pairs is called a feature structure or an attribute
value matrix (AVM). A feature structure that contains a specification for the feature POS is a linguistic
category.

In addition to atomic-valued features, we allow features whose values are themselves feature
structures. For example, we might want to group together agreement features (e.g., person, number
and gender) as a distinguished part of a category, as shown in (23).

(23)

POS N

AGR


PER 3
NUM pl
GND fem




In this case, we say that the feature AGR has a complex value.

There is no particular significance to the order of features in a feature structure. So (23) is
equivalent to (23).

(24)

AGR


NUM pl
PER 3
GND fem


POS N


Once we have the possibility of using features like AGR, we can refactor a grammar like 10.1 so

that agreement features are bundled together. A tiny grammar illustrating this point is shown in (25).

(25) S → NP[AGR=?n] VP[AGR=?n]
NP[AGR=?n] → PROPN[AGR=?n]
VP[TENSE=?t, AGR=?n] → COP[TENSE=?t, AGR=?n] Adj
COP[TENSE=pres, AGR=[NUM=sg, PER=3]] → ’is’
PROPN[AGR=[NUM=sg, PER=3]] → ’Kim’

ADJ → ’happy’
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10.2.4 Exercises

1. ☼ What constraints are required to correctly parse strings like I am happy and she is happy
but not *you is happy or *they am happy? Implement two solutions for the present tense
paradigm of the verb be in English, first taking Grammar (11) as your starting point, and
then taking Grammar (25) as the starting point.

2. ☼ Develop a variant of grammar 10.1 that uses a feature COUNT to make the distinctions
shown below:

(26) a. The boy sings.

b. *Boy sings.

(27) a. The boys sing.

b. Boys sing.

(28) a. The boys sing.

b. Boys sing.

(29) a. The water is precious.

b. Water is precious.

3. Ñ Develop a feature-based grammar that will correctly describe the following Spanish
noun phrases:

(30)

un cuadro hermos-o
INDEF.SG.MASC picture beautiful-

SG.MASC
’a beautiful picture’

(31)

un-os cuadro-s hermos-os
INDEF-PL.MASC picture-

PL
beautiful-
PL.MASC

’beautiful pictures’

(32)

un-a cortina hermos-a
INDEF-SG.FEM curtain beautiful-

SG.FEM
’a beautiful curtain’

(33)

un-as cortina-s hermos-as
INDEF-PL.FEM curtain beautiful-

PL.FEM
’beautiful curtains’

4. Ñ Develop a wrapper for the earley_parser so that a trace is only printed if the input
string fails to parse.
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10.3 Computing with Feature Structures

In this section, we will show how feature structures can be constructed and manipulated in Python. We
will also discuss the fundamental operation of unification, which allows us to combine the information
contained in two different feature structures.

10.3.1 Feature Structures in Python

Feature structures are declared with the FeatStruct() constructor. Atomic feature values can be
strings or integers.

>>> fs1 = nltk.FeatStruct(TENSE=’past’, NUM=’sg’)
>>> print fs1
[ NUM = ’sg’ ]
[ TENSE = ’past’ ]

A feature structure is actually just a kind of dictionary, and so we access its values by indexing in the
usual way. We can use our familiar syntax to assign values to features:

>>> fs1 = nltk.FeatStruct(PER=3, NUM=’pl’, GND=’fem’)
>>> print fs1[’GND’]
fem
>>> fs1[’CASE’] = ’acc’

We can also define feature structures that have complex values, as discussed earlier.

>>> fs2 = nltk.FeatStruct(POS=’N’, AGR=fs1)
>>> print fs2
[ [ CASE = ’acc’ ] ]
[ AGR = [ GND = ’fem’ ] ]
[ [ NUM = ’pl’ ] ]
[ [ PER = 3 ] ]
[ ]
[ POS = ’N’ ]
>>> print fs2[’AGR’]
[ CASE = ’acc’ ]
[ GND = ’fem’ ]
[ NUM = ’pl’ ]
[ PER = 3 ]
>>> print fs2[’AGR’][’PER’]
3

An alternative method of specifying feature structures is to use a bracketed string consisting
of feature-value pairs in the format feature=value, where values may themselves be feature
structures:

>>> nltk.FeatStruct("[POS=’N’, AGR=[PER=3, NUM=’pl’, GND=’fem’]]")
[AGR=[GND=’fem’, NUM=’pl’, PER=3], POS=’N’]

10.3.2 Feature Structures as Graphs

Feature structures are not inherently tied to linguistic objects; they are general purpose structures
for representing knowledge. For example, we could encode information about a person in a feature
structure:
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>>> person01 = nltk.FeatStruct(name=’Lee’, telno=’01 27 86 42 96’, age=33)

(34)

NAME ‘Lee’
TELNO 01 27 86 42 96
AGE 33


It is sometimes helpful to view feature structures as graphs; more specifically, directed acyclic

graphs (DAGs). (35) is equivalent to the AVM (34).

