The nltk.metrics package provides a variety of evaluation measures which can be used for a wide variety of NLP tasks.
>>> from __future__ import print_function >>> from nltk.metrics import *
We can use standard scores from information retrieval to test the performance of taggers, chunkers, etc.
>>> reference = 'DET NN VB DET JJ NN NN IN DET NN'.split() >>> test = 'DET VB VB DET NN NN NN IN DET NN'.split() >>> print(accuracy(reference, test)) 0.8
The following measures apply to sets:
>>> reference_set = set(reference) >>> test_set = set(test) >>> precision(reference_set, test_set) 1.0 >>> print(recall(reference_set, test_set)) 0.8 >>> print(f_measure(reference_set, test_set)) 0.88888888888...
Measuring the likelihood of the data, given probability distributions:
>>> from nltk import FreqDist, MLEProbDist >>> pdist1 = MLEProbDist(FreqDist("aldjfalskfjaldsf")) >>> pdist2 = MLEProbDist(FreqDist("aldjfalssjjlldss")) >>> print(log_likelihood(['a', 'd'], [pdist1, pdist2])) -2.7075187496...
String edit distance (Levenshtein):
>>> edit_distance("rain", "shine") 3
Other distance measures:
>>> s1 = set([1,2,3,4]) >>> s2 = set([3,4,5]) >>> binary_distance(s1, s2) 1.0 >>> print(jaccard_distance(s1, s2)) 0.6 >>> print(masi_distance(s1, s2)) 0.868...
Rank Correlation works with two dictionaries mapping keys to ranks. The dictionaries should have the same set of keys.
>>> spearman_correlation({'e':1, 't':2, 'a':3}, {'e':1, 'a':2, 't':3}) 0.5
Windowdiff uses a sliding window in comparing two segmentations of the same input (e.g. tokenizations, chunkings). Segmentations are represented using strings of zeros and ones.
>>> s1 = "000100000010" >>> s2 = "000010000100" >>> s3 = "100000010000" >>> s4 = "000000000000" >>> s5 = "111111111111" >>> windowdiff(s1, s1, 3) 0.0 >>> abs(windowdiff(s1, s2, 3) - 0.3) < 1e-6 # windowdiff(s1, s2, 3) == 0.3 True >>> abs(windowdiff(s2, s3, 3) - 0.8) < 1e-6 # windowdiff(s2, s3, 3) == 0.8 True >>> windowdiff(s1, s4, 3) 0.5 >>> windowdiff(s1, s5, 3) 1.0
>>> reference = 'This is the reference data. Testing 123. aoaeoeoe' >>> test = 'Thos iz_the rifirenci data. Testeng 123. aoaeoeoe' >>> print(ConfusionMatrix(reference, test)) | . 1 2 3 T _ a c d e f g h i n o r s t z | --+-------------------------------------------+ |<8>. . . . . 1 . . . . . . . . . . . . . . | . | .<2>. . . . . . . . . . . . . . . . . . . | 1 | . .<1>. . . . . . . . . . . . . . . . . . | 2 | . . .<1>. . . . . . . . . . . . . . . . . | 3 | . . . .<1>. . . . . . . . . . . . . . . . | T | . . . . .<2>. . . . . . . . . . . . . . . | _ | . . . . . .<.>. . . . . . . . . . . . . . | a | . . . . . . .<4>. . . . . . . . . . . . . | c | . . . . . . . .<1>. . . . . . . . . . . . | d | . . . . . . . . .<1>. . . . . . . . . . . | e | . . . . . . . . . .<6>. . . 3 . . . . . . | f | . . . . . . . . . . .<1>. . . . . . . . . | g | . . . . . . . . . . . .<1>. . . . . . . . | h | . . . . . . . . . . . . .<2>. . . . . . . | i | . . . . . . . . . . 1 . . .<1>. 1 . . . . | n | . . . . . . . . . . . . . . .<2>. . . . . | o | . . . . . . . . . . . . . . . .<3>. . . . | r | . . . . . . . . . . . . . . . . .<2>. . . | s | . . . . . . . . . . . . . . . . . .<2>. 1 | t | . . . . . . . . . . . . . . . . . . .<3>. | z | . . . . . . . . . . . . . . . . . . . .<.>| --+-------------------------------------------+ (row = reference; col = test) <BLANKLINE>>>> cm = ConfusionMatrix(reference, test) >>> print(cm.pretty_format(sort_by_count=True)) | e a i o s t . T h n r 1 2 3 c d f g _ z | --+-------------------------------------------+ |<8>. . . . . . . . . . . . . . . . . . 1 . | e | .<6>. 3 . . . . . . . . . . . . . . . . . | a | . .<4>. . . . . . . . . . . . . . . . . . | i | . 1 .<1>1 . . . . . . . . . . . . . . . . | o | . . . .<3>. . . . . . . . . . . . . . . . | s | . . . . .<2>. . . . . . . . . . . . . . 1 | t | . . . . . .<3>. . . . . . . . . . . . . . | . | . . . . . . .<2>. . . . . . . . . . . . . | T | . . . . . . . .<2>. . . . . . . . . . . . | h | . . . . . . . . .<2>. . . . . . . . . . . | n | . . . . . . . . . .