Source code for nltk.tokenize.simple

# Natural Language Toolkit: Simple Tokenizers
#
# Copyright (C) 2001-2017 NLTK Project
# Author: Edward Loper <[email protected]>
#         Steven Bird <[email protected]>
# URL: <http://nltk.sourceforge.net>
# For license information, see LICENSE.TXT

r"""
Simple Tokenizers

These tokenizers divide strings into substrings using the string
``split()`` method.
When tokenizing using a particular delimiter string, use
the string ``split()`` method directly, as this is more efficient.

The simple tokenizers are *not* available as separate functions;
instead, you should just use the string ``split()`` method directly:

    >>> s = "Good muffins cost $3.88\nin New York.  Please buy me\ntwo of them.\n\nThanks."
    >>> s.split()
    ['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.',
    'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.']
    >>> s.split(' ')
    ['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '',
    'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.']
    >>> s.split('\n')
    ['Good muffins cost $3.88', 'in New York.  Please buy me',
    'two of them.', '', 'Thanks.']

The simple tokenizers are mainly useful because they follow the
standard ``TokenizerI`` interface, and so can be used with any code
that expects a tokenizer.  For example, these tokenizers can be used
to specify the tokenization conventions when building a `CorpusReader`.

"""
from __future__ import unicode_literals
from nltk.tokenize.api import TokenizerI, StringTokenizer
from nltk.tokenize.util import string_span_tokenize, regexp_span_tokenize

[docs]class SpaceTokenizer(StringTokenizer): r"""Tokenize a string using the space character as a delimiter, which is the same as ``s.split(' ')``. >>> from nltk.tokenize import SpaceTokenizer >>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." >>> SpaceTokenizer().tokenize(s) ['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '', 'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.'] """ _string = ' '
[docs]class TabTokenizer(StringTokenizer): r"""Tokenize a string use the tab character as a delimiter, the same as ``s.split('\t')``. >>> from nltk.tokenize import TabTokenizer >>> TabTokenizer().tokenize('a\tb c\n\t d') ['a', 'b c\n', ' d'] """ _string = '\t'
[docs]class CharTokenizer(StringTokenizer): """Tokenize a string into individual characters. If this functionality is ever required directly, use ``for char in string``. """
[docs] def tokenize(self, s): return list(s)
[docs] def span_tokenize(self, s): for i, j in enumerate(range(1, len(s) + 1)): yield i, j
[docs]class LineTokenizer(TokenizerI): r"""Tokenize a string into its lines, optionally discarding blank lines. This is similar to ``s.split('\n')``. >>> from nltk.tokenize import LineTokenizer >>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." >>> LineTokenizer(blanklines='keep').tokenize(s) ['Good muffins cost $3.88', 'in New York. Please buy me', 'two of them.', '', 'Thanks.'] >>> # same as [l for l in s.split('\n') if l.strip()]: >>> LineTokenizer(blanklines='discard').tokenize(s) ['Good muffins cost $3.88', 'in New York. Please buy me', 'two of them.', 'Thanks.'] :param blanklines: Indicates how blank lines should be handled. Valid values are: - ``discard``: strip blank lines out of the token list before returning it. A line is considered blank if it contains only whitespace characters. - ``keep``: leave all blank lines in the token list. - ``discard-eof``: if the string ends with a newline, then do not generate a corresponding token ``''`` after that newline. """ def __init__(self, blanklines='discard'): valid_blanklines = ('discard', 'keep', 'discard-eof') if blanklines not in valid_blanklines: raise ValueError('Blank lines must be one of: %s' % ' '.join(valid_blanklines)) self._blanklines = blanklines
[docs] def tokenize(self, s): lines = s.splitlines() # If requested, strip off blank lines. if self._blanklines == 'discard': lines = [l for l in lines if l.rstrip()] elif self._blanklines == 'discard-eof': if lines and not lines[-1].strip(): lines.pop() return lines
# discard-eof not implemented
[docs] def span_tokenize(self, s): if self._blanklines == 'keep': for span in string_span_tokenize(s, r'\n'): yield span else: for span in regexp_span_tokenize(s, r'\n(\s+\n)*'): yield span
###################################################################### #{ Tokenization Functions ###################################################################### # XXX: it is stated in module docs that there is no function versions
[docs]def line_tokenize(text, blanklines='discard'): return LineTokenizer(blanklines).tokenize(text)