(35)

The feature names appear as labels on the directed arcs, and feature values appear as labels on the
nodes that are pointed to by the arcs.

Just as before, feature values can be complex:

(36)

When we look at such graphs, it is natural to think in terms of paths through the graph. A feature path
is a sequence of arcs that can be followed from the root node. We will represent paths as tuples. Thus,
(’address’, ’street’) is a feature path whose value in (36) is the string ”rue Pascal“.

Now let’s consider a situation where Lee has a spouse named ”Kim“, and Kim’s address is the same
as Lee’s. We might represent this as (37).

(37)
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However, rather than repeating the address information in the feature structure, we can ”share“ the
same sub-graph between different arcs:

(38)

In other words, the value of the path (’ADDRESS’) in (38) is identical to the value of the path (’
SPOUSE’, ’ADDRESS’). DAGs such as (38) are said to involve structure sharing or reentrancy.
When two paths have the same value, they are said to be equivalent.

There are a number of notations for representing reentrancy in matrix-style representations of
feature structures. We adopt the following convention: the first occurrence of a shared feature structure
is prefixed with an integer in parentheses, such as (1), and any subsequent reference to that structure
uses the notation ->(1), as shown below.
>>> fs = nltk.FeatStruct("""[NAME=’Lee’, ADDRESS=(1)[NUMBER=74, STREET=’rue Pascal’],
... SPOUSE=[NAME=’Kim’, ADDRESS->(1)]]""")
>>> print fs
[ ADDRESS = (1) [ NUMBER = 74 ] ]
[ [ STREET = ’rue Pascal’ ] ]
[ ]
[ NAME = ’Lee’ ]
[ ]
[ SPOUSE = [ ADDRESS -> (1) ] ]
[ [ NAME = ’Kim’ ] ]

This is similar to more conventional displays of AVMs, as shown in (39).

(39)


ADDRESS 1

NUMBER 74
STREET ’rue Pascal’


NAME ’Lee’

SPOUSE

ADDRESS 1

NAME ’Kim’




The bracketed integer is sometimes called a tag or a coindex. The choice of integer is not significant.

There can be any number of tags within a single feature structure.
>>> fs1 = nltk.FeatStruct("[A=’a’, B=(1)[C=’c’], D->(1), E->(1)]")

(40)

A ’a’

B 1
[
C ’c’

]
D 1

E 1
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10.3.3 Subsumption and Unification

It is standard to think of feature structures as providing partial information about some object, in the
sense that we can order feature structures according to how general they are. For example, (41a) is
more general (less specific) than (41b), which in turn is more general than (41c).

(41) a.
[
NUMBER 74

]
b.
NUMBER 74
STREET ’rue Pascal’


c.

NUMBER 74
STREET ’rue Pascal’
CITY ’Paris’


This ordering is called subsumption; a more general feature structure subsumes a less general one.

If FS 0 subsumes FS 1 (formally, we write FS 0 � FS 1), then FS 1 must have all the paths and path
equivalences of FS 0, and may have additional paths and equivalences as well. Thus, (37) subsumes
(38), since the latter has additional path equivalences.. It should be obvious that subsumption only
provides a partial ordering on feature structures, since some feature structures are incommensurable.
For example, (42) neither subsumes nor is subsumed by (41a).

(42)
[
TELNO 01 27 86 42 96

]
So we have seen that some feature structures are more specific than others. How do we go about

specializing a given feature structure? For example, we might decide that addresses should consist of
not just a street number and a street name, but also a city. That is, we might want to merge graph (43b)
with (43a) to yield (43c).

(43) a.

b.

c.
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Merging information from two feature structures is called unification and is supported by the unify
() method.

>>> fs1 = nltk.FeatStruct(NUMBER=74, STREET=’rue Pascal’)
>>> fs2 = nltk.FeatStruct(CITY=’Paris’)
>>> print fs1.unify(fs2)
[ CITY = ’Paris’ ]
[ NUMBER = 74 ]
[ STREET = ’rue Pascal’ ]

Unification is formally defined as a binary operation: FS 0 u FS 1. Unification is symmetric, so

(44) FS 0 u FS 1 = FS 1 u FS 0.

The same is true in Python:

>>> print fs2.unify(fs1)
[ CITY = ’Paris’ ]
[ NUMBER = 74 ]
[ STREET = ’rue Pascal’ ]

If we unify two feature structures which stand in the subsumption relationship, then the result of
unification is the most specific of the two:

(45) If FS 0 � FS 1, then FS 0 u FS 1 = FS 1

For example, the result of unifying (41b) with (41c) is (41c).
Unification between FS 0 and FS 1 will fail if the two feature structures share a path π, but the value

of π in FS 0 is a distinct atom from the value of π in FS 1. This is implemented by setting the result of
unification to be None.

