
ntop.org
AMIS 2008 - July 2008 1

High-Speed Passive
Packet Capture and Filtering

Luca Deri <deri@ntop.org>

ntop.org
AMIS 2008 - July 2008

Tutorial Overview

1. Accelerating packet capture and analysis:
PF_RING.

2. Layer 7 kernel packet filtering and processing.

3. Even further acceleration: nCap, multithreaded NIC
Drivers.

4. Towards 10 Gbit packet capture.

2

ntop.org
AMIS 2008 - July 2008

Accelerating Packet Capture
and Analysis: PF_RING

3

ntop.org
AMIS 2008 - July 2008 4

Packet Capture: Open Issues

• Monitoring low speed (100 Mbit) networks is already possible using
commodity hardware and tools based on libpcap.

• Sometimes even at 100 Mbit there is some (severe) packet loss: we
have to shift from thinking in terms of speed to number of packets/
second that can be captured analyzed.

• Problem statement: monitor high speed (1 Gbit and above)
networks with common PCs (64 bit/66 Mhz PCI/X/Express bus)
without the need to purchase custom capture cards or
measurement boxes.

• Challenge: how to improve packet capture performance without
having to buy dedicated/costly network cards?

ntop.org
AMIS 2008 - July 2008

Packet Capture Goals

• Use commodity hardware for capturing packets
at wire speed with no loss under any traffic
condition.

• Be able to have spare CPU cycles for analyzing
packets for various purposes (e.g. traffic
monitoring and security).

• Enable the creation of software probes that sport
the same performance of hardware probes at a
fraction of cost.

5

ntop.org
AMIS 2008 - July 2008 6

Socket Packet Ring (PF_RING)

Read
Index

Write
Index

Incoming Packets

Outgoing Packets Userspace

Kernel

Socket
(ring)

Network
Adapter

mmap()

Socket
(ring)

PF_RING

Application A Application Z

ntop.org
AMIS 2008 - July 2008

PF_RING: Benefits

• It creates a straight path for incoming packets in order to
make them first-class citizens.

• No need to use custom network cards: any card is
supported.

• Transparent to applications: legacy applications need to be
recompiled in order to use it.

• No kernel or low-level programming is required.

• Developers familiar with network applications can
immediately take advantage of it without having to learn new
APIs.

7

ntop.org
AMIS 2008 - July 2008

PF_RING: Performance Evaluation

8

Pkt Size Kpps Mbps % CPU Idle Wire-Speed

250 259.23 518 > 90% Yes

250 462.9 925.9 88% Yes

128 355.1 363.6 86% Yes

128 844.6 864.8 82% Yes

Test setup: pcount, full packet size, 3.2 GHz Celeron (single-core) - IXIA 400 Traffic Generator

ntop.org
AMIS 2008 - July 2008 9

Socket Packet Ring:
Packet Capture Evaluation

• Ability to capture over 1.1 Mpps on commodity hardware with
minimal packet sizes (64 bytes).

• Available for Linux 2.4 and 2.6 kernel series.

• Hardware independent: runs on i386, 64bit, MIPS.

• Available for PCs and embedded devices (e.g. OpenWrt,
MikroTik routers)

ntop.org
AMIS 2008 - July 2008 10

PF_RING on Embedded Devices

http://nst.sourceforge.net/nst/docs/user/ch09s02.html

ntop.org
AMIS 2008 - July 2008

PF_RING: Packet Filtering [1/2]

• PF_RING has addressed the problem of accelerating packet
capture.

• Packet filtering instead is still based on the “ancient” BPF
(Berkeley Packet Filter) code used by apps such as tcpdump.

• This means that:

– Each socket can have up to one filter defined.

– The packet needs to be parsed in order to match the filter,
but the parsing information is not passed to user-space.

– The BPF filter length can change significantly even if the
filter is slightly changed.