<2>. . . . . . . . . . | r | . . . . . . . . . . .<2>. . . . . . . . . | 1 | . . . . . . . . . . . .<1>. . . . . . . . | 2 | . . . . . . . . . . . . .<1>. . . . . . . | 3 | . . . . . . . . . . . . . .<1>. . . . . . | c | . . . . . . . . . . . . . . .<1>. . . . . | d | . . . . . . . . . . . . . . . .<1>. . . . | f | . . . . . . . . . . . . . . . . .<1>. . . | g | . . . . . . . . . . . . . . . . . .<1>. . | _ | . . . . . . . . . . . . . . . . . . .<.>. | z | . . . . . . . . . . . . . . . . . . . .<.>| --+-------------------------------------------+ (row = reference; col = test) <BLANKLINE>>>> print(cm.pretty_format(sort_by_count=True, truncate=10)) | e a i o s t . T h | --+---------------------+ |<8>. . . . . . . . . | e | .<6>. 3 . . . . . . | a | . .<4>. . . . . . . | i | . 1 .<1>1 . . . . . | o | . . . .<3>. . . . . | s | . . . . .<2>. . . . | t | . . . . . .<3>. . . | . | . . . . . . .<2>. . | T | . . . . . . . .<2>. | h | . . . . . . . . .<2>| --+---------------------+ (row = reference; col = test) <BLANKLINE>>>> print(cm.pretty_format(sort_by_count=True, truncate=10, values_in_chart=False)) | 1 | | 1 2 3 4 5 6 7 8 9 0 | ---+---------------------+ 1 |<8>. . . . . . . . . | 2 | .<6>. 3 . . . . . . | 3 | . .<4>. . . . . . . | 4 | . 1 .<1>1 . . . . . | 5 | . . . .<3>. . . . . | 6 | . . . . .<2>. . . . | 7 | . . . . . .<3>. . . | 8 | . . . . . . .<2>. . | 9 | . . . . . . . .<2>. | 10 | . . . . . . . . .<2>| ---+---------------------+ (row = reference; col = test) Value key: 1: 2: e 3: a 4: i 5: o 6: s 7: t 8: . 9: T 10: h <BLANKLINE>
These measures are useful to determine whether the coocurrence of two random events is meaningful. They are used, for instance, to distinguish collocations from other pairs of adjacent words.
We bring some examples of bigram association calculations from Manning and Schutze's SNLP, 2nd Ed. chapter 5.
>>> n_new_companies, n_new, n_companies, N = 8, 15828, 4675, 14307668 >>> bam = BigramAssocMeasures >>> bam.raw_freq(20, (42, 20), N) == 20. / N True >>> bam.student_t(n_new_companies, (n_new, n_companies), N) 0.999... >>> bam.chi_sq(n_new_companies, (n_new, n_companies), N) 1.54... >>> bam.likelihood_ratio(150, (12593, 932), N) 1291...
For other associations, we ensure the ordering of the measures:
>>> bam.mi_like(20, (42, 20), N) > bam.mi_like(20, (41, 27), N) True >>> bam.pmi(20, (42, 20), N) > bam.pmi(20, (41, 27), N) True >>> bam.phi_sq(20, (42, 20), N) > bam.phi_sq(20, (41, 27), N) True >>> bam.poisson_stirling(20, (42, 20), N) > bam.poisson_stirling(20, (41, 27), N) True >>> bam.jaccard(20, (42, 20), N) > bam.jaccard(20, (41, 27), N) True >>> bam.dice(20, (42, 20), N) > bam.dice(20, (41, 27), N) True >>> bam.fisher(20, (42, 20), N) > bam.fisher(20, (41, 27), N) False
For trigrams, we have to provide more count information:
>>> n_w1_w2_w3 = 20 >>> n_w1_w2, n_w1_w3, n_w2_w3 = 35, 60, 40 >>> pair_counts = (n_w1_w2, n_w1_w3, n_w2_w3) >>> n_w1, n_w2, n_w3 = 100, 200, 300 >>> uni_counts = (n_w1, n_w2, n_w3) >>> N = 14307668 >>> tam = TrigramAssocMeasures >>> tam.raw_freq(n_w1_w2_w3, pair_counts, uni_counts, N) == 1. * n_w1_w2_w3 / N True >>> uni_counts2 = (n_w1, n_w2, 100) >>> tam.student_t(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.student_t(n_w1_w2_w3, pair_counts, uni_counts, N) True >>> tam.chi_sq(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.chi_sq(n_w1_w2_w3, pair_counts, uni_counts, N) True >>> tam.mi_like(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.mi_like(n_w1_w2_w3, pair_counts, uni_counts, N) True >>> tam.pmi(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.pmi(n_w1_w2_w3, pair_counts, uni_counts, N) True >>> tam.likelihood_ratio(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.likelihood_ratio(n_w1_w2_w3, pair_counts, uni_counts, N) True >>> tam.poisson_stirling(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.poisson_stirling(n_w1_w2_w3, pair_counts, uni_counts, N) True >>> tam.jaccard(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.jaccard(n_w1_w2_w3, pair_counts, uni_counts, N) True