>>> fs0 = nltk.FeatStruct(A=’a’)
>>> fs1 = nltk.FeatStruct(A=’b’)
>>> fs2 = fs0.unify(fs1)
>>> print fs2
None

Now, if we look at how unification interacts with structure-sharing, things become really interesting.
First, let’s define (37) in Python:

>>> fs0 = nltk.FeatStruct("""[NAME=Lee,
... ADDRESS=[NUMBER=74,
... STREET=’rue Pascal’],
... SPOUSE= [NAME=Kim,
... ADDRESS=[NUMBER=74,
... STREET=’rue Pascal’]]]""")

(46)


ADDRESS

NUMBER 74
STREET ‘rue Pascal’


NAME ‘Lee’

SPOUSE


ADDRESS

NUMBER 74
STREET ‘rue Pascal’


NAME ‘Kim’
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What happens when we augment Kim’s address with a specification for CITY? (Notice that fs1
includes the whole path from the root of the feature structure down to CITY.)

>>> fs1 = nltk.FeatStruct("[SPOUSE = [ADDRESS = [CITY = Paris]]]")

(47) shows the result of unifying fs0 with fs1:

(47)


ADDRESS

NUMBER 74
STREET ‘rue Pascal’


NAME ‘Lee’

SPOUSE


ADDRESS


CITY ‘Paris’
NUMBER 74
STREET ‘rue Pascal’


NAME ‘Kim’




By contrast, the result is very different if fs1 is unified with the structure-sharing version fs2 (also

shown as (38)):

>>> fs2 = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET=’rue Pascal’],
... SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")

(48)


ADDRESS 1


CITY ‘Paris’
NUMBER 74
STREET ‘rue Pascal’


NAME ‘Lee’

SPOUSE

ADDRESS 1

NAME ‘Kim’




Rather than just updating what was in effect Kim’s ”copy“ of Lee’s address, we have now updated

both their addresses at the same time. More generally, if a unification involves specializing the value of
some path π, then that unification simultaneously specializes the value of any path that is equivalent to
π.

As we have already seen, structure sharing can also be stated using variables such as ?x.

>>> fs1 = nltk.FeatStruct("[ADDRESS1=[NUMBER=74, STREET=’rue Pascal’]]")
>>> fs2 = nltk.FeatStruct("[ADDRESS1=?x, ADDRESS2=?x]")
>>> print fs2
[ ADDRESS1 = ?x ]
[ ADDRESS2 = ?x ]
>>> print fs2.unify(fs1)
[ ADDRESS1 = (1) [ NUMBER = 74 ] ]
[ [ STREET = ’rue Pascal’ ] ]
[ ]
[ ADDRESS2 -> (1) ]
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Listing 10.3
fs1 = nltk.FeatStruct("[A = (1)b, B= [C ->(1)]]")
fs2 = nltk.FeatStruct("[B = [D = d]]")
fs3 = nltk.FeatStruct("[B = [C = d]]")
fs4 = nltk.FeatStruct("[A = (1)[B = b], C->(1)]")
fs5 = nltk.FeatStruct("[A = [D = (1)e], C = [E -> (1)] ]")
fs6 = nltk.FeatStruct("[A = [D = (1)e], C = [B -> (1)] ]")
fs7 = nltk.FeatStruct("[A = [D = (1)e, F = (2)[]], C = [B -> (1), E -> (2)] ]")
fs8 = nltk.FeatStruct("[A = [B = b], C = [E = [G = e]]]")
fs9 = nltk.FeatStruct("[A = (1)[B = b], C -> (1)]")

10.3.4 Exercises

1. ☼ Write a function subsumes() which holds of two feature structures fs1 and fs2 just in
case fs1 subsumes fs2.

2. Ñ Consider the feature structures shown in Listing 10.3.

Work out on paper what the result is of the following unifications. (Hint: you might find it
useful to draw the graph structures.)

1) fs1 and fs2

2) fs1 and fs3

3) fs4 and fs5

4) fs5 and fs6

5) fs7 and fs8

6) fs7 and fs9

Check your answers using Python.

3. Ñ List two feature structures that subsume [A=?x, B=?x].

4. Ñ Ignoring structure sharing, give an informal algorithm for unifying two feature struc-
tures.

