>>> from nltk.sem import logic >>> from nltk.inference import TableauProver
A DRS can be created with the DRS() constructor. This takes two arguments: a list of discourse referents and list of conditions. .
>>> from nltk.sem.drt import * >>> dexpr = DrtExpression.fromstring >>> man_x = dexpr('man(x)') >>> walk_x = dexpr('walk(x)') >>> x = dexpr('x') >>> print(DRS([x], [man_x, walk_x])) ([x],[man(x), walk(x)])
The parse() method can also be applied directly to DRS expressions, which allows them to be specified more easily.
>>> drs1 = dexpr('([x],[man(x),walk(x)])') >>> print(drs1) ([x],[man(x), walk(x)])
DRSs can be merged using the + operator.
>>> drs2 = dexpr('([y],[woman(y),stop(y)])') >>> drs3 = drs1 + drs2 >>> print(drs3) (([x],[man(x), walk(x)]) + ([y],[woman(y), stop(y)])) >>> print(drs3.simplify()) ([x,y],[man(x), walk(x), woman(y), stop(y)])
We can embed DRSs as components of an implies condition.
>>> s = '([], [(%s -> %s)])' % (drs1, drs2) >>> print(dexpr(s)) ([],[(([x],[man(x), walk(x)]) -> ([y],[woman(y), stop(y)]))])
The fol() method converts DRSs into FOL formulae.
>>> print(dexpr(r'([x],[man(x), walks(x)])').fol()) exists x.(man(x) & walks(x)) >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol()) all x.(man(x) -> walks(x))
In order to visualize a DRS, the pretty_format() method can be used.
>>> print(drs3.pretty_format()) _________ __________ | x | | y | (|---------| + |----------|) | man(x) | | woman(y) | | walk(x) | | stop(y) | |_________| |__________|
DRSs can be used for building compositional semantics in a feature based grammar. To specify that we want to use DRSs, the appropriate logic parser needs be passed as a parameter to load_earley()
>>> from nltk.parse import load_parser >>> from nltk.sem.drt import DrtParser >>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, logic_parser=DrtParser()) >>> for tree in parser.parse('a dog barks'.split()): ... print(tree.label()['SEM'].simplify()) ... ([x],[dog(x), bark(x)])
Alternatively, a FeatStructReader can be passed with the logic_parser set on it
>>> from nltk.featstruct import FeatStructReader >>> from nltk.grammar import FeatStructNonterminal >>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, fstruct_reader=FeatStructReader(fdict_class=FeatStructNonterminal, logic_parser=DrtParser())) >>> for tree in parser.parse('every girl chases a dog'.split()): ... print(tree.label()['SEM'].simplify().normalize()) ... ([],[(([z1],[girl(z1)]) -> ([z2],[dog(z2), chase(z1,z2)]))])
>>> print(dexpr(r'([x,y],[sees(x,y)])')) ([x,y],[sees(x,y)]) >>> print(dexpr(r'([x],[man(x), walks(x)])')) ([x],[man(x), walks(x)]) >>> print(dexpr(r'\x.([],[man(x), walks(x)])')) \x.([],[man(x), walks(x)]) >>> print(dexpr(r'\x.\y.([],[sees(x,y)])')) \x y.([],[sees(x,y)])>>> print(dexpr(r'([x,y],[(x = y)])')) ([x,y],[(x = y)]) >>> print(dexpr(r'([x,y],[(x != y)])')) ([x,y],[-(x = y)])>>> print(dexpr(r'\x.([],[walks(x)])(john)')) (\x.([],[walks(x)]))(john) >>> print(dexpr(r'\R.\x.([],[big(x,R)])(\y.([],[mouse(y)]))')) (\R x.([],[big(x,R)]))(\y.([],[mouse(y)]))>>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))')) (([x],[walks(x)]) + ([y],[runs(y)])) >>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))')) (([x,y],[walks(x), jumps(y)]) + ([z],[twos(z)]) + ([w],[runs(w)])) >>> print(dexpr(r'((([],[walks(x)]) + ([],[twos(x)])) + ([],[runs(x)]))')) (([],[walks(x)]) + ([],[twos(x)]) + ([],[runs(x)])) >>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)])) + (([],[threes(x)]) + ([],[fours(x)])))')) (([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)]))>>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))')) (([],[walks(x)]) -> ([],[runs(x)]))>>> print(dexpr(r'([x],[PRO(x), sees(John,x)])')) ([x],[PRO(x), sees(John,x)]) >>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])')) ([x],[man(x), -([],[walks(x)])]) >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])')) ([],[(([x],[man(x)]) -> ([],[walks(x)]))])>>> print(dexpr(r'DRS([x],[walk(x)])')) ([x],[walk(x)]) >>> print(dexpr(r'DRS([x][walk(x)])')) ([x],[walk(x)]) >>> print(dexpr(r'([x][walk(x)])')) ([x],[walk(x)])
