>>> from nltk.inference.resolution import * >>> from nltk.sem import logic >>> from nltk.sem.logic import * >>> logic._counter._value = 0 >>> read_expr = logic.Expression.fromstring>>> P = read_expr('P') >>> Q = read_expr('Q') >>> R = read_expr('R') >>> A = read_expr('A') >>> B = read_expr('B') >>> x = read_expr('x') >>> y = read_expr('y') >>> z = read_expr('z')
>>> print(most_general_unification(x, x)) {} >>> print(most_general_unification(A, A)) {} >>> print(most_general_unification(A, x)) {x: A} >>> print(most_general_unification(x, A)) {x: A} >>> print(most_general_unification(x, y)) {x: y} >>> print(most_general_unification(P(x), P(A))) {x: A} >>> print(most_general_unification(P(x,B), P(A,y))) {x: A, y: B} >>> print(most_general_unification(P(x,B), P(B,x))) {x: B} >>> print(most_general_unification(P(x,y), P(A,x))) {x: A, y: x} >>> print(most_general_unification(P(Q(x)), P(y))) {y: Q(x)}
>>> print(Clause([]).unify(Clause([]))) [] >>> print(Clause([P(x)]).unify(Clause([-P(A)]))) [{}] >>> print(Clause([P(A), Q(x)]).unify(Clause([-P(x), R(x)]))) [{R(A), Q(A)}] >>> print(Clause([P(A), Q(x), R(x,y)]).unify(Clause([-P(x), Q(y)]))) [{Q(y), Q(A), R(A,y)}] >>> print(Clause([P(A), -Q(y)]).unify(Clause([-P(x), Q(B)]))) [{}] >>> print(Clause([P(x), Q(x)]).unify(Clause([-P(A), -Q(B)]))) [{-Q(B), Q(A)}, {-P(A), P(B)}] >>> print(Clause([P(x,x), Q(x), R(x)]).unify(Clause([-P(A,z), -Q(B)]))) [{-Q(B), Q(A), R(A)}, {-P(A,z), R(B), P(B,B)}]>>> a = clausify(read_expr('P(A)')) >>> b = clausify(read_expr('A=B')) >>> print(a[0].unify(b[0])) [{P(B)}]
>>> print(Clause([P(A), -P(A)]).is_tautology()) True >>> print(Clause([-P(A), P(A)]).is_tautology()) True >>> print(Clause([P(x), -P(A)]).is_tautology()) False >>> print(Clause([Q(B), -P(A), P(A)]).is_tautology()) True >>> print(Clause([-Q(A), P(R(A)), -P(R(A)), Q(x), -R(y)]).is_tautology()) True >>> print(Clause([P(x), -Q(A)]).is_tautology()) False
>>> print(Clause([P(A), Q(B)]).subsumes(Clause([P(A), Q(B)]))) True >>> print(Clause([-P(A)]).subsumes(Clause([P(A)]))) False >>> print(Clause([P(A), Q(B)]).subsumes(Clause([Q(B), P(A)]))) True >>> print(Clause([P(A), Q(B)]).subsumes(Clause([Q(B), R(A), P(A)]))) True >>> print(Clause([P(A), R(A), Q(B)]).subsumes(Clause([Q(B), P(A)]))) False >>> print(Clause([P(x)]).subsumes(Clause([P(A)]))) True >>> print(Clause([P(A)]).subsumes(Clause([P(x)]))) True
>>> print(ResolutionProverCommand(read_expr('man(x)')).prove()) False >>> print(ResolutionProverCommand(read_expr('(man(x) -> man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('(man(x) -> --man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('-(man(x) & -man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('(man(x) | -man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('(man(x) -> man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('-(man(x) & -man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('(man(x) | -man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('(man(x) -> man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('(man(x) <-> man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('-(man(x) <-> -man(x))')).prove()) True >>> print(ResolutionProverCommand(read_expr('all x.man(x)')).prove()) False >>> print(ResolutionProverCommand(read_expr('-all x.some y.F(x,y) & some x.all y.