10.4 Extending a Feature-Based Grammar

10.4.1 Subcategorization

In Chapter 7, we proposed to augment our category labels to represent different kinds of verb. We
introduced labels such as IV and TV for intransitive and transitive verbs respectively. This allowed us
to write productions like the following:

[XX] NOTE: This example is somewhat broken -- nltk doesn’t support reentrance for base feature
values. (See email ~7/23/08 to the nltk-users mailing list for details.)
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(49) VP → IV

VP → TV NP

Although we know that IV and TV are two kinds of V, from a formal point of view IV has no closer
relationship with TV than it does with NP. As it stands, IV and TV are just atomic nonterminal symbols
from a CFG. This approach doesn’t allow us to say anything about the class of verbs in general. For
example, we cannot say something like ”All lexical items of category V can be marked for tense“, since
bark, say, is an item of category IV, not V. A simple solution, originally developed for a grammar
framework called Generalized Phrase Structure Grammar (GPSG), stipulates that lexical categories
may bear a SUBCAT feature whose values are integers. This is illustrated in a modified portion of 10.1,
shown in (50).

(50) VP[TENSE=?t, NUM=?n] -> V[SUBCAT=0, TENSE=?t, NUM=?n]
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=1, TENSE=?t, NUM=?n] NP
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=2, TENSE=?t, NUM=?n] Sbar

V[SUBCAT=0, TENSE=pres, NUM=sg] -> ’disappears’ | ’walks’
V[SUBCAT=1, TENSE=pres, NUM=sg] -> ’sees’ | ’likes’
V[SUBCAT=2, TENSE=pres, NUM=sg] -> ’says’ | ’claims’

V[SUBCAT=0, TENSE=pres, NUM=pl] -> ’disappear’ | ’walk’
V[SUBCAT=1, TENSE=pres, NUM=pl] -> ’see’ | ’like’
V[SUBCAT=2, TENSE=pres, NUM=pl] -> ’say’ | ’claim’

V[SUBCAT=0, TENSE=past, NUM=?n] -> ’disappeared’ | ’walked’
V[SUBCAT=1, TENSE=past, NUM=?n] -> ’saw’ | ’liked’

V[SUBCAT=2, TENSE=past, NUM=?n] -> ’said’ | ’claimed’

When we see a lexical category like V[SUBCAT 1], we can interpret the SUBCAT specification as a
pointer to the production in which V[SUBCAT 1] is introduced as the head daughter in a VP production.
By convention, there is a one-to-one correspondence between SUBCAT values and the productions that
introduce lexical heads. It’s worth noting that the choice of integer which acts as a value for SUBCAT

is completely arbitrary — we could equally well have chosen 3999, 113 and 57 as our two values in
(50). On this approach, SUBCAT can only appear on lexical categories; it makes no sense, for example,
to specify a SUBCAT value on VP.

In our third class of verbs above, we have specified a category S-BAR. This is a label for subordinate
clauses such as the complement of claim in the example You claim that you like children. We require
two further productions to analyze such sentences:

(51) S-BAR -> Comp S

Comp -> ’that’

The resulting structure is the following.
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(52)

An alternative treatment of subcategorization, due originally to a framework known as categorial
grammar, is represented in feature-based frameworks such as PATR and Head-driven Phrase Structure
Grammar. Rather than using SUBCAT values as a way of indexing productions, the SUBCAT value
directly encodes the valency of a head (the list of arguments that it can combine with). For example,
a verb like put that takes NP and PP complements (put the book on the table) might be represented as
(53):

(53) V[SUBCAT )NP, NP, PP* ]

This says that the verb can combine with three arguments. The leftmost element in the list is the subject
NP, while everything else — an NP followed by a PP in this case — comprises the subcategorized-for
complements. When a verb like put is combined with appropriate complements, the requirements
which are specified in the SUBCAT are discharged, and only a subject NP is needed. This category,
which corresponds to what is traditionally thought of as VP, might be represented as follows.

(54) V[SUBCAT )NP* ]

Finally, a sentence is a kind of verbal category that has no requirements for further arguments, and
hence has a SUBCAT whose value is the empty list. The tree (55) shows how these category assignments
combine in a parse of Kim put the book on the table.

(55)

10.4.2 Heads Revisited

We noted in the previous section that by factoring subcategorization information out of the main
category label, we could express more generalizations about properties of verbs. Another property of
this kind is the following: expressions of category V are heads of phrases of category VP. Similarly (and
more informally) Ns are heads of NPs, As (i.e., adjectives) are heads of APs, and Ps (i.e., adjectives)
are heads of PPs. Not all phrases have heads — for example, it is standard to say that coordinate
phrases (e.g., the book and the bell) lack heads — nevertheless, we would like our grammar formalism
to express the mother / head-daughter relation where it holds. Now, although it looks as though there
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is something in common between, say, V and VP, this is more of a handy convention than a real claim,
since V and VP formally have no more in common than V and DET.

X-bar syntax (cf. [Jacobs & Rosenbaum, 1970], [Jackendoff, 1977]) addresses this issue by
abstracting out the notion of phrasal level. It is usual to recognize three such levels. If N represents the
lexical level, then N’ represents the next level up, corresponding to the more traditional category NOM,
while N” represents the phrasal level, corresponding to the category NP. (The primes here replace the
typographically more demanding horizontal bars of [Jacobs & Rosenbaum, 1970]). (56) illustrates a
representative structure.