>>> print(dexpr(r'\x.([],[man(x), walks(x)])(john)').simplify()) ([],[man(john), walks(john)]) >>> print(dexpr(r'\x.\y.([z],[dog(z),sees(x,y)])(john)(mary)').simplify()) ([z],[dog(z), sees(john,mary)]) >>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').simplify()) \x.([],[big(x,\y.([],[mouse(y)]))])>>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').simplify()) ([x,y],[walks(x), runs(y)]) >>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))').simplify()) ([w,x,y,z],[walks(x), jumps(y), twos(z), runs(w)]) >>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)])))').simplify()) ([],[walks(x), runs(x), threes(x), fours(x)]) >>> dexpr(r'([x],[man(x)])+([x],[walks(x)])').simplify() == \ ... dexpr(r'([x,z1],[man(x), walks(z1)])') True >>> dexpr(r'([y],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)]))])+([x],[run(x)])').simplify() == \ ... dexpr(r'([y,z1],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)])), run(z1)])') True>>> dexpr(r'\Q.(([x],[john(x),walks(x)]) + Q)(([x],[PRO(x),leaves(x)]))').simplify() == \ ... dexpr(r'([x,z1],[john(x), walks(x), PRO(z1), leaves(z1)])') True>>> logic._counter._value = 0 >>> print(dexpr('([],[(([x],[dog(x)]) -> ([e,y],[boy(y), chase(e), subj(e,x), obj(e,y)]))])+([e,x],[PRO(x), run(e), subj(e,x)])').simplify().normalize().normalize()) ([e02,z5],[(([z3],[dog(z3)]) -> ([e01,z4],[boy(z4), chase(e01), subj(e01,z3), obj(e01,z4)])), PRO(z5), run(e02), subj(e02,z5)])
>>> print(dexpr(r'([x,y],[sees(x,y)])').fol()) exists x y.sees(x,y) >>> print(dexpr(r'([x],[man(x), walks(x)])').fol()) exists x.(man(x) & walks(x)) >>> print(dexpr(r'\x.([],[man(x), walks(x)])').fol()) \x.(man(x) & walks(x)) >>> print(dexpr(r'\x y.([],[sees(x,y)])').fol()) \x y.sees(x,y)>>> print(dexpr(r'\x.([],[walks(x)])(john)').fol()) \x.walks(x)(john) >>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').fol()) (\R x.big(x,R))(\y.mouse(y))>>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').fol()) (exists x.walks(x) & exists y.runs(y))>>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))').fol()) (walks(x) -> runs(x))>>> print(dexpr(r'([x],[PRO(x), sees(John,x)])').fol()) exists x.(PRO(x) & sees(John,x)) >>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])').fol()) exists x.(man(x) & -walks(x)) >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol()) all x.(man(x) -> walks(x))>>> print(dexpr(r'([x],[man(x) | walks(x)])').fol()) exists x.(man(x) | walks(x)) >>> print(dexpr(r'P(x) + ([x],[walks(x)])').fol()) (P(x) & exists x.walks(x))
>>> from nltk.sem.drt import AnaphoraResolutionException>>> print(resolve_anaphora(dexpr(r'([x,y,z],[dog(x), cat(y), walks(z), PRO(z)])'))) ([x,y,z],[dog(x), cat(y), walks(z), (z = [x,y])]) >>> print(resolve_anaphora(dexpr(r'([],[(([x],[dog(x)]) -> ([y],[walks(y), PRO(y)]))])'))) ([],[(([x],[dog(x)]) -> ([y],[walks(y), (y = x)]))]) >>> print(resolve_anaphora(dexpr(r'(([x,y],[]) + ([],[PRO(x)]))')).simplify()) ([x,y],[(x = y)]) >>> try: print(resolve_anaphora(dexpr(r'([x],[walks(x), PRO(x)])'))) ... except AnaphoraResolutionException as e: print(e) Variable 'x' does not resolve to anything. >>> print(resolve_anaphora(dexpr('([e01,z6,z7],[boy(z6), PRO(z7), run(e01), subj(e01,z7)])'))) ([e01,z6,z7],[boy(z6), (z7 = z6), run(e01), subj(e01,z7)])
>>> a = dexpr(r'([x],[man(x), walks(x)])') >>> b = dexpr(r'([x],[walks(x), man(x)])') >>> print(a.equiv(b, TableauProver())) True
>>> a = dexpr(r'a') >>> w = dexpr(r'w') >>> x = dexpr(r'x') >>> y = dexpr(r'y') >>> z = dexpr(r'z')
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, False)) ([x],[give(x,y,z)]) >>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, True)) ([a],[give(a,y,z)])
