High-Speed Passive
Packet Capture and Filtering

Luca Deri <deri@ntop.org>

o
AMIS 2008 - July 2008
TA DI PISA

Tutorial Overview

1. Accelerating packet capture and analysis:
PF_RING.

2. Layer 7 kernel packet filtering and processing.
3. Even further acceleration: nCap, multithreaded NIC

Drivers.
4. Towards 10 Gbit packet capture.

AMIS 2008 - July 2008

Accelerating Packet Capture
and Analysis: PF_RING

Packet Capture: Open Issues

Monitoring low speed (100 Mbit) networks is already possible using
commodity hardware and tools based on libpcap.

Sometimes even at 100 Mbit there is some (severe) packet loss: we
have to shift from thinking in terms of speed to number of packets/
second that can be captured analyzed.

Problem statement: monitor high speed (1 Gbit and above)
networks with common PCs (64 bit/66 Mhz PCIl/X/Express bus)
without the need to purchase custom capture cards or
measurement boxes.

Challenge: how to improve packet capture performance without
having to buy dedicated/costly network cards?

AMIS 2008 - July 2008 Bpen source

Packet Capture Goals

Use commodity hardware for capturing packets
at wire speed with no loss under any traffic
condition.

Be able to have spare CPU cycles for analyzing
packets for various purposes (e.g. traffic
monitoring and security).

Enable the creation of software probes that sport
the same performance of hardware probes at a
fraction of cost.

Open Soure

AMIS 2008 - July 2008

Socket Packet Ring (PF_RING)

Application A

Al oSl
343

UNIVERSITA DI PISA

Application Z

Network
Adapter

AMIS 2008 - July 2008

Userspace

Kernel

®e

Socket

PF_RING :

Incoming Packets

®

PF RING: Benefits

It creates a straight path for incoming packets in order to
make them first-class citizens.

No need fo use custom network cards: any card is
supported.

Transparent to applications: legacy applications need to be
recompiled in order fo use it.

No kernel or low-level programming is required.

Developers familiar with network applications can
immediately take advantage of it without having to learn new

Open Soure

AMIS 2008 - July 2008

PF RING: Performance Evaluation

Pkt Size

Kpps

Mbps

% CPU Idle

Wire-Speed

250

259.23

518

> 90%

Yes

250

462.9

925.9

88%

Yes

128

355.1

363.6

86%

Yes

128

344.6

364.8

82%

Yes

Test setup: pcount, full packet size, 3.2 GHz Celeron (single-core) - IXIA 400 Traffic Generator

AMIS 2008 - July 2008

®

0N SoUrce

Socket Packet Ring:
Packet Capture Evaluation

Ability to capture over 1.1 Mpps on commodity hardware with
minimal packet sizes (64 bytes).

Available for Linux 2.4 and 2.6 kernel series.
Hardware independent: runs on i386, 64bit, MIPS.

Available for PCs and embedded devices (e.g. OpenWrt,
MikroTik routers)

AMIS 2008 - July 2008

PF RING on Embedded Devices

Ntop NetFlow Monitoring
N5T, 55H tunneling, Ntop, NetFlow, & Linksys WRT54G 5 Router
IP: 24 28 60.245 Port Oper: 22222
NAT/PAT: 2429 6024522202 & 192 188.2.51:22
1SP2)
vlant:24. Firewall: FWV2
VAN [MetF ‘ Probe Inersce)
Site: B
............................. {Satellite O fics)
A 192.168.210/24
......... s NetFlow
----------------- %, Data
Ntop HTTPS
: [—
Traffic Tunnel LINKSYS WRTS4GS =
/ SVEASORT: Alhamy-pr =S| | [usT configuration
4 ABBZ /24 e
S » Intel P4 850MHz
; / e e E = * 42x COROM
i ! ehd:192168.25 N ST probe » 255N EB RANM
\\ A—— 1x10/100 NIC=
VUAN i Encrypted 55H ntop port: 2001 (ttps)
Tunnel Ervelope (VPN)
Niop Setup (N 5T Probe)
[setup_ntup - lo -no-c-rds 72]
NATIPAT (LINKEYS WRT54G5)
iptables -t nat 4 PREROUTING 1 -p tcp 4 vian1 -d 24.29.50.245 —dport 22222\
Site: A - DNAT —to-destination 192.168.2.51:22
(Comorate Headquarters) " Firevall: FVUA iptables -t fiter 4 FORWARD T -i vlani - tep -d 192.188.2.51 —dport 22 5] ACCEPT
{ Outbound connedtions T
i allowed through frewall...
| Blowed tirough Tewe N etFlow (LINKSY § WRT54GS)
|:a1.|5|:f5bina'rﬁuw-i vian1 - 192168.2.51:9996 :|
Notebook (Windows XP)
(Running OpenSSH for Windows)
- nitop visual: Site A
VPN Setup (Windows XP Notebook) nk_)gruming: Site B
ssh 22222 1 3001:127.0.0.1:3001 roct@24.29.60.245 Point browser at: https:/127.0.0.1:3001
niop tunnel
RWVH- 2004