(56)

The head of the structure (56) is N while N’ and N” are called (phrasal) projections of N. N” is the
maximal projection, and N is sometimes called the zero projection. One of the central claims of X-bar
syntax is that all constituents share a structural similarity. Using X as a variable over N, V, A and P,
we say that directly subcategorized complements of the head are always placed as sisters of the lexical
head, whereas adjuncts are placed as sisters of the intermediate category, X’. Thus, the configuration
of the P” adjunct in (57) contrasts with that of the complement P” in (56).

(57)

The productions in (58) illustrate how bar levels can be encoded using feature structures.

(58) S → N[BAR=2] V[BAR=2]
N[BAR=2] → DET N[BAR=1]
N[BAR=1] → N[BAR=1] P[BAR=2]

N[BAR=1] → N[BAR=0] P[BAR=2]

10.4.3 Auxiliary Verbs and Inversion

Inverted clauses — where the order of subject and verb is switched — occur in English interrogatives
and also after ’negative’ adverbs:

(59) a. Do you like children?

b. Can Jody walk?

(60) a. Rarely do you see Kim.

b. Never have I seen this dog.
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However, we cannot place just any verb in pre-subject position:

(61) a. *Like you children?

b. *Walks Jody?

(62) a. *Rarely see you Kim.

b. *Never saw I this dog.

Verbs that can be positioned initially in inverted clauses belong to the class known as auxiliaries,
and as well as do, can and have include be, will and shall. One way of capturing such structures is with
the following production:

(63) S[+inv] -> V[+AUX] NP VP

That is, a clause marked as [+INV] consists of an auxiliary verb followed by a VP. (In a more detailed
grammar, we would need to place some constraints on the form of the VP, depending on the choice of
auxiliary.) (64) illustrates the structure of an inverted clause.

(64)

10.4.4 Unbounded Dependency Constructions

Consider the following contrasts:

(65) a. You like Jody.

b. *You like.

(66) a. You put the card into the slot.

b. *You put into the slot.

c. *You put the card.

d. *You put.

The verb like requires an NP complement, while put requires both a following NP and PP. Examples
(65) and (66) show that these complements are obligatory: omitting them leads to ungrammaticality.
Yet there are contexts in which obligatory complements can be omitted, as (67) and (68) illustrate.

(67) a. Kim knows who you like.

b. This music, you really like.
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(68) a. Which card do you put into the slot?

b. Which slot do you put the card into?

That is, an obligatory complement can be omitted if there is an appropriate filler in the sentence, such
as the question word who in (67a), the preposed topic this music in (67b), or the wh phrases which
card/slot in (68). It is common to say that sentences like (67) – (68) contain gaps where the obligatory
complements have been omitted, and these gaps are sometimes made explicit using an underscore:

(69) a. Which card do you put __ into the slot?

b. Which slot do you put the card into __?

So, a gap can occur if it is licensed by a filler. Conversely, fillers can only occur if there is an
appropriate gap elsewhere in the sentence, as shown by the following examples.

(70) a. *Kim knows who you like Jody.

b. *This music, you really like hip-hop.

(71) a. *Which card do you put this into the slot?

b. *Which slot do you put the card into this one?

The mutual co-occurence between filler and gap leads to (67) – (68) is sometimes termed a
”dependency“. One issue of considerable importance in theoretical linguistics has been the nature
of the material that can intervene between a filler and the gap that it licenses; in particular, can we
simply list a finite set of strings that separate the two? The answer is No: there is no upper bound
on the distance between filler and gap. This fact can be easily illustrated with constructions involving
sentential complements, as shown in (72).

(72) a. Who do you like __?

b. Who do you claim that you like __?

c. Who do you claim that Jody says that you like __?

Since we can have indefinitely deep recursion of sentential complements, the gap can be embedded
indefinitely far inside the whole sentence. This constellation of properties leads to the notion of an
unbounded dependency construction; that is, a filler-gap dependency where there is no upper bound
on the distance between filler and gap.

A variety of mechanisms have been suggested for handling unbounded dependencies in formal
grammars; we shall adopt an approach due to Generalized Phrase Structure Grammar that involves
something called slash categories. A slash category is something of the form Y/XP; we interpret this
as a phrase of category Y that is missing a sub-constituent of category XP. For example, S/NP is an S

that is missing an NP. The use of slash categories is illustrated in (73).
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(73)

The top part of the tree introduces the filler who (treated as an expression of category NP[+WH]) to-
gether with a corresponding gap-containing constituent S/NP. The gap information is then ”percolated“
down the tree via the VP/NP category, until it reaches the category NP/NP. At this point, the dependency
is discharged by realizing the gap information as the empty string e immediately dominated by NP/NP.