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, False)) ([x],[give(x,a,z)]) >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, True)) ([x],[give(x,a,z)])
>>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, False) == \ ... dexpr('([z1],[give(z1,x,z)])') True >>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, True) == \ ... dexpr('([z1],[give(z1,x,z)])') True
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, False)) ([x],[give(x,z,z)]) >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, True)) ([x],[give(x,z,z)])
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False)) (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)])) >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True)) (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, False)) (([x],[P(x,y,z)]) + ([y],[Q(x,y,z)])) >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, True)) (([a],[P(a,y,z)]) + ([y],[Q(a,y,z)]))
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False)) (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)])) >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True)) (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, False) == \ ... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))') True >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, True) == \ ... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))') True
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, False) == \ ... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))') True >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, True) == \ ... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))') True
>>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, False) == \ ... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))') True >>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, True) == \ ... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))') True
>>> d = dexpr('([x],[A(c), ([y],[B(x,y,z,a)])->([z],[C(x,y,z,a)])])') >>> print(d) ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))]) >>> print(d.pretty_format()) ____________________________________ | x | |------------------------------------| | A(c) | | ____________ ____________ | | | y | | z | | | (|------------| -> |------------|) | | | B(x,y,z,a) | | C(x,y,z,a) | | | |____________| |____________| | |____________________________________| >>> print(str(d)) ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))]) >>> print(d.fol()) exists x.(A(c) & all y.(B(x,y,z,a) -> exists z.C(x,y,z,a))) >>> print(d.replace(Variable('a'), DrtVariableExpression(Variable('r')))) ([x],[A(c), (([y],[B(x,y,z,r)]) -> ([z],[C(x,y,z,r)]))]) >>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r')))) ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))]) >>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r')))) ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))]) >>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r')))) ([x],[A(c), (([y],[B(x,y,r,a)]) -> ([z],[C(x,y,z,a)]))]) >>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r')), True)) ([r],[A(c), (([y],[B(r,y,z,a)]) -> ([z],[C(r,y,z,a)]))]) >>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r')), True)) ([x],[A(c), (([r],[B(x,r,z,a)]) -> ([z],[C(x,r,z,a)]))]) >>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r')), True)) ([x],[A(c), (([y],[B(x,y,r,a)]) -> ([r],[C(x,y,r,a)]))]) >>> print(d == dexpr('([l],[A(c), ([m],[B(l,m,z,a)])->([n],[C(l,m,n,a)])])')) True >>> d = dexpr('([],[([x,y],[B(x,y,h), ([a,b],[dee(x,a,g)])])->([z,w],[cee(x,y,f), ([c,d],[E(x,c,d,e)])])])') >>> sorted(d.free()) [Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')] >>> sorted(d.variables()) [Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')] >>> sorted(d.get_refs(True)) [Variable('a'), Variable('b'), Variable('c'), Variable('d'), Variable('w'), Variable('x'), Variable('y'), Variable('z')] >>> sorted(d.conds[0].get_refs(False)) [Variable('x'), Variable('y')] >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])->([],[C(x,y)]), ([x,y],[D(x,y)])->([],[E(x,y)]), ([],[F(x,y)])->([x,y],[G(x,y)])])').eliminate_equality()) ([x],[A(x,x), (([],[B(x,x)]) -> ([],[C(x,x)])), (([x,y],[D(x,y)]) -> ([],[E(x,y)])), (([],[F(x,x)]) -> ([x,y],[G(x,y)]))]) >>> print(dexpr('([x,y],[A(x,y), (x=y)]) -> ([],[B(x,y)])').eliminate_equality()) (([x],[A(x,x)]) -> ([],[B(x,x)])) >>> print(dexpr('([x,y],[A(x,y)]) -> ([],[B(x,y), (x=y)])').eliminate_equality()) (([x,y],[A(x,y)]) -> ([],[B(x,x)])) >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])])').eliminate_equality()) ([x],[A(x,x), ([],[B(x,x)])]) >>> print(dexpr('([x,y],[A(x,y), ([],[B(x,y), (x=y)])])').eliminate_equality()) ([x,y],[A(x,y), ([],[B(x,x)])]) >>> print(dexpr('([z8 z9 z10],[A(z8), z8=z10, z9=z10, B(z9), C(z10), D(z10)])').eliminate_equality()) ([z9],[A(z9), B(z9), C(z9), D(z9)])>>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)]), ([x,y],[C(x,y)])])').eliminate_equality()) ([x],[A(x,x), ([],[B(x,x)]), ([x,y],[C(x,y)])]) >>> print(dexpr('([x,y],[A(x,y)]) + ([],[B(x,y), (x=y)]) + ([],[C(x,y)])').eliminate_equality()) ([x],[A(x,x), B(x,x), C(x,x)]) >>> print(dexpr('([x,y],[B(x,y)])+([x,y],[C(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x')))) (([x,y],[B(x,y)]) + ([x,y],[C(x,y)])) >>> print(dexpr('(([x,y],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x')))) (([x,y],[B(x,y)]) + ([],[C(x,y)]) + ([],[D(x,y)])) >>> print(dexpr('(([],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x')))) (([],[B(x,x)]) + ([],[C(x,x)]) + ([],[D(x,x)])) >>> print(dexpr('(([],[B(x,y), ([x,y],[A(x,y)])])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))).normalize()) (([],[B(z3,z1), ([z2,z3],[A(z3,z2)])]) + ([],[C(z3,z1)]) + ([],[D(z3,z1)]))
>>> def parse_error(drtstring): ... try: dexpr(drtstring) ... except logic.LogicalExpressionException as e: print(e)>>> parse_error(r'') End of input found. Expression expected. <BLANKLINE> ^ >>> parse_error(r'(') End of input found. Expression expected. ( ^ >>> parse_error(r'()') Unexpected token: ')'. Expression expected. () ^ >>> parse_error(r'([') End of input found. Expected token ']'. ([ ^ >>> parse_error(r'([,') ',' is an illegal variable name. Constants may not be quantified. ([, ^ >>> parse_error(r'([x,') End of input found. Variable expected. ([x, ^ >>> parse_error(r'([]') End of input found. Expected token '['. ([] ^ >>> parse_error(r'([][') End of input found. Expected token ']'. ([][ ^ >>> parse_error(r'([][,') Unexpected token: ','. Expression expected. ([][, ^ >>> parse_error(r'([][]') End of input found. Expected token ')'. ([][] ^ >>> parse_error(r'([x][man(x)]) |') End of input found. Expression expected. ([x][man(x)]) | ^
>>> dexpr(r"([],[])").pretty_print() __ | | |--| |__|>>> dexpr(r"([],[([x],[big(x), dog(x)]) -> ([],[bark(x)]) -([x],[walk(x)])])").pretty_print() _____________________________ | | |-----------------------------| | ________ _________ | | | x | | | | | (|--------| -> |---------|) | | | big(x) | | bark(x) | | | | dog(x) | |_________| | | |________| | | _________ | | | x | | | __ |---------| | | | | walk(x) | | | |_________| | |_____________________________|>>> dexpr(r"([x,y],[x=y]) + ([z],[dog(z), walk(z)])").pretty_print() _________ _________ | x y | | z | (|---------| + |---------|) | (x = y) | | dog(z) | |_________| | walk(z) | |_________|>>> dexpr(r"([],[([x],[]) | ([y],[]) | ([z],[dog(z), walk(z)])])").pretty_print() _______________________________ | | |-------------------------------| | ___ ___ _________ | | | x | | y | | z | | | (|---| | |---| | |---------|) | | |___| |___| | dog(z) | | | | walk(z) | | | |_________| | |_______________________________|>>> dexpr(r"\P.\Q.(([x],[]) + P(x) + Q(x))(\x.([],[dog(x)]))").pretty_print() ___ ________ \ | x | \ | | /\ P Q.(|---| + P(x) + Q(x))( /\ x.|--------|) |___| | dog(x) | |________|