11

ntop.org
AMIS 2008 - July 2008

PF_RING: Packet Filtering [2/2]

12

tcpdump -d "udp"

(000) ldh [12]

(001) jeq #0x800 jt 2 jf 5

(002) ldb [23]

(003) jeq #0x11 jt 4 jf 5

(004) ret #96

(005) ret #0

tcpdump -d "udp and port 53"

(000) ldh [12]

(001) jeq #0x800 jt 2 jf 12

(002) ldb [23]

(003) jeq #0x11 jt 4 jf 12

(004) ldh [20]

(005) jset #0x1fff jt 12 jf 6

(006) ldxb 4*([14]&0xf)

(007) ldh [x + 14]

(008) jeq #0x35 jt 11 jf 9

(009) ldh [x + 16]

(010) jeq #0x35 jt 11 jf 12

(011) ret #96

(012) ret #0

ntop.org
AMIS 2008 - July 2008

Beyond BPF Filtering [1/2]

• VoIP and Lawful Interception traffic is usually very little
compared to the rest of traffic.

• Capture starts from filtering signaling protocols and then
intercepting voice payload.

• BPF-like filtering is not effective (one filter only).

• It is necessary to add/remove filters on the fly with hundreds
active filters.

13

ntop.org
AMIS 2008 - July 2008 14

Beyond BPF Filtering [1/2]

Solution

– Filter packets directory on the device driver (not into the
kernel layer).

– Implement hash/bloom based filtering (limited false
positives).

– Memory effective (doesn’t grow as filters are added).

– Implemented on Linux on Intel GE cards. Great
performance (virtually no packet loss at 1 Gbit).

ntop.org
AMIS 2008 - July 2008

Dynamic Bloom Filtering [1/3]
• An empty bloom is a bit array of m bits all set to zero.

• k hash different functions are used to map a key to an array position
(0...m-1 hash function range).

• n is the number of elements insert into the dictionary.

• How to add an element: for each k hash function set to 1 the array bit that
corresponds to the hash value.

• How to test if an element belongs to the set: for each hash function
calculate the hash element value. The element belongs to the set if and
only if all the k bits of the hash values are set to 1.

• How to remove an element: fully rebuild the dictionary or use counting
blooms.

• False positive rate:

• Optimal number of hash functions: k = (m/n) log(2)

15

ntop.org
AMIS 2008 - July 2008

Dynamic Bloom Filtering [2/3]

16

Insert: hash_1(X), hash_2(X)....hash_n(X)

Check for inclusion

ntop.org
AMIS 2008 - July 2008

Dynamic Bloom Filtering [3/3]

17

• Ability to specify thousands of different IP packet filters.

• Ability to dynamically add/remove filters without having to
interrupt existing applications.

• Only “precise” filters (e.g. host X and port Y) are supported
as a new dictionary is required for each filtering criteria
(e.g <IP,port,proto> and <IP,port> need two different
dictionaries).

• The filter processing speed and memory being used is
proportional to the number of filters but independent from
their number and complexity.

ntop.org
AMIS 2008 - July 2008 18

Dynamic Bloom Filtering

• Available into PF_RING (up to 3.7.x).

• Ability to set per-socket bloom filters

Dynamic Filtering

BPF Filtering (Optional)

Packet Consumption

U
s
e
r

S
p
a
c
e

K
e
rn

e
l

S
p
a
c
e

N
e
tw

o
rk

D
e
v
ic

e
D

ri
v
e
r

ntop.org
AMIS 2008 - July 2008

PF_RING: Bloom Evaluation

19

• Tests performed using a dual Xeon 3.2 GHz CPU
injecting traffic with an IXIA 400 traffic generator with
1:256 match rate.

• Packet loss only above 1.8 Mpps (2 x 1 Gbit NICs).
• Ability to specify thousand of filters with no

performance degradation with respect to a single
filter (only false positive rate increases).

ntop.org
AMIS 2008 - July 2008 20

PF_RING Content Inspection

• Ability to (in kernel) search multiple string patterns
into packet payload.

• Algorithm based on Aho-Corasick work.
• Ideal for fields like lawful interception and security

(including IDSs).
• Major performance improvement with respect to

conventional pcap-based applications.

ntop.org
AMIS 2008 - July 2008

Beyond Bloom Filters

• Bloom filtering has shown to be a very interesting technology
for “precise” packet filtering.