Do we need to think of slash categories as a completely new kind of object in our grammars?
Fortunately, no, we don’t — in fact, we can accommodate them within our existing feature-based
framework. We do this by treating slash as a feature, and the category to its right as a value. In
other words, our ”official“ notation for S/NP will be S[SLASH=NP]. Once we have taken this step, it
is straightforward to write a small grammar for analyzing unbounded dependency constructions. 10.4
illustrates the main principles of slash categories, and also includes productions for inverted clauses.
To simplify presentation, we have omitted any specification of tense on the verbs.

Listing 10.4 Grammar for Simple Long-distance Dependencies
>>> nltk.data.show_cfg(’grammars/feat1.fcfg’)
% start S
# ############################
# Grammar Rules
# ############################
S[-INV] -> NP S/NP
S[-INV]/?x -> NP VP/?x
S[+INV]/?x -> V[+AUX] NP VP/?x
S-BAR/?x -> Comp S[-INV]/?x
NP/NP ->
VP/?x -> V[SUBCAT=1, -AUX] NP/?x
VP/?x -> V[SUBCAT=2, -AUX] S-BAR/?x
VP/?x -> V[SUBCAT=3, +AUX] VP/?x
# ############################
# Lexical Rules
# ############################
V[SUBCAT=1, -AUX] -> ’see’ | ’like’
V[SUBCAT=2, -AUX] -> ’say’ | ’claim’
V[SUBCAT=3, +AUX] -> ’do’ | ’can’
NP[-WH] -> ’you’ | ’children’ | ’girls’
NP[+WH] -> ’who’
Comp -> ’that’

The grammar in Listing 10.4 contains one gap-introduction production, namely

(74) S[-INV] → NP S/NP

In order to percolate the slash feature correctly, we need to add slashes with variable values to both
sides of the arrow in productions that expand S, VP and NP. For example,
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(75) VP/?X → V S-BAR/?X

says that a slash value can be specified on the VP mother of a constituent if the same value is also
specified on the S-BAR daughter. Finally, (76) allows the slash information on NP to be discharged as
the empty string.

(76) NP/NP →

Using 10.4, we can parse the string who do you claim that you like into the tree shown in (77).

(77)

10.4.5 Case and Gender in German

Compared with English, German has a relatively rich morphology for agreement. For example, the
definite article in German varies with case, gender and number, as shown in Table 10.2.

Case Masc Fem Neut Plural
Nom der die das die
Gen des der des der
Dat dem der dem den
Acc den die das die

Table 10.2: Morphological Paradigm for the German definite
Article

Subjects in German take the nominative case, and most verbs govern their objects in the accusative
case. However, there are exceptions like helfen that govern the dative case:

(78) a.
Die Katze sieht den Hund
the.NOM.FEM.SG cat.3.FEM.SG see.3.SG the.ACC.MASC.SG dog.3.MASC.SG
’the cat sees the dog’

b.
*Die Katze sieht dem Hund
the.NOM.FEM.SG cat.3.FEM.SG see.3.SG the.DAT.MASC.SG dog.3.MASC.SG

c.
Die Katze hilft dem Hund
the.NOM.FEM.SG cat.3.FEM.SG help.3.SG the.DAT.MASC.SG dog.3.MASC.SG
’the cat helps the dog’
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d.
*Die Katze hilft den Hund
the.NOM.FEM.SG cat.3.FEM.SG help.3.SG the.ACC.MASC.SG dog.3.MASC.SG

The grammar 10.5 illustrates the interaction of agreement (comprising person, number and gender)
with case.

As you will see, the feature OBJCASE is used to specify the case that the verb governs on its object.

10.4.6 Exercises

1. ☼ Modify the grammar illustrated in (50) to incorporate a BAR feature for dealing with
phrasal projections.

2. ☼ Modify the German grammar in 10.5 to incorporate the treatment of subcategorization
presented in 10.4.1.

3. Ñ Extend the German grammar in 10.5 so that it can handle so-called verb-second struc-
tures like the following:

(79) Heute sieht der hund die katze.

4. � Morphological paradigms are rarely completely regular, in the sense of every cell in
the matrix having a different realization. For example, the present tense conjugation of
the lexeme WALK only has two distinct forms: walks for the 3rd person singular, and walk
for all other combinations of person and number. A successful analysis should not require
redundantly specifying that 5 out of the 6 possible morphological combinations have the
same realization. Propose and implement a method for dealing with this.

5. � So-called head features are shared between the mother and head daughter. For ex-
ample, TENSE is a head feature that is shared between a VP and its head V daughter. See
[Gazdar et al, 1985] for more details. Most of the features we have looked at are head
features — exceptions are SUBCAT and SLASH. Since the sharing of head features is
predictable, it should not need to be stated explicitly in the grammar productions. Develop
an approach that automatically accounts for this regular behavior of head features.