(-F(x,y))')).prove()) False >>> print(ResolutionProverCommand(read_expr('some x.all y.sees(x,y)')).prove()) False>>> p1 = read_expr('all x.(man(x) -> mortal(x))') >>> p2 = read_expr('man(Socrates)') >>> c = read_expr('mortal(Socrates)') >>> ResolutionProverCommand(c, [p1,p2]).prove() True>>> p1 = read_expr('all x.(man(x) -> walks(x))') >>> p2 = read_expr('man(John)') >>> c = read_expr('some y.walks(y)') >>> ResolutionProverCommand(c, [p1,p2]).prove() True>>> p = read_expr('some e1.some e2.(believe(e1,john,e2) & walk(e2,mary))') >>> c = read_expr('some e0.walk(e0,mary)') >>> ResolutionProverCommand(c, [p]).prove() True
>>> p1 = read_expr('all x.(man(x) -> mortal(x))') >>> p2 = read_expr('man(Socrates)') >>> c = read_expr('mortal(Socrates)') >>> logic._counter._value = 0 >>> tp = ResolutionProverCommand(c, [p1,p2]) >>> tp.prove() True >>> print(tp.proof()) [1] {-mortal(Socrates)} A [2] {-man(z2), mortal(z2)} A [3] {man(Socrates)} A [4] {-man(Socrates)} (1, 2) [5] {mortal(Socrates)} (2, 3) [6] {} (1, 5) <BLANKLINE>
>>> p1 = read_expr('father_of(art,john)') >>> p2 = read_expr('father_of(bob,kim)') >>> p3 = read_expr('all x.all y.(father_of(x,y) -> parent_of(x,y))') >>> c = read_expr('all x.(parent_of(x,john) -> ANSWER(x))') >>> logic._counter._value = 0 >>> tp = ResolutionProverCommand(None, [p1,p2,p3,c]) >>> sorted(tp.find_answers()) [<ConstantExpression art>] >>> print(tp.proof()) # doctest: +SKIP [1] {father_of(art,john)} A [2] {father_of(bob,kim)} A [3] {-father_of(z3,z4), parent_of(z3,z4)} A [4] {-parent_of(z6,john), ANSWER(z6)} A [5] {parent_of(art,john)} (1, 3) [6] {parent_of(bob,kim)} (2, 3) [7] {ANSWER(z6), -father_of(z6,john)} (3, 4) [8] {ANSWER(art)} (1, 7) [9] {ANSWER(art)} (4, 5) <BLANKLINE>
>>> p1 = read_expr('father_of(art,john)') >>> p2 = read_expr('mother_of(ann,john)') >>> p3 = read_expr('all x.all y.(father_of(x,y) -> parent_of(x,y))') >>> p4 = read_expr('all x.all y.(mother_of(x,y) -> parent_of(x,y))') >>> c = read_expr('all x.(parent_of(x,john) -> ANSWER(x))') >>> logic._counter._value = 0 >>> tp = ResolutionProverCommand(None, [p1,p2,p3,p4,c]) >>> sorted(tp.find_answers()) [<ConstantExpression ann>, <ConstantExpression art>] >>> print(tp.proof()) # doctest: +SKIP [ 1] {father_of(art,john)} A [ 2] {mother_of(ann,john)} A [ 3] {-father_of(z3,z4), parent_of(z3,z4)} A [ 4] {-mother_of(z7,z8), parent_of(z7,z8)} A [ 5] {-parent_of(z10,john), ANSWER(z10)} A [ 6] {parent_of(art,john)} (1, 3) [ 7] {parent_of(ann,john)} (2, 4) [ 8] {ANSWER(z10), -father_of(z10,john)} (3, 5) [ 9] {ANSWER(art)} (1, 8) [10] {ANSWER(z10), -mother_of(z10,john)} (4, 5) [11] {ANSWER(ann)} (2, 10) [12] {ANSWER(art)} (5, 6) [13] {ANSWER(ann)} (5, 7) <BLANKLINE>