http://nst.sourceforge.net/nst/docs/user/ch09s02.html

AMIS 2008 - July 2008 0"

Dpen SouUe 10

UNIVERSITA DI P1sA

PF_RING: Packet Filtering [1/2]

e PF_RING has addressed the problem of accelerating packet
capture.

e Packet filtering instead is still based on the “ancient” BPF
(Berkeley Packet Filter) code used by apps such as tcpdump.

e This means that:
- Each socket can have up to one filter defined.

- The packet needs to be parsed in order to match the filter,
but the parsing information is not passed to user-space.

- The BPF filter length can change significantly even if the
filter is slightly changed.

Open Soure

AMIS 2008 - July 2008

PF_RING: Packet Filtering [2/2]

tcpdump -d "udp" # tcpdump -d "udp and port 53"

(000) 1dh [12] (000) 1dh [12]

(001) jeq #0x800 3t 2 Jf 5 (001) Jeq #0x800

(002) 1db [23] (002) 1db [23]

(003) jeq #0x11 3t 4 §f 5 (003) jeq #0x11

(004) ret #96 (004) 1dh [20]

(005) ret #0 (005) Jset #O0x1fff
(006) 1ldxb 4* ([14]6&0x1)
(007) 1dh [x + 14]
(008) Jjeqg #0x35
(009) 1dh [x + 16]
(010) Jeg #0x35
(011) ret #96
(012) ret #0

AMIS 2008 - July 2008
UNIVERSITA DI P1sA

Beyond BPF Filtering [1/2]

VolP and Lawful Interception traffic is usually very little
compared to the rest of traffic.

Capture starts from filtering signaling protocols and then
infercepting voice payload.

BPF-like filtering is not effective (one filter only).

It is necessary to add/remove filters on the fly with hundreds
active filters.

AMIS 2008 - July 2008

Beyond BPF Filtering [1/2]

Solution

Filter packets directory on the device driver (not into the
kernel layer).

Implement hash/bloom based filtering (limited false
positives).

Memory effective (doesn’t grow as filters are added).

Implemented on Linux on Intel GE cards. Great
performance (virtually no packet loss at 1 Gbit).

AMIS 2008 - July 2008

Open Soure

Dynamic Bloom Filtering [1/3]

An empty bloom is a bit array of m bits all set to zero.

k hash different functions are used to map a key to an array position
(0...m-1 hash function range).

n is the number of elements insert into the dictionary.

How to add an element: for each k hash function set to 1 the array bit that
corresponds fo the hash value.

How fo test if an element belongs to the set: for each hash function
calculate the hash element value. The element belongs to the set if and
only if all the k bits of the hash values are setto 1.

How to remove an element: fully rebuild the dictionary or use counting
blooms.

. k
_ . 1 o : —kn/m k
False positive rate: (1 - (1 - E)) ~ (1 — ¢)

Optimal number of hash functions: k = (m/n)eg(2

Open Soure

AMIS 2008 - July 2008
UNIVERSITA DI P1SA

Dynamic Bloom Filtering [2/3]

Insert: hash_1(X), hash_2(X)....hash_n(X)

{x, v, z}

W

Check for inclusion

AMIS 2008 - July 2008 npmsuurae

16

Dynamic Bloom Filtering [3/3]

e Ability to specify thousands of different IP packet filters.

e Ability to dynamically add/remove filters without having to
inferrupt existing applications.

e Only “precise” filters (e.g. host X and port Y) are supported
as a new dictionary is required for each filtering criteria
(e.g <IP,port,proto> and <IP,port> need two different
dictionaries).

e The filter processing speed and memory being used is
proportional to the number of filters but independent from
their number and complexity.