10.5 Summary

� The traditional categories of context-free grammar are atomic symbols. An important motivation
feature structures is to capture fine-grained distinctions that would otherwise require a massive
multiplication of atomic categories.

� By using variables over feature values, we can express constraints in grammar productions that
allow the realization of different feature specifications to be inter-dependent.

� Typically we specify fixed values of features at the lexical level and constrain the values of
features in phrases to unify with the corresponding values in their daughters.

� Feature values are either atomic or complex. A particular sub-case of atomic value is the Boolean
value, represented by convention as [+/- F].
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Listing 10.5 Example Feature-Based Grammar
>>> nltk.data.show_cfg(’grammars/german.fcfg’)
% start S
# Grammar Rules
S -> NP[CASE=nom, AGR=?a] VP[AGR=?a]
NP[CASE=?c, AGR=?a] -> PRO[CASE=?c, AGR=?a]
NP[CASE=?c, AGR=?a] -> Det[CASE=?c, AGR=?a] N[CASE=?c, AGR=?a]
VP[AGR=?a] -> IV[AGR=?a]
VP[AGR=?a] -> TV[OBJCASE=?c, AGR=?a] NP[CASE=?c]
# Lexical Rules
# Singular determiners
# masc
Det[CASE=nom, AGR=[GND=masc,PER=3,NUM=sg]] -> ’der’
Det[CASE=dat, AGR=[GND=masc,PER=3,NUM=sg]] -> ’dem’
Det[CASE=acc, AGR=[GND=masc,PER=3,NUM=sg]] -> ’den’
# fem
Det[CASE=nom, AGR=[GND=fem,PER=3,NUM=sg]] -> ’die’
Det[CASE=dat, AGR=[GND=fem,PER=3,NUM=sg]] -> ’der’
Det[CASE=acc, AGR=[GND=fem,PER=3,NUM=sg]] -> ’die’
# Plural determiners
Det[CASE=nom, AGR=[PER=3,NUM=pl]] -> ’die’
Det[CASE=dat, AGR=[PER=3,NUM=pl]] -> ’den’
Det[CASE=acc, AGR=[PER=3,NUM=pl]] -> ’die’
# Nouns
N[AGR=[GND=masc,PER=3,NUM=sg]] -> ’hund’
N[CASE=nom, AGR=[GND=masc,PER=3,NUM=pl]] -> ’hunde’
N[CASE=dat, AGR=[GND=masc,PER=3,NUM=pl]] -> ’hunden’
N[CASE=acc, AGR=[GND=masc,PER=3,NUM=pl]] -> ’hunde’
N[AGR=[GND=fem,PER=3,NUM=sg]] -> ’katze’
N[AGR=[GND=fem,PER=3,NUM=pl]] -> ’katzen’
# Pronouns
PRO[CASE=nom, AGR=[PER=1,NUM=sg]] -> ’ich’
PRO[CASE=acc, AGR=[PER=1,NUM=sg]] -> ’mich’
PRO[CASE=dat, AGR=[PER=1,NUM=sg]] -> ’mir’
PRO[CASE=nom, AGR=[PER=2,NUM=sg]] -> ’du’
PRO[CASE=nom, AGR=[PER=3,NUM=sg]] -> ’er’ | ’sie’ | ’es’
PRO[CASE=nom, AGR=[PER=1,NUM=pl]] -> ’wir’
PRO[CASE=acc, AGR=[PER=1,NUM=pl]] -> ’uns’
PRO[CASE=dat, AGR=[PER=1,NUM=pl]] -> ’uns’
PRO[CASE=nom, AGR=[PER=2,NUM=pl]] -> ’ihr’
PRO[CASE=nom, AGR=[PER=3,NUM=pl]] -> ’sie’
# Verbs
IV[AGR=[NUM=sg,PER=1]] -> ’komme’
IV[AGR=[NUM=sg,PER=2]] -> ’kommst’
IV[AGR=[NUM=sg,PER=3]] -> ’kommt’
IV[AGR=[NUM=pl, PER=1]] -> ’kommen’
IV[AGR=[NUM=pl, PER=2]] -> ’kommt’
IV[AGR=[NUM=pl, PER=3]] -> ’kommen’
TV[OBJCASE=acc, AGR=[NUM=sg,PER=1]] -> ’sehe’ | ’mag’
TV[OBJCASE=acc, AGR=[NUM=sg,PER=2]] -> ’siehst’ | ’magst’
TV[OBJCASE=acc, AGR=[NUM=sg,PER=3]] -> ’sieht’ | ’mag’
TV[OBJCASE=dat, AGR=[NUM=sg,PER=1]] -> ’folge’ | ’helfe’
TV[OBJCASE=dat, AGR=[NUM=sg,PER=2]] -> ’folgst’ | ’hilfst’
TV[OBJCASE=dat, AGR=[NUM=sg,PER=3]] -> ’folgt’ | ’hilft’
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� Two features can share a value (either atomic or complex). Structures with shared values are said
to be re-entrant. Shared values are represented by numerical indices (or tags) in AVMs.

� A path in a feature structure is a tuple of features corresponding to the labels on a sequence of
arcs from the root of the graph representation.

� Two paths are equivalent if they share a value.

� Feature structures are partially ordered by subsumption. FS 0 subsumes FS 1 when FS 0 is more
general (less informative) than FS 1.

� The unification of two structures FS 0 and FS 1, if successful, is the feature structure FS 2 that
contains the combined information of both FS 0 and FS 1.

� If unification specializes a path π in FS , then it also specializes every path π’ equivalent to π.

� We can use feature structures to build succinct analyses of a wide variety of linguistic phenomena,
including verb subcategorization, inversion constructions, unbounded dependency constructions
and case government.

10.6 Further Reading

For more examples of feature-based parsing with NLTK, please see the guides at http://nltk.org
/doc/guides/featgram.html, http://nltk.org/doc/guides/featstruct.html,
and http://nltk.org/doc/guides/grammartestsuites.html.

For an excellent introduction to the phenomenon of agreement, see [Corbett, 2006].
The earliest use of features in theoretical linguistics was designed to capture phonological proper-

ties of phonemes. For example, a sound like /b/ might be decomposed into the structure [+LABIAL,
+VOICE]. An important motivation was to capture generalizations across classes of segments; for
example, that /n/ gets realized as /m/ preceding any +LABIAL consonant. Within Chomskyan grammar,
it was standard to use atomic features for phenomena like agreement, and also to capture generalizations
across syntactic categories, by analogy with phonology. A radical expansion of the use of features in
theoretical syntax was advocated by Generalized Phrase Structure Grammar (GPSG; [Gazdar et al,
1985]), particularly in the use of features with complex values.

Coming more from the perspective of computational linguistics, [Dahl & Saint-Dizier, 1985] pro-
posed that functional aspects of language could be captured by unification of attribute-value structures,
and a similar approach was elaborated by [Grosz & Stickel, 1983] within the PATR-II formalism. Early
work in Lexical-Functional grammar (LFG; [Bresnan, 1982]) introduced the notion of an f-structure
that was primarily intended to represent the grammatical relations and predicate-argument structure
associated with a constituent structure parse. [Shieber, 1986] provides an excellent introduction to this
phase of research into feature-based grammars.

One conceptual difficulty with algebraic approaches to feature structures arose when researchers
attempted to model negation. An alternative perspective, pioneered by [Kasper & Rounds, 1986]
and [Johnson, 1988], argues that grammars involve descriptions of feature structures rather than the
structures themselves. These descriptions are combined using logical operations such as conjunction,
and negation is just the usual logical operation over feature descriptions. This description-oriented
perspective was integral to LFG from the outset (cf. [Huang & Chen, 1989], and was also adopted
by later versions of Head-Driven Phrase Structure Grammar (HPSG; [Sag & Wasow, 1999]). A
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10.6. Further Reading

comprehensive bibliography of HPSG literature can be found at http://www.cl.uni-bremen.de/HPSG-
Bib/.

Feature structures, as presented in this chapter, are unable to capture important constraints on
linguistic information. For example, there is no way of saying that the only permissible values for
NUM are sg and pl, while a specification such as [NUM=masc] is anomalous. Similarly, we cannot
say that the complex value of AGR must contain specifications for the features PER, NUM and GND,
but cannot contain a specification such as [SUBCAT=3]. Typed feature structures were developed
to remedy this deficiency. To begin with, we stipulate that feature values are always typed. In the
case of atomic values, the values just are types. For example, we would say that the value of NUM is
the type num. Moreover, num is the most general type of value for NUM. Since types are organized
hierarchically, we can be more informative by specifying the value of NUM is a subtype of num, namely
either sg or pl.

In the case of complex values, we say that feature structures are themselves typed. So for example
the value of AGR will be a feature structure of type agr. We also stipulate that all and only PER,
NUM and GND are appropriate features for a structure of type agr. A good early review of work on
typed feature structures is [Emele & Zajac, 1990]. A more comprehensive examination of the formal
foundations can be found in [Carpenter, 1992], while [Copestake, 2002] focuses on implementing an
HPSG-oriented approach to typed feature structures.

There is a copious literature on the analysis of German within feature-based grammar frameworks.
[Nerbonne, Netter, & Pollard, 1994] is a good starting point for the HPSG literature on this topic, while
[M{\”u}ller, 2002] gives a very extensive and detailed analysis of German syntax in HPSG.

Chapter 15 of [Jurafsky & Martin, 2008] discusses feature structures, the unification algorithm, and
the integration of unification into parsing algorithms.
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