• Unfortunately many applications require some features that
cannot be easily supported by blooms:

– port ranges

– negative expressions (not <expression>)

– IP address/mask (where mask != /32)

– in case of match, know what rule(s) matched the filter

21

ntop.org
AMIS 2008 - July 2008

Extended PF_RING Filters [1/2]

I have made a survey of network applications and created a list
of desirable features, that have then been implemented into
PF_RING:

• “Wildcard-ed” filters (e.g. TCP and port 80). Each rule has a
rule-id and rules are evaluated according to it.

• Precise 5-tuple filters (VLAN, protocol, IP src/dst, port src/dst)
and eventually extend them with other fields (e.g. MPLS label).

• Precise filters (e.g. best match) have priority over (e.g. generic)
wilcard-ed filters.

22

ntop.org
AMIS 2008 - July 2008

Extended PF_RING Filters [2/3]

• Support of filter ranges (IP and port ranges) for reducing the
number of filters.

• Support of mono or bi-directional filters, for reducing number
of filters.

• Ability to filter both on standard 5-tuple fields and on L7 fields
(e.g. HTTP method=GET).

• Parsing information (including L7 information) needs to be
returned to user-space (i.e. do not parse the packet twice).

23

ntop.org
AMIS 2008 - July 2008

Extended PF_RING Filters [3/3]

• Per-filter policy in case of match:

– Stop filtering rule evaluation and drop/forward packet to
user-space.

– Update filtering rule status (e.g. statistics) and stop/
continue rule evaluation without forwarding packet to
user-space.

• Filtering rules can pass to user-space both captured packets
or statistics/packet digests (this for those apps who need pre-
computed values and not just raw packets).

24

ntop.org
AMIS 2008 - July 2008

Using PF_RING Filters: HTTP Monitoring [1/5]

• Goal

– Passively produce HTTP traffic logs similar to those
produced by Apache/Squid/W3C.

• Solution

– Implement plugin that filters HTTP traffic.

– Forward to userspace only those packets containing HTTP
requests for all known methods (e.g. GET, POST, HEAD) and
responses (e.g. HTTP 200 OK).

– All other HTTP packets beside those listed above are
filtered and not returned to userspace.

– HTTP response length is computed based on the “Content-
Length” HTTP response header attribute.

25

static int __init http_plugin_init(void)
{
 int rc;

 printk("Welcome to HTTP plugin for PF_RING\n");

 reg.plugin_id = HTTP_PLUGIN_ID;
 reg.pfring_plugin_filter_skb = http_plugin_plugin_filter_skb;
 reg.pfring_plugin_handle_skb = NULL;
 reg.pfring_plugin_get_stats = NULL;

 snprintf(reg.name, sizeof(reg.name)-1, "http");
 snprintf(reg.description, sizeof(reg.description)-1, "HTTP protocol analyzer");

 rc = do_register_pfring_plugin(®);

 printk("HTTP plugin registered [id=%d][rc=%d]\n", reg.plugin_id, rc);

 return(0);
}

ntop.org
AMIS 2008 - July 2008

Plugin Registration (kernel)

26

Using PF_RING Filters: HTTP Monitoring [2/5]

static int http_plugin_plugin_filter_skb(filtering_rule_element *rule,
 struct pfring_pkthdr *hdr, struct sk_buff *skb,
 struct parse_buffer **parse_memory)
{
 struct http_filter *rule_filter = (struct http_filter*)rule->rule.extended_fields.filter_plugin_data;
 struct http_parse *packet_parsed_filter;

 if((*parse_memory) == NULL) {
 /* Allocate (contiguous) parsing information memory */
 (*parse_memory) = kmalloc(sizeof(struct parse_buffer*), GFP_KERNEL);
 if(*parse_memory) {
 (*parse_memory)->mem_len = sizeof(struct http_parse);
 (*parse_memory)->mem = kcalloc(1, (*parse_memory)->mem_len, GFP_KERNEL);
 if((*parse_memory)->mem == NULL) return(0); /* no match */
 }

 packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);
 parse_http_packet(packet_parsed_filter, hdr, skb);
 } else {
 /* Packet already parsed: multiple HTTP rules, parse packet once */
 packet_parsed_filