
Chapter 11

Logical Semantics

11.1 Introduction

There are many NLP applications where it would be useful to have some representation of the meaning
of a natural language sentence. For instance, current search engine technology can only take us so far
in giving concise and correct answers to many questions that we might be interested in. Admittedly,
Google does a good job in answering (1a), since its first hit is (1b).

(1) a. What is the population of Saudi Arabia?

b. Saudi Arabia - Population: 26,417,599

By contrast, the result of sending (2) to Google is less helpful:

(2) Which countries border the Mediterranean?

This time, the topmost hit (and the only relevant one in the top ten) presents the relevant information as
a map of the Mediterranean basin. Since the map is an image file, it is not easy to extract the required
list of countries from the returned page.

Even if Google succeeds in finding documents which contain information relevant to our question,
there is no guarantee that it will be in a form which can be easily converted into an appropriate answer.
One reason for this is that the information may have to be inferred from more than one source. This is
likely to be the case when we seek an answer to more complex questions like (3):

(3) Which Asian countries border the Mediterranean?

Here, we would probably need to combine the results of two subqueries, namely (2) and Which
countries are in Asia?.

The example queries we have just given are based on a paper dating back to 1982 [Warren &
Pereira, 1982]; this describes a system, Chat-80, which converts natural language questions into a
semantic representation, and uses the latter to retrieve answers from a knowledge base. A knowledge
base is usually taken to be a set of sentences in some formal language; in the case of Chat-80, it is a
set of Prolog clauses. However, we can encode knowledge in a variety of formats, including relational
databases, various kinds of graph, and first-order models. In NLTK, we have used the third of these
options to re-implement a limited version of Chat-80:
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11.1. Introduction

Sentence: which Asian countries border the_Mediterranean
------------------------------
\x.((contain(asia, x) & country (x)) & border (x, mediterranean)

set([’turkey’, ’syria’, ’israel’, ’lebanon’])

As we will explain later in this chapter, a semantic representation of the form \x.P(x) denotes a set
of entities u that meet some condition P(x). We then ask our knowledge base to enumerate all the
entities in this set.

Let’s assume more generally that knowledge is available in some structured fashion, and that it
can be interrogated by a suitable query language. Then the challenge for NLP is to find a method
for converting natural language questions into the target query language. An alternative paradigm for
question answering is to take something like the pages returned by a Google query as our ’knowledge
base’ and then to carry out further analysis and processing of the textual information contained in the
returned pages to see whether it does in fact provide an answer to the question. In either case, it is
very useful to be able to build a semantic representation of questions. This NLP challenge intersects
in interesting ways with one of the key goals of linguistic theory, namely to provide a systematic
correspondence between form and meaning.

A widely adopted approach to representing meaning — or at least, some aspects of meaning —
involves translating expressions of natural language into first-order logic (FOL). From a computational
point of view, a strong argument in favor of FOL is that it strikes a reasonable balance between
expressiveness and logical tractability. On the one hand, it is flexible enough to represent many aspects
of the logical structure of natural language. On the other hand, automated theorem proving for FOL has
been well studied, and although inference in FOL is not decidable, in practice many reasoning problems
are efficiently solvable using modern theorem provers (cf. [Blackburn & Bos, 2005] for discussion).

While there are numerous subtle and difficult issues about how to translate natural language con-
structions into FOL, we will largely ignore these. The main focus of our discussion will be on a different
issue, namely building semantic representations which conform to some version of the Principle of
Compositionality. (See [Gleitman & Liberman, 1995] for this formulation.)

Principle of Compositionality: The meaning of a whole is a function of the meanings of the parts and
of the way they are syntactically combined.

There is an assumption here that the semantically relevant parts of a complex expression will be deter-
mined by a theory of syntax. Within this chapter, we will take it for granted that expressions are parsed
against a context-free grammar. However, this is not entailed by the Principle of Compositionality. To
summarize, we will be concerned with the task of systematically constructing a semantic representation
in a manner that can be smoothly integrated with the process of parsing.

The overall framework we are assuming is illustrated in Figure (4). Given a syntactic analysis of a
sentence, we can build one or more semantic representations for the sentence. Once we have a semantic
representation, we can also check whether it is true in a model.
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11. Logical Semantics Introduction to Natural Language Processing (DRAFT)

(4)

A model for a logical language is a set-theoretic construction which provides a very simplified picture
of how the world is. For example, in this case, the model should contain individuals (indicated in the
diagram by small dots) corresponding to Suzie and Fido, and it should also specify that these individuals
belong to the chase relation.

The order of sections in this chapter is not what you might expect from looking at the diagram. We
will start off in the middle of (4) by presenting a logical language that will provide us with semantic
representations in NLTK. Next, we will show how formulas in the language can be systematically
evaluated in a model. At the end, we will bring everything together and describe a simple method for
constructing semantic representations as part of the parse process in NLTK.

11.2 Propositional Logic

The language of propositional logic represents certain aspects of natural language, but at a high level
of abstraction. The only structure that is made explicit involves logical connectives; these correspond
to ’logically interesting’ expressions such as and and not. The basic expressions of the language are
propositional variables, usually written p, q, r, etc. Let A be a finite set of such variables. There is a
disjoint set of logical connectives which contains the unary operator ¬ (not), and binary operators '
(and), ( (or), → (implies) and ≡ (iff ).

The set of formulas of L prop is described inductively:

1. Every element of A is a formula of L prop.

2. If φ is a formula of L prop , then so is ¬ φ.

3. If φ and ψ are formulas, then so are (φ' ψ), (φ( ψ), (φ→ ψ) and (φ ≡ ψ).

4. Nothing else is a formula of L prop.

Within L prop, we can construct formulas such as

(5) p → q ( r

There are many sentences of English which could be taken to have the logical structure shown in
(5). Here’s an example:

(6) If it is raining, then Kim will take an umbrella or Lee will get wet.
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In order to explain the relation between (5) and (6), we need to give a key which maps between
propositional variables and English sentences:

(7) p stands for it is raining, q for Kim will take an umbrella and q for Lee will get wet.

The Boolean connectives of propositional logic are supported by the sem package, and are parsed
into various kinds of Expression. We use -, &, |, ->, <-> to stand, respectively, for not, and,
or, implies and iff. In the following example, we start off by creating a new instance lp of the NLTK
LogicParser().

>>> lp = nltk.LogicParser()
>>> lp.parse(’-(p & q)’)
<NegatedExpression -(p & q)>
>>> lp.parse(’p & q’)
<AndExpression (p & q)>
>>> lp.parse(’p | (r -> q)’)
<OrExpression (p | (r -> q))>
>>> lp.parse(’p <-> -- p’)
<IffExpression (p <-> --p)>

As the name suggests, propositional logic only studies the logical structure of formulas made up
of atomic propositions. We saw, for example, that propositional variables stood for whole clauses
in English. In order to look at how predicates combine with arguments, we need to look at a more
complex language for semantic representation, namely first-order logic. In order to show how this
new language interacts with the λ-calculus, it will be useful to introduce the notion of types into our
syntactic definition, in departure from the rather simple approach to defining the clauses of L prop.

In the general case, we interpret sentences of a logical language relative to a model, which is a very
simplified version of the world. A model for propositional logic needs to assign the values True or
False to every possible formula. We do this inductively: first, every propositional variable is assigned
a value, and then we compute the value of complex formulas by consulting the meanings of the Boolean
connectives and applying them to the values of the formula’s components. Let’s create a valuation:

>>> val1 = nltk.sem.Valuation([(’p’, True), (’q’, True), (’r’, False)])

We initialize a Valuation with a list of pairs, each of which consists of a semantic symbol and
a semantic value. The resulting object is essentially just a dictionary that maps logical expressions
(treated as strings) to appropriate values.

>>> val1[’p’]
True

The keys of the dictionary (sorted alphabetically) can also be accessed via the property symbols:

>>> val1.symbols
[’p’, ’q’, ’r’]

As we will see later, our models need to be somewhat more complicated in order to handle the more
complicated expressions discussed in the next section, so for the time being, just ignore the dom1 and
g1 variables in the following declarations.

>>> dom1 = set([])
>>> g = nltk.sem.Assignment(dom1)
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Now, let’s create a model m that uses ‘‘val1:

>>> m1 = nltk.sem.Model(dom1, val1, prop=True)

The prop=True is just a flag to say that our models are intended for propositional logic.
Every instance of Model defines appropriate truth functions for the Boolean connectives (and in

fact they are implemented as functions named AND(), IMPLIES() and so on).

>>> m1.AND
<bound method Model.AND of (set([]), {’q’: True, ’p’: True, ’r’: False})>

We can use these functions to create truth tables:

>>> for first in [True, False]:
... for second in [True, False]:
... print "%s %s => %s" % (first, second, m1.AND(first, second))
True True => True
True False => False
False True => False
False False => False

11.3 First-Order Logic

11.3.1 Predication

In first-order logic (FOL), propositions are analyzed into predicates and arguments, which takes us a
step closer to the structure of natural languages. The standard construction rules for FOL recognize
terms such as individual variables and individual constants, and predicates which take differing
numbers of arguments. For example, Adam walks might be formalized as walk(adam) and Adam
sees Betty as see(adam, betty). We will call walk a unary predicate, and see a binary predicate.
Semantically, see is usually modeled as a relation, i.e., a set of pairs, and the proposition is true in a
situation just in case the ordered pair pair )a, b* belongs to this set.

There is an alternative approach in which predication is treated as function application. In this
functional style of representation, Adam sees Betty can be formalized as see(j)(m). That is, rather
than being modeled as a relation, see denotes a function which applies to one argument to yield a
new function that is then applied to the second argument. In NLTK, we will in fact treat predications
syntactically as function applications, but we use a concrete syntax that allows them to represented as
n-ary relations.

>>> parsed = lp.parse(’see(a, b)’)
>>> parsed.argument
<IndividualVariableExpression b>
>>> parsed.function
<ApplicationExpression see(a)>
>>> parsed.function.function
<VariableExpression see>

Relations are represented semantically in NLTK in the standard set-theoretic way: as sets of tuples.
For example, let’s suppose we have a domain of discourse consisting of the individuals Adam, Betty
and Fido, where Adam is a boy, Betty is a girl and Fido is a dog. For mnemonic reasons, we use b1,
g1 and d1 as the corresponding labels in the model. We can declare the domain as follows:
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>>> dom2 = set([’b1’, ’g1’, ’d1’])

As before, we are going to initialize a valuation with a list of (symbol, value) pairs:

>>> v = [(’adam’,’b1’),(’betty’,’g1’),(’fido’,’d1’),
... (’boy’,set([’b1’])),(’girl’,set([’g1’])), (’dog’,set([’d1’])),
... (’walk’,set([’g1’, ’d1’])),
... (’see’, set([(’b1’,’g1’),(’d1’,’b1’),(’g1’,’d1’),]))]
>>> val2 = nltk.sem.Valuation(v)
>>> print val2
{’adam’: ’b1’,
’betty’: ’g1’,
’boy’: set([(’b1’,)]),
’dog’: set([(’d1’,)]),
’fido’: ’d1’,
’girl’: set([(’g1’,)]),
’see’: set([(’b1’, ’g1’), (’d1’, ’b1’), (’g1’, ’d1’)]),
’walk’: set([(’d1’,), (’g1’,)])}

So according to this valuation, the value of see is a set of tuples such that Adam sees Betty, Fido
sees Adam, and Betty sees Fido.

You may have noticed that our unary predicates (i.e, boy, girl, dog) also come out represented
as sets of singleton tuples, rather than just sets of individuals. This is a convenience which allows us
to have a uniform treatment of relations of any arity. In order to combine a unary relation with an
argument, we use the function app(). If the input relation is unary, then app() returns a Boolean
value; if the input is n-ary, for n > 1, then app() returns an n-1-ary relation.

>>> from nltk.sem import app
>>> boy = val2[’boy’]
>>> app(boy, ’b1’)
True
>>> app(boy, ’g1’)
False
>>> see = val2[’see’]
>>> app(see, ’g1’)
set([(’d1’,)])
>>> app(app(see, ’g1’), ’d1’)
True

11.3.2 Individual Variables and Assignments

In FOL, arguments of predicates can also be individual variables such as x, y and z. These can be
thought of as similar to personal pronouns like he, she and it, in that we need to know about the
context of use in order to figure out their denotation. In our models, the counterpart of a context of
use is a variable Assignment. This is a mapping from individual variables to entities in the domain.
Assignments are created using the Assignment constructor, which also takes the model’s domain of
discourse as a parameter. We are not required to actually enter any bindings, but if we do, they are in a
(variable, value) format similar to what we say earlier for valuations.

>>> g = nltk.sem.Assignment(dom2, [(’x’, ’b1’), (’y’, ’d1’)])
>>> g
{’y’: ’d1’, ’x’: ’b1’}
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In addition, there is a print() format for assignments which uses a notation closer to that in logic
textbooks:

>>> print g
g[d1/y][b1/x]

Let’s now look at how we can evaluate an atomic formula of FOL. First, we create a model, then
we use the evaluate() method to compute the truth value.

>>> m2 = nltk.sem.Model(dom2, val2)
>>> m2.evaluate(’see(betty, y)’, g)
True

What’s happening here? Essentially, we are making a call to app(app(see, ’g1’), ’d1’)
just as in our earlier example. However, when the interpretation function encounters the variable ’y’,
rather than checking for a value in val2, it asks the variable assignment g to come up with a value:

>>> g[’y’]
’d1’

Since we already know that ’b1’ and ’g1’ stand in the see relation, the value True is what we
expected. In this case, we can say that assignment g satisfies the formula ’see(adam, y)’. By contrast,
the following formula evaluates to False relative to g— check that you see why this is.

>>> m2.evaluate(’see(x, y)’, g)
False

In our approach (though not in standard first-order logic), variable assignments are partial. For
example, g says nothing about any variables apart from ’x’ and ’y’’’. The method ‘‘
purge() clears all bindings from an assignment.

>>> g.purge()
>>> g
{}

If we now try to evaluate a formula such as ’see(adam, y)’ relative to g, it is like trying to interpret a
sentence containing a she when we don’t know what she refers to. In this case, the evaluation function
fails to deliver a truth value.

>>> m2.evaluate(’see(adam, y)’, g)
’Undefined’

11.3.3 Quantification and Scope

First-order logic standardly offers us two quantifiers, all (or every) and some. These are formally
written as � and , respectively. At the syntactic level, quantifiers are used to bind individual variables
like ’x’ and ’y’. The following two sets of examples show a simple English example, a logical
representation, and the encoding which is accepted by the NLTK logic module.

(8) a. Every dog barks.

b. �x.(dog(x) → bark(x))

c. all x.(dog(x) -> bark(x))
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(9) a. Some girl walks.

b. x.(girl(x) ' walk(x))

c. some x.(girl(x) & walk(x))

In the (9c), the quantifier some binds both occurences of the variable ’x’. As a result, (9c) is said
to be a closed formula. By contrast, if we look at the body of (9c), the variables are unbound:

(10) girl(x) & walk(x)

(10) is said to be an open formula. As we saw earlier, the interpretation of open formulas depends
on the particular variable assignment that we are using.

One of the crucial insights of modern logic is that the notion of variable satisfaction can be used to
provide an interpretation to quantified formulas. Let’s continue to use (9c) as an example. When is it
true? Let’s think about all the individuals in our domain, i.e., in dom2. We want to check whether any
of these individuals have the property of being a girl and walking. In other words, we want to know if
there is some u in dom2 such that g[u/x] satisfies the open formula (10). Consider the following:

>>> m2.evaluate(’some x.(girl(x) & walk(x))’, g)
True

evaluate() returns True here because there is some u in dom2 such that (10) is satisfied by
an assigment which binds ’x’ to u. In fact, g1 is such a u:

>>> m2.evaluate(’girl(x) & walk(x)’, g.add(’x’, ’g1’))
True

One useful tool offered by NLTK is the satisfiers() method. This lists all the individuals that
satisfy an open formula. The method parameters are a parsed formula, a variable, and an assignment.
Here are a few examples:

>>> fmla1 = lp.parse(’girl(x) | boy(x)’)
>>> m2.satisfiers(fmla1, ’x’, g)
set([’b1’, ’g1’])
>>> fmla2 = lp.parse(’girl(x) -> walk(x)’)
>>> m2.satisfiers(fmla2, ’x’, g)
set([’b1’, ’g1’, ’d1’])
>>> fmla3 = lp.parse(’walk(x) -> girl(x)’)
>>> m2.satisfiers(fmla3, ’x’, g)
set([’b1’, ’g1’])

It’s useful to think about why fmla2 and fmla3 receive the values they do. In particular, recall
the truth conditions for -> (encoded via the function IMPLIES() in every model):

>>> for first in [True, False]:
... for second in [True, False]:
... print "%s %s => %s" % (first, second, m2.IMPLIES(first, second))
True True => True
True False => False
False True => True
False False => True

This means that fmla2 is equivalent to this:
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(11) - girl(x) | walk(x)

That is, (11) is satisfied by something which either isn’t a girl or walks. Since neither b1 (Adam)
nor d1 (Fido) are girls, according to model m2, they both satisfy the whole formula. And of course g1
satisfies the formula because g1 satisfies both disjuncts. Now, since every member of the domain of
discourse satisfies fmla2, the corresponding universally quantified formula is also true.

>>> m2.evaluate(’all x.(girl(x) -> walk(x))’, g)
True

In other words, a universally quantified formula �x.φ is true with respect to g just in case for every
u, φ is true with respect to g[u/x].

11.3.4 Quantificatier Scope Ambiguity

What happens when we want to give a formal representation of a sentence with two quantifiers, such
as the following?

(12) Every girl chases a dog.

There are (at least) two ways of expressing (12) in FOL:

(13) a. �x.((girl x) → y.((dog y) ' (chase y x)))

b. y.((dog y) '�x.((every x) → (chase y x)))

Can we use both of these? Then answer is Yes, but they have different meanings. (13b) is logically
stronger than (13a): it claims that there is a unique dog, say Fido, which is chased by every girl. (13a),
on the other hand, just requires that for every girl g, we can find some dog which d chases; but this
could be a different dog in each case. We distinguish between (13a) and (13b) in terms of the scope
of the quantifiers. In the first, � has wider scope than , while in (13b), the scope ordering is reversed.
So now we have two ways of representing the meaning of (12), and they are both quite legitimate. In
other words, we are claiming that (12) is ambiguous with respect to quantifier scope, and the formulas
in (13) give us a formal means of making the two readings explicit. However, we are not just interested
in associating two distinct representations with (12). We also want to show in detail how the two
representations lead to different conditions for truth in a formal model.
In order to examine the ambiguity more closely, let’s fix our valuation as follows:

>>> v3 = [(’john’, ’b1’),
... (’mary’, ’g1’),
... (’suzie’, ’g2’),
... (’fido’, ’d1’),
... (’tess’, ’d2’),
... (’noosa’, ’n’),
... (’girl’, set([’g1’, ’g2’])),
... (’boy’, set([’b1’, ’b2’])),
... (’dog’, set([’d1’, ’d2’])),
... (’bark’, set([’d1’, ’d2’])),
... (’walk’, set([’b1’, ’g2’, ’d1’])),
... (’chase’, set([(’b1’, ’g1’), (’b2’, ’g1’), (’g1’, ’d1’), (’g2’, ’d2’)])),
... (’see’, set([(’b1’, ’g1’), (’b2’, ’d2’), (’g1’, ’b1’),
... (’d2’, ’b1’), (’g2’, ’n’)])),
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... (’in’, set([(’b1’, ’n’), (’b2’, ’n’), (’d2’, ’n’)])),

... (’with’, set([(’b1’, ’g1’), (’g1’, ’b1’), (’d1’, ’b1’), (’b1’, ’d1’)]))]
>>> val3 = nltk.sem.Valuation(v3)

We can use the graph in (14) to visualize the chase relation.

(14)

In (14), an arrow between two individuals x and y indicates that x chases y. So b1 and b2 both
chase g1, while g1 chases d1 and g2 chases d2. In this model, formula scope2a_ above is true but
scope2b_ is false. One way of exploring these results is by using the satisfiers() method of
Model objects.

>>> dom3 = val3.domain
>>> m3 = nltk.sem.Model(dom3, val3)
>>> g = nltk.sem.Assignment(dom3)
>>> fmla1 = lp.parse(’(girl(x) -> exists y.(dog(y) and chase(x, y)))’)
>>> m3.satisfiers(fmla1, ’x’, g)
set([’g2’, ’g1’, ’n’, ’b1’, ’b2’, ’d2’, ’d1’])
>>>

This gives us the set of individuals that can be assigned as the value of x in fmla1. In particular,
every girl is included in this set. By contrast, consider the formula fmla2 below; this has no satisfiers
for the variable y.

>>> fmla2 = lp.parse(’(dog(y) & all x.(girl(x) -> chase(x, y)))’)
>>> m3.satisfiers(fmla2, ’y’, g)
set([])
>>>

That is, there is no dog that is chased by both g1 and g2. Taking a slightly different open formula,
fmla3, we can verify that there is a girl, namely g1, who is chased by every boy.

>>> fmla3 = lp.parse(’(girl(y) & all x.(boy(x) -> chase(x, y)))’)
>>> m3.satisfiers(fmla3, ’y’, g)
set([’g1’])

11.4 Evaluating English Sentences

11.4.1 Using the sem Feature

Until now, we have taken for granted that we have some appropriate logical formulas to interpret.
However, ideally we would like to derive these formulas from natural language input. One relatively
easy way of achieving this goal is to build on the grammar framework developed in Chapter 10. Our
first step is to introduce a new feature, sem. Because values of sem generally need to be treated
differently from other feature values, we use the convention of enclosing them in angle brackets. (15)
illustrates a first approximation to the kind of analyses we would like to build.
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(15)

Thus, the sem value at the root node shows a semantic representation for the whole sentence, while
the sem values at lower nodes show semantic representations for constituents of the sentence. So
far, so good, but how do we write grammar rules which will give us this kind of result? To be more
specific, suppose we have a NP and VP constituents with appropriate values for their sem nodes? If
you reflect on the machinery that was introduced in discussing the λ calculus, you might guess that
function application will be central to composing semantic values. You will also remember that our
feature-based grammar framework gives us the means to refer to variable values. Putting this together,
we can postulate a rule like (16) for building the sem value of an S. (Observe that in the case where
the value of sem is a variable, we omit the angle brackets.)

(16) S[sem = <app(?vp,?subj)>] -> NP[sem=?subj] VP[sem=?vp]

(16) tells us that given some sem value ?subj for the subject NP and some sem value ?vp for the
VP, the sem value of the S mother is constructed by applying ?vp as a functor to ?np. From this, we
can conclude that ?vp has to denote a function which has the denotation of ?np in its domain; in fact,
we are going to assume that ?vp denotes a curryed characteristic function on individuals. (16) is a nice
example of building semantics using the principle of compositionality: that is, the principle that the
semantics of a complex expression is a function of the semantics of its parts.

To complete the grammar is very straightforward; all we require are the rules shown in (17).

(17) VP[sem=?v] -> IV[sem=?v]
NP[sem=<jane>] -> ’Jane’

IV[sem=<walk>] -> ’walks’

The VP rule says that the mother’s semantics is the same as the head daughter’s. The two lexical rules
just introduce non-logical constants to serve as the semantic values of Jane and walks respectively.
This grammar can be parsed using the chart parser in parse.featurechart, and the trace in (18)
shows how semantic values are derived by feature unification in the process of building a parse tree.

(18)
Predictor |> . .| S[sem=’(?vp ?subj)’] -> * NP[sem=?subj] VP[sem=?vp]
Scanner |[-] .| [0:1] ’Jane’
Completer |[-> .| S[sem=’(?vp john)’] -> NP[sem=’john’] * VP[sem=?vp]
Predictor |. > .| VP[sem=?v] -> * IV[sem=?v]
Scanner |. [-]| [1:2] ’walks’
Completer |. [-]| VP[sem=’walk’] -> IV[sem=’walk’] *
Completer |[===]| S[sem=’(walk john)’] -> NP[sem=’john’] VP[sem=’walk’] *
Completer |[===]| [INIT] -> S *

11.4.2 Quantified NPs

You might be thinking this is all too easy — surely there is a bit more to building compositional
semantics. What about quantifiers, for instance? Right, this is a crucial issue. For example, we want
(19a) to be given a semantic representation like (19b). How can this be accomplished?
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(19) a. A dog barks.

b. ’exists x.(dog(x) & (bark(x))’

Let’s make the assumption that our only operation for building complex semantic representations is
function application. Then our problem is this: how do we give a semantic representation to quantified
NPs such as a dog so that they can be combined with something like ’walk’ to give a result like
(19b)? As a first step, let’s make the subject’s sem value act as the functor rather than the argument.
Now we are looking for way of instantiating ?np so that (20a) is equivalent to (20b).

(20) a. [sem=<bark(?np)>]

b. [sem=<exist x.(dog(x) & bark(x))>]

This is where λ abstraction comes to the rescue; doesn’t (20) look a bit reminiscent of carrying out
β-reduction in the λ-calculus? In other words, we want a λ term M to replace ’?np’ so that applying
M to ’bark’ yields (19b). To do this, we replace the occurence of ’bark’ in (19b) by a variable ’P
’, and bind the variable with λ, as shown in (21).

(21) ’\P.exists x.(dog(x) & P(x))’

As a point of interest, we have used a different style of variable in (21), that is ’P’ rather than ’x’ or
’y’. This is to signal that we are abstracting over a different kind of thing — not an individual, but a
function from Ind to Bool. So the type of (21) as a whole is ((Ind → Bool) → Bool). We will take this
to be the type of NPs in general. To illustrate further, a universally quantified NP will look like (22).

(22) ’\P.all x.(dog(x) -> P(x))’

We are pretty much done now, except that we also want to carry out a further abstraction plus
application for the process of combining the semantics of the determiner a with the semantics of dog.
Applying (21) as a functor to ’bark’ gives us ’(\P.exists x.(dog (x) & P(x)) bark)
’, and carrying out β-reduction yields just what we wanted, namely (19b).

NLTK provides some utilities to make it easier to derive and inspect semantic interpretations.
text_interpret() is intended for batch interpretation of a list of input sentences. It builds a
dictionary d where for each sentence sent in the input, d[sent] is a list of paired trees and semantic
representations for sent. The value is a list, since sent may be syntactically ambiguous; in the
following example, we just look at the first member of the list.
>>> grammar = nltk.data.load(’grammars/sem1.fcfg’)
>>> result = nltk.sem.text_interpret([’a dog barks’], grammar, beta_reduce=0)
>>> (syntree, semrep) = result[’a dog barks’][0]
>>> print syntree
(S[sem=<exists x.(dog(x) & bark(x))>]

(NP[sem=<\P.exists x.(dog(x) & P(x))>]
(Det[sem=<\Q.\P.exists x.(Q(x) & P(x))>] a)
(N[sem=<dog>] dog))

(VP[sem=<\x.bark(x)>] (IV[sem=<\x.bark(x)>] barks)))

By default, the semantic representation that is produced by text_interpret() has already under-
gone β-reduction, but in the above example, we have overridden this. Subsequent reduction is possible
using the simplify() method, and Boolean connectives can be placed in infix position with the
infixify() method.
>>> print semrep.simplify()
exists x.(dog(x) & bark(x))
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11.4.3 Transitive Verbs

Our next challenge is to deal with sentences containing transitive verbs, such as (23).

(23) Suzie chases a dog.

The output semantics that we want to build is shown in (24).

(24) ’exists x.(dog(x) & chase(suzie, x))’

Let’s look at how we can use λ-abstraction to get this result. A significant constraint on possible
solutions is to require that the semantic representation of a dog be independent of whether the NP acts
as subject or object of the sentence. In other words, we want to get (24) as our output while sticking to
(21) as the NP semantics. A second constraint is that VPs should have a uniform type of interpretation
regardless of whether they consist of just an intransitive verb or a transitive verb plus object. More
specifically, we stipulate that VPs always denote characteristic functions on individuals. Given these
constraints, here’s a semantic representation for chases a dog which does the trick.

(25) ’\y.exists x.(dog(x) & chase(y, x))’

Think of (25) as the property of being a y such that for some dog x, y chases x; or more colloquially,
being a y who chases a dog. Our task now resolves to designing a semantic representation for chases
which can combine via app with (21) so as to allow (25) to be derived.

Let’s carry out a kind of inverse β-reduction on (25), giving rise to (26).
Let Then we are part way to the solution if we can derive (26), where ’X’ is applied to ’\z.

chase(y, z)’.

(26) ’(\P.exists x.(dog(x) and P(x)) \z.chase(y, z))’

(26) may be slightly hard to read at first; you need to see that it involves applying the quantified NP

representation from (21) to ’\z.(chase z y))’. (26) is of course equivalent to (25).
Now let’s replace the functor in (26) by a variable ’X’ of the same type as an NP; that is, of type

((Ind → Bool) → Bool).

(27) ’X(\z.chase(y, z))’

The representation of a transitive verb will have to apply to an argument of the type of ’X’ to yield a
functor of the type of VPs, that is, of type (Ind → Bool). We can ensure this by abstracting over both
the ’X’ variable in (27) and also the subject variable ’y’. So the full solution is reached by giving
chases the semantic representation shown in (28).

(28) ’\X y.X(\x.chase(y, x))’

If (28) is applied to (21), the result after β-reduction is equivalent to (25), which is what we wanted all
along:

(29) ’(\X y.(X \x.(chase(y, x)) \P.exists x.(dog(x) & P(x))’

�
’(\y.(\P.exists x.(dog(x) & P(x)) \x.chase(y, x))’

�
’\y.(exists x.(dog(x) & chase(y, x)))’
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In order to build a semantic representation for a sentence, we also need to combine in the semantics
of the subject NP. If the latter is a quantified expression like every girl, everything proceeds in the same
way as we showed for a dog barks earlier on; the subject is translated as a functor which is applied
to the semantic representation of the VP. However, we now seem to have created another problem for
ourselves with proper names. So far, these have been treated semantically as individual constants, and
these cannot be applied as functors to expressions like (25). Consequently, we need to come up with a
different semantic representation for them. What we do in this case is re-interpret proper names so that
they too are functors, like quantified NPs. (30) shows the required λ expression for Suzie.

(30) ’\P.P(suzie)’

(30) denotes the characteristic function corresponding to the set of all properties which are true of
Suzie. Converting from an individual constant to an expression like (28) is known as type raising, and
allows us to flip functors with arguments. That is, type raising means that we can replace a Boolean-
valued application such as (f a) with an equivalent application (λP.(P a) f).

One important limitation of the approach we have presented here is that it does not attempt to deal
with scope ambiguity. Instead, quantifier scope ordering directly reflects scope in the parse tree. As a
result, a sentence like (12), repeated here, will always be translated as (32a), not (32b).

(31) Every girl chases a dog.

(32) a. ’all x.((girl x) implies some y. ((dog y) and (chase y x)))’

b. ’some y. (dog y) and all x. ((girl x) implies (chase y x)))
’

This limitation can be overcome, for example using the hole semantics described in [Blackburn & Bos,
2005], but discussing the details would take us outside the scope of the current chapter.

Now that we have looked at some slightly more complex constructions, we can evaluate them in
a model. In the following example, we derive two parses for the sentence every boy chases a girl in
Noosa, and evaluate each of the corresponding semantic representations in the model model0.py
which we have imported.

>>> grammar = nltk.data.load(’grammars/sem2.fcfg’)
>>> val4 = nltk.data.load(’grammars/valuation1.val’)
>>> dom4 = val4.domain
>>> m4 = nltk.sem.Model(dom4, val4)
>>> g = nltk.sem.Assignment(dom4)
>>> sent = ’every boy chases a girl in Noosa’
>>> result = nltk.sem.text_evaluate([sent], grammar, m4, g)
>>> for (syntree, semrep, value) in result[sent]:
... print "’%s’ is %s in Model m\n" % (semrep, value)
’all x.(boy(x) -> (exists z2.(girl(z2) & chase(x,z2)) & in(x,noosa)))’ is True in Model m

’all x.(boy(x) -> (exists z2.(girl(z2) & chase(x,z2)) & in(x,noosa)))’ is True in Model m

’all x.(boy(x) -> exists z3.((girl(z3) & in(z3,noosa)) & chase(x,z3)))’ is False in Model m

’all x.(boy(x) -> exists z3.((girl(z3) & in(z3,noosa)) & chase(x,z3)))’ is False in Model m
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11.5 Case Study: Extracting Valuations from Chat-80

Building Valuation objects by hand becomes rather tedious once we consider larger examples.
This raises the question of whether the relation data in a Valuation could be extracted from some
pre-existing source. The corpora.chat80 module provides an example of extracting data from the
Chat-80 Prolog knowledge base (which included as part of the NLTK corpora distribution).

Chat-80 data is organized into collections of clauses, where each collection functions as a table in a
relational database. The predicate of the clause provides the name of the table; the first element of the
tuple acts as the ’key’; and subsequent elements are further columns in the table.

In general, the name of the table provides a label for a unary relation whose extension is all the
keys. For example, the table in cities.pl contains triples such as (33).

(33) ’city(athens,greece,1368).’

Here, ’athens’ is the key, and will be mapped to a member of the unary relation city.
The other two columns in the table are mapped to binary relations, where the first argument of the

relation is filled by the table key, and the second argument is filled by the data in the relevant column.
Thus, in the city table illustrated by the tuple in (33), the data from the third column is extracted into
a binary predicate population_of, whose extension is a set of pairs such as ’(athens, 1368)’.

In order to encapsulate the results of the extraction, a class of Concepts is introduced. A
Concept object has a number of attributes, in particular a prefLabel and extension, which
make it easier to inspect the output of the extraction. The extension of a Concept object is
incorporated into a Valuation object.

As well as deriving unary and binary relations from the Chat-80 data, we also create a set of
individual constants, one for each entity in the domain. The individual constants are string-identical
to the entities. For example, given a data item such as ’zloty’, we add to the valuation a pair (’
zloty’, ’zloty’). In order to parse English sentences that refer to these entities, we also create
a lexical item such as the following for each individual constant:

(34) PropN[num=sg, sem=<\P.P(zloty)>] -> ’Zloty’

The chat80 module can be found in the corpora package. The attribute chat80.items
gives us a list of Chat-80 relations:

>>> from nltk.corpus import chat80
>>> chat80.items
(’borders’, ’circle_of_lat’, ’circle_of_long’, ’city’, ...)

The concepts() method shows the list of Concepts that can be extracted from a chat80
relation, and we can then inspect their extensions.

>>> concepts = chat80.concepts(’city’)
>>> concepts
[Concept(’city’), Concept(’country_of’), Concept(’population_of’)]
>>> rel = concepts[1].extension
>>> list(rel)[:5]
[(’chungking’, ’china’), (’karachi’, ’pakistan’),
(’singapore_city’, ’singapore’), (’athens’, ’greece’),
(’birmingham’, ’united_kingdom’)]

In order to convert such an extension into a valuation, we use the make_valuation() method;
setting read=True creates and returns a new Valuation object which contains the results.
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>>> val = nltk.corpus.chat80.make_valuation(concepts, read=True)
>>> val[’city’][’calcutta’]
True
>>> val[’country_of’][’india’]
{’hyderabad’: True, ’delhi’: True, ’bombay’: True,
’madras’: True, ’calcutta’: True}
>>> dom = val.domain
>>> g = nltk.sem.Assignment(dom)
>>> m = nltk.sem.Model(dom, val)
>>> m.evaluate(r’\x .population_of(jakarta, x)’, g)
{’533’: True}

Note

Population figures are given in thousands. Bear in mind that the geographical
data used in these examples dates back at least to the 1980s, and was already
somewhat out of date at the point when [Warren & Pereira, 1982] was published.

11.6 Summary

� Semantic Representations (SRs) for English are constructed using a language based on the λ-
calculus, together with Boolean connectives, equality, and first-order quantifiers.

� β-reduction in the λ-calculus corresponds semantically to application of a function to an argu-
ment. Syntactically, it involves replacing a variable bound by λ in the functor with the expression
that provides the argument in the function application.

� If two λ-abstracts differ only in the label of the variable bound by λ, they are said to be α
equivalents. Relabeling a variable bound by a λ is called α-conversion.

� Currying of a binary function turns it into a unary function whose value is again a unary function.

� FSRL has both a syntax and a semantics. The semantics is determined by recursively evaluating
expressions in a model.

� A key part of constructing a model lies in building a valuation which assigns interpretations
to non-logical constants. These are interpreted as either curried characteristic functions or as
individual constants.

� The interpretation of Boolean connectives is handled by the model; these are interpreted as
characteristic functions.

� An open expression is an expression containing one or more free variables. Open expressions
only receive an interpretation when their free variables receive values from a variable assignment.

� Quantifiers are interpreted by constructing, for a formula φ[x] open in variable x, the set of
individuals which make φ[x] true when an assignment g assigns them as the value of x. The
quantifier then places constraints on that set.

� A closed expression is one that has no free variables; that is, the variables are all bound. A closed
sentence is true or false with respect to all variable assignments.
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� Given a formula with two nested quantifiers Q1 and Q2, the outermost quantifier Q1 is said to
have wide scope (or scope over Q2). English sentences are frequently ambiguous with respect to
the scope of the quantifiers they contain.

� English sentences can be associated with an SR by treating sem as a feature. The sem value
of a complex expressions typically involves functional application of the sem values of the
component expressions.

� Model valuations need not be built by hand, but can also be extracted from relational tables, as
in the Chat-80 example.

11.7 Exercises

1. Ñ Modify the sem.evaluate code so that it will give a helpful error message if an
expression is not in the domain of a model’s valuation function.

2. � Specify and implement a typed functional language with quantifiers, Boolean connec-
tives and equality. Modify sem.evaluate to interpret expressions of this language.

3. � Extend the chat80 code so that it will extract data from a relational database using
SQL queries.

4. � Taking [WarrenPereira1982] as a starting point, develop a technique for converting a
natural language query into a form that can be evaluated more efficiently in a model. For
example, given a query of the form ’(P(x) & Q(x)’, convert it to ’(Q(x) & P(x)
’ if the extension of ’Q’ is smaller than the extension of ’P’.

11.8 Further Reading

For more examples of semantic analysis with NLTK, please see the guides at http://nltk.org/
doc/guides/sem.html and http://nltk.org/doc/guides/logic.html.

The use of characteristic functions for interpreting expressions of natural language was primarily
due to Richard Montague. [Dowty, Wall, & Peters, 1981] gives a comprehensive and reasonably
approachable introduction to Montague’s grammatical framework.

A more recent and wide-reaching study of the use of a λ based approach to natural language can be
found in [Carpenter, 1997].

[Heim & Kratzer, 1998] is a thorough application of formal semantics to transformational grammars
in the Government-Binding model.

[Blackburn & Bos, 2005] is the first textbook devoted to computational semantics, and provides an
excellent introduction to the area.
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11.8. Further Reading
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