K
G5

s0urce

AMIS 2008 - July 2008

UNIVERSITA DI P1SA

Dynamic Bloom Filtering

User Space Packet Consumption

Linux Kernel

Bloom

NAPI PF_RING

s

MIC Device driver

Dynamic Filtering

e Available into PF_RING (up to 3.7.x).

o Ability to set per-socket bloom filters

& AMIS 2008 - July 2008
UNIVERSITA DI PISA

PF RING: Bloom Evaluation

e Tests performed using a dual Xeon 3.2 GHz CPU
injecting traffic with an IXIA 400 traffic generator with
1:256 match rate.

e Packet loss only above 1.8 Mpps (2 x 1 Gbit NICs).

e Ability to specify thousand of filters with no
performance degradation with respect to a single
filter (only false positive rate increases).

AMIS 2008 - July 2008

PF_RING Content Inspection

e Ability to (in kernel) search multiple string patterns
info packet payload.

e Algorithm based on Aho-Corasick work.

e |deal for fields like lawful interception and security
including IDSs).

e Major performance improvement with respect o
conventional pcap-based applications.

AMIS 2008 - July 2008

Beyond Bloom Filters

e Bloom filtering has shown to be a very interesting technology
for “precise” packet filtering.

o Unfortunately many applications require some features that
cannot be easily supported by blooms:

- port ranges

- negative expressions (not <expression>)

- |P address/mask (where mask !=/32)

- in case of match, know what rule(s) matched the filter

AMIS 2008 - July 2008

Extended PF RING Filters [1/2]

| have made a survey of network applications and created a list
of desirable features, that have then been implemented into
PF_RING:

e “Wildcard-ed” filters (e.g. TCP and port 80). Each rule has a
rule-id and rules are evaluated according to it.

e Precise 5-tuple filters (VLAN, protocol, IP src/dst, port src/dst)
and eventually extend them with other fields (e.g. MPLS label).

e Precise filters (e.g. best match) have priority over (e.g. generic)
wilcard-ed filters.

AMIS 2008 - July 2008

Extended PF RING Filters [2/3]

Support of filter ranges (IP and port ranges) for reducing the
number of filters.

Support of mono or bi-directional filters, for reducing number
of filters.

Ability to filter both on standard 5-tuple fields and on L7 fields
(e.g. HTTP method=GET).

Parsing information (including L7 information) needs to be
returned fo user-space (i.e. do not parse the packet twice).

AMIS 2008 - July 2008 Bpen source

Extended PF RING Filters [3/3]

e Per-filter policy in case of match:

— Stop filtering rule evaluation and drop/forward packet to
user-space.

— Update filtering rule status (e.g. statistics) and stop/
continue rule evaluation without forwarding packet to
user-space.

e Filtering rules can pass to user-space both captured packets
or statistics/packet digests (this for those apps who need pre-
computed values and not just raw packets).

AMIS 2008 - July 2008

Using PF_RING Filters: HTTP Monitoring [1/5]

e Goal

- Passively produce HTTP traffic logs similar to those
produced by Apache/Squid/W3C.

e Solution

- Implement plugin that filters HTTP traffic.

- Forward to userspace only those packets containing HTTP
requests for all known methods (e.g. GET, POST, HEAD) and
responses (e.g. HTTP 200 OK).

- All other HTTP packets beside those listed above are
filtered and not returned to userspace.

- HTTP response length is computed based on the “Content-
Length” HTTP response header attribute.

2G5

AMIS 2008 - July 2008 Shaffy
UNIVERSITA DI PISA Y Open SOUre

Using PF_RING Filters: HTTP Monitoring [2/5]

Plugin Registration (kernel)

static int __init http_plugin_init(void)

{
int rc;
printk("Welcome to HTTP plugin for PF_RING\n");
reg.plugin_id =HTTP_PLUGIN_ID;
reg.pfring_plugin_filter_skb = http_plugin_plugin_filter_skb;
reg.pfring_plugin_handle_skb = NULL,;
reg.pfring_plugin_get_stats = NULL,;

snprintf(reg.name, sizeof(reg.name)-1, "http");
snprintf(reg.description, sizeof(reg.description)-1, "HTTP protocol analyzer");

rc = do_register_pfring_plugin(®);
printk("HTTP plugin registered [id=%d][rc=%d]\n", reg.plugin_id, rc);

return(0);

AMIS 2008 - July 2008
UNIVERSITA DI PISA

Using PF_RING Filters: HTTP Monitoring [3/5]

Plugin Packet Filtering (kernel)

static int http_plugin_plugin_filter_skb(filtering_rule_element *rule,
struct pfring_pkthdr *hdr, struct sk_buff *skb,
struct parse_buffer **parse_memory)
{
struct http_filter *rule_filter = (struct http_filter*)rule->rule.extended_fields.filter_plugin_data;
struct http_parse *packet_parsed._filter;

if((*parse_memory) == NULL) {
/* Allocate (contiguous) parsing information memory */
(*parse_memory) = kmalloc(sizeof(struct parse_buffer*), GFP_KERNEL);
if(*parse_memory) {
(*parse_memory)->mem_len = sizeof(struct http_parse);
(*parse_memory)->mem = kcalloc(1, (*parse_memory)->mem_len, GFP_KERNEL);
if((*parse_memory)->mem == NULL) return(0); /* no match */

}

packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);
parse_http_packet(packet_parsed_filter, hdr, skb);

}else {
/* Packet already parsed: multiple HTTP rules, parse packet once */
packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);

}

return((rule_filter->the_method & packet_parsed_filter->the_method) ? 1 /* match */ : 0);

}

AMIS 2008 - July 2008

UNIVERSITA DI PISA

Using PF_RING Filters: HTTP Monitoring [4/5]

Plugin Packet Parsing (kernel)

static void parse_http_packet(struct http_parse *packet_parsed,
struct pfring_pkthdr *hdr,
struct sk_buff *skb) {
u_int offset = hdr->parsed_pkt.pkt_detail.offset.payload_offset; /* Use PF_RING Parsing */
char *payload = &skb->data[offset];

/* Fill PF_RING parsing information datastructure just allocated */

if((hdr->caplen > offset) && !memcmp(payload, "OPTIONS", 7)) packet_parsed->the_method = method_options;
else if((hdr->caplen > offset) && !memcmp(payload, "GET", 3)) packet_parsed->the_method = method_get;

else if((hdr->caplen > offset) && !Imemcmp(payload, "HEAD", 4)) packet_parsed->the_method = method_head;

else if((hdr->caplen > offset) && !memcmp(payload, "POST", 4)) packet_parsed->the_method = method_post;

else if((hdr->caplen > offset) && !memcmp(payload, "PUT", 3)) packet_parsed->the_method = method_put;

else if((hdr->caplen > offset) && !memcmp(payload, "DELETE", 6)) packet_parsed->the_method = method_delete;
else if((hdr->caplen > offset) && !memcmp(payload, "TRACE", 5)) packet_parsed->the_method = method_trace;

else if((hdr->caplen > offset) && !memcmp(payload, "CONNECT", 7)) packet_parsed->the_method = method_connect;
else if((hdr->caplen > offset) && !Imemcmp(payload, "HTTP ", 4)) packet_parsed->the_method = method_http_status_code;
else packet_parsed->the_method = method_other;

AMIS 2008 - July 2008
UNIVERSITA DI PISA

Using PF_RING Filters: HTTP Monitoring [5/5]

Userland application

if((pd = pfring_open(device, promisc, 0)) == NULL) { printf("pfring_open error\n"); return(-1); }
pfring_toggle_filtering_policy(pd, 0); /* Default to drop */

memset(&rule, 0, sizeof(rule));

rule.rule_id = 5, rule.rule_action = forward_packet_and_stop_rule_evaluation;
rule.core_fields.proto = 6 /* tcp */;

rule.core_fields.port_low = 80, rule.core_fields.port_high = 80;

rule.plugin_action.plugin_id = HTTP_PLUGIN_ID; /* HTTP plugin */
rule.extended_fields.filter_plugin_id = HTTP_PLUGIN_ID; /* Enable packet parsing/filtering */
filter = (struct http_filter*)rule.extended_fields.filter_plugin_data;

filter->the_method = method_get | method_http_status_code;

if(pfring_add_filtering_rule(pd, &rule) < 0) { printf("pfring_add_filtering_rule() failed\n"); return(-1); }
while(1) {

u_char buffer[2048];

struct pfring_pkthdr hdr;

if(pfring_recv(pd, (char*)buffer, sizeof(buffer), &hdr, 1) > 0)
dummyProcesssPacket(&hdr, buffer);

}
pfring_close(pd);

AMIS 2008 - July 2008
UNIVERSITA DI PISA

Advanced PF_RING Filtering: NetFlow [1/5]

e Godl

- Using PF_RING for packet capture and processing in user space, the target
performance (just packet capture, not flow generation) is:

o Standard Intel driver: 550 Mbps
e Enhanced Intel driver (see later in this presentation): 950 Mbps

- Ability to compute NetFlow/IPFIX flows at wire speed at 1 Gbit regardless of
the CPU being used and packet size.

e Solution

- Use PF_RING plugin to “pack” packets belonging to the same flow. This acts
as level-1 NetFlow cache.

- Periodically (e.g. once every 1-5 sec) flush cache flows by forwarding packet
digest fo userspace via PF_RING.

- Forwarded packets contains a header, used for computing flows, but not the
packet as this is unnecessary. Each PF_RING slot can host several packets/
flows if needed.

®

AMIS 2008 - July 2008
UNIVERSITA DI P1SA

Advanced PF_RING Filtering: NetFlow [2/5]

e Each PF_RING cache entry contains exactly the same information
necessary to generate flows.

struct pkt_aggregation_info {
u_int32_t num_pkts, num_bytes;
struct timeval first_seen, last_seen;

¢

struct netflow_I1_pf_ring_packet_cache {
/* Standard PF_RING fields */
u_int16_t eth_type; /* Ethernet type */
u_int16_t vlan_id; /* VLAN Id or NO_VLAN */
u_int8_t I13_proto, ipv4_tos; /* Layer 3 protocol/TOS */

u_int16_t 14_src_port, 14_dst_port; /* Layer 4 src/dst ports */

u:int32_t ipv4_src, ipv4_dst; /* IPv4 src/dst IP addresses */
u_int8_ttcp_flags; /* TCP flags (O if not available) */

struct pkt_aggregation_info aggregation; /* NetFlow */

%

o NetFlow cache is walked (for searching expired flows) by user-space

application through a dummy call to getsockopt() that allows to keep
kernel code simple as there’s no need to spawn a kernel thread for
walking the cache.

AMIS 2008 - July 2008
UNIVERSITA DI P1SA

Advanced PF_RING Filtering: NetFlow [3/5]

The PF_RING cache has (by default) 4096 entries and it is implemented as
an array (circular buffer) in order to keep the code simple.

User-space application can modify cache policy/size when PF_RING is
instrumented.

The plugin is activated with a wildcard-ed rule of ‘any’ so that any IP
packet matching the filter can be computed.

Modus Operandi

- When an incoming packet is received, PF_RING parses it, and then it is passed
to the plugin.

- Using parsing information the packet is searched in the cache

e [ffound the cache entry is updated

o if not found the packet is added to the cache. In case the cache slot where the
packet is supposed to be stored is already occupied, the slot is flushed (i.e. the entry
is forwarded to the userland) and the packet is accommodated.

Open Soure

AMIS 2008 - July 2008
UNIVERSITA DI P1SA

Advanced PF_RING Filtering: NetFlow [4/5]

e Using the kernel cache, packets are “merged” in kernel without any
userland application intervention.
In-kernel packet merging does not require any memory/packet copy and
it's very fast as the packet is already in the CPU cache (thanks to Intel RSS/
DCA, see later in this presentation).
The “merging rate” increases (in efficiency) with flows speed. In other terms
the cache is more efficient as flows are faster. Example:
- 1 Gbit (1.48 Mpps) flow with minimal packets.
- Kernel cache duration of 3 sec (i.e. flows older than this duration are exported)

- “Vanilla” PF_RING: in 3 sec the application receives 4.44 Million packets (3 x
1.48 Mpps).

- In-kernel cache generates 1 flow for the same amount of traffic.

Open Soure

AMIS 2008 - July 2008
UNIVERSITA DI P1SA

Advanced PF_RING Filtering: NetFlow [5/5]

Performance Evaluation

- Testbed: 1.86 GHz Intel CoreDuo (cost < 100 Euro), IXIA 400 Traffic generator,

minimal packet size (64 bytes), Intel e1000 driver, Full 1 Gbit stream, with packet
rotation, nProbe (home grown NetFlow probe) used as probe.

Vanilla PF_RING + nProbe: 100% CPU, ~600 Kpps processed with no loss.

Kernel NetFlow PF_RING plugin + nProbe: ~60-70% CPU used, wire-rate,
64-128 bytes packet, with no packet-loss.

Comparison:
spare CPU cycles compared to vanilla PF_RING.
wire-speed with minimal packet size.

not suitable (yet) for generating flows with packet payload information
(e.g. HTTP URL).

AMIS 2008 - July 2008 Bpen source

UNIVERSITA DI P1SA

Dynamic PF_RING Filtering: VolIP [1/6}

e Goal
- Track VolP (SIP+RTP) calls at any rate on a Gbit link using commodity
hardware.

- Track RTP streams and calculate call quality information such as jitter, packet
loss,without having to handle packets in userland.

e Solution

- Code a PF_RING plugin for tracking SIP methods and filter-out:
e Uninteresting (e.g. SIP Options) SIP methods
* Not well-formed SIP packets

o Dummy/self calls (i.e. calls used to keep the line open but that do nof result in a
real call).

- Code a RTP plugin for computing in-kernel call statistics (no pkt forwarding).

- The SIP plugin adds/removes a precise RTP PF_RING filtering rule whenever a
call starts/ends.

®

AMIS 2008 - July 2008
UNIVERSITA DI P1SA

Dynamic PF_RING Filtering: VolIP [2/6]

Before removing the RTP rule though PF_RING library calls, call information is
read and then the rule is deleted.

Keeping the call state in userland and do not forward RTP packets, allows the
code of VoIP monitoring applications to be greatly simplified.

Furthermore as SIP packets are very few compared to RTP packets, the
outcome is that most packets are not forwarded to userland contributing to
reduce the overall system load.

m_-j VoIP Monitor

|/\ RTP packets
f Add/remove flow
RTP statistics (poll)

SIP packets

(user space)

(kernel space) \1,

SIP filter RTP i
analyzer
A

SIP signaling

WiE Dy,
SRt

AMIS 2008 - July 2008
UNIVERSITA DI PISA

Dynamic PF_RING Filtering: VolIP [3/6]

e SIP Plugin
- It allows filters to be set on SIP fields (e.g. From, To, Via, CalllD)

- Some fields are not parsed but the plugin returns an offset inside the SIP
packet (e.g. SDP offset, used to find out the IP:port that will be used for
carrying the RTP/RTCP streams).

Forwarded packets contain parsing information in addition to SIP payload.

e RTP Plugin
- It tracks RTP (mono/bi-directional) flows.

- The following, per-flow, statistics are computed: jitter, packet loss, malformed
packets, out of order, transit time, max packet delta.

- Developers can decide not to forward packets (this is the default behavior) or
to forward them (usually not needed unless activities like lawful interception
need to be carried on).

Open Soure

AMIS 2008 - July 2008
UNIVERSITA DI P1SA

Dynamic PF_RING Filtering: VolIP [4/6]

e Validation

- ASIP test tool and traffic generator (sipp) is used to create synthetic SIP/RTP
traffic.

A test application has been developed: it receives SIP packets (signaling) and
based on them it computes RTP stats.

A traffic generator (IXIA 400) is used to generate noise in the line and fill it up.
As RTP packets are 100 bytes in average, all tests are run with 128 bytes
packets.

The test code runs on a cheap single-core Celeron 3.2 GHz (cost < 40 Euro).

In order to evaluate the speed gain due to PF_RING kernel modules, the same
test application code is tested:

e Forwarding SIP/RTP packets to userland without exploiting kernel modules (i.e. the
code uses the standard PF_RING).

o RTP packets are not forwarded, SIP packets are parsed/filtered in kernel.

AMIS 2008 - July 2008 Bpen source

UNIVERSITA DI P1SA

Dynamic PF_RING Filtering: VoIP [5/6]

% lIdle CPU [128 bytes packets]

20
15
10
: OV\N
0 0
1000 10’000 20°000 30°000 40°000 50000 Kernel
Rules
Max Throughput (Mbps) with no loss [128 bytes packets]
700
525
350
175
0 Kernel
1000 10’000 20°000 30’000 40’000 50’000 Rules
©O RTP Plugin
©O RTP stats computed in userland
PF_RING capture only (no RTP analysis) o
S . AMIS 2008 - July 2008 open source 39

Dynamic PF_RING Filtering: VolIP [6/6]

e Validation Evaluation

- In-kernel acceleration has demonstrated that up until 40K rules, kernel
plugins are faster than a dummy application that simply captures packets
without any processing.

On a Gbit link it is possible to have up to ~10K concurrent calls with G.711 (872
Mbit) or ~30K calls with G.729 (936 Mbit). This means that with the current
setup and a slow processor, it is basically possible to monitor a medium/
large ISP.

e Future Work ltems

- The plugins are currently used as building blocks glued together by means of
the user-space applications.

— The SIP plugin can dynamically add/remove RTP rules, so that it is possible fo
avoid (even for SIP) packet forwarding and send to userland just VolIP statistics
for even better performance figures.

®

AMIS 2008 - July 2008
UNIVERSITA DI P1SA

Even further acceleration:
nCap

Multithreaded NIC Drivers.

Beyond PF_RING

PF_RING has shown to be an excellent packet capture acceleration
technology compared to vanilla Linux.

It has reduced the cost of packet capture and forward to userland.
However it has some design limitations as it requires two actors for
capturing packets that result in sub-optimal performance:

- kernel: copy packet from NIC fo ring.

- userland: read packet from ring and process it.

PF_RING kernel modules demonstrated that limiting packet processing in
user-space by moving it to kernel results in major performance
improvements.

A possible solution is to map a NIC to user-space and prevent the kernel
from using it.

Open Soure

AMIS 2008 - July 2008
UNIVERSITA DI P1SA

nCap [1/2]

Monitoring Monitoring Monitoring
Application Application Application

2
= nCap Library
3
L -
o _ nCap
2 75 p —
2 4 e
N O : Receive : . Send . Legac
=3 S o
Q = ——
VA4 o
N
Ethernet Device Driver

0.

AMIS 2008 - July 2008 Bpen source

UNIVERSITA DI P1sA

43

nCap [2/2]

e Evaluation

Technology developed by the author in 2004.

High-speed packet capture: 1 Gbit wire-rate (1.48 Mpps) using a 3 GHz P4
with HyperThreading.

High-speed packet generation: as fast as a a hardware traffic generator at a
portion of the price.

Solution similar to http://sourceforge.net/projects/channel-sock/.

e Drawbacks

Only one application at time can use the NIC (as most accelerator cards
including Endace and Napatech).

Driver-dependent (it supported only Intel 1 Gbit cards).

nCap on 2.4 Linux kernel series is much faster than nCap on 2.6 due to
scheduler changes: realtime patches required.

a5 O
L&Y 5
4 AMIS 2008 - July 2008 Open SOUre

UNIVERSITA DI PISA

Enhanced NIC Drivers [1/5]

The current trend in computer architecture is towards multi-core systems.

Currently 4-core CPUs are relatively cheap, some manufacturers
announced a 64-core x86 CPU by the end of 2008.

Exploiting multi-core in userland applications is relatively simple by using
threads.

Exploiting multi-core in kernel networking code is much more complex.

Linux kernel networking drivers are single-threaded and the model is still
the same since many years.

It's not possible to achieve good networking performance unless NIC
drivers are also accelerated and exploit multi-core.

AMIS 2008 - July 2008 @ .
UNIVERSITA DI P1SA Y O SOUCE

Enhanced NIC Drivers [2/5]

Intel has recently introduced a few innovations in the Xeon 5000 chipset
series that have been designed to accelerate networking applications:

e 1/0 Acceleration Technology (I/OAT)
QuickData Technology
Direct Cache Access (DCA) move packets directly on CPU’s cache

Multiple TX/RX queues (one per core) that improve system throughput and
utilization

MSI-X, low latency interrupts and load balancing across multiple RX queues.
RSS (Receive-Side Scaling) balances packets across RX queue/cores
Low-latency with adaptive and flexible interrupt moderation

In a nutshell: increase performance by distributing workloads across available CPU
cores.

AMIS 2008 - July 2008 Bpen source

UNIVERSITA DI P1SA

Enhanced NIC Drivers [3/5]

Optimized
TCP/IP stack
Gy
Chy
! Enh ddi
Chi nhanced direct memory
Affinitized network Ds‘t £ access (DMA) for more
data flow for balanced § / efficient memory copies
computing across » §
multiple CPUs 0 b“’kQ:
Network /

Data Stream

ntop.org

AMIS 2008 - July 2008 0"

7343 47
UNIVERSITA DI P1sA Open SOUrCE

Enhanced NIC Drivers [4/5]

In order to enhance and accelerate packet capture under Linux, the
author has implemented a new Linux driver for Intel 1 and 10 Gbit cards
that features:

Multithreaded capture (one thread per RX queue, per NIC adapter). The
number of rings is the number of cores (i.e. a 4 core system has 4 RX rings).
Caveat: interrupts can be disabled per-ring but are enabled per card.

RX packet balancing across cores based on RSS: one core, one RX ring.

Driver-based packet filtering (PF_RING filters port into the driver) for stopping
unwanted packets at the source.

Development drivers for Intel 82598 (10G) and 82575 (1G) ethernet controllers.

AMIS 2008 - July 2008 Bpen source

UNIVERSITA DI P1SA

Enhanced NIC Drivers [5/5]

e Preliminary performance results:

- 10 Gbit
e The festbed is a 4 x 1 G ports IXIA 400 traffic generator that are mixed info a 10G

stream using a HP ProCurve 3400cl-24 switch.

e A dual 4-core 3 GHz Xeon has been used for testing.
o Using the accelerated driver it is possible to driver-filter 512 bytes packets at 7 Gbps

with a 1:256 packet forward rate to user-space with no loss.

- 1 Gbit

The same testbed for 10G has been used.

The same packet filtering policy applied to 2 x 1 Gbit ports works with no loss and
with minimal (~10%) CPU load.

The performance improvement also affects packet capture. For instance with a
Core 2 Duo 1.86 GHz, packet capture improved from 580 Kpps to over 900 Kpps.

& 0
e AMIS 2008 - July 2008

UNIVERSITA DI PISA

References

libpcap: hitp://www.tcpdump.org
PF_RING: http://www.ntop.org/PF_RING.html
BPF: http://www.tcpdump.org/papers/bpf-usenix93.pdf

Bloom Filters: http://en.wikipedia.org/wiki/Bloom_filter
Intel I/OAT: http://www.intel.com/technology/ioacceleration/

ntop Web Site: http://www.ntop.org/
Author Papers: hitp://luca.ntop.org

All work is open-source and released under GPL.

AMIS 2008 - July 2008

Open Soure

http://www.tcpdump.org
http://www.tcpdump.org
http://www.ntop.org/PF_RING.html
http://www.ntop.org/PF_RING.html
http://www.tcpdump.org/papers/bpf-usenix93.pdf
http://www.tcpdump.org/papers/bpf-usenix93.pdf
http://en.wikipedia.org/wiki/Bloom_filter
http://en.wikipedia.org/wiki/Bloom_filter
http://www.intel.com/technology/ioacceleration/
http://www.intel.com/technology/ioacceleration/
http://luca.ntop.org
http://luca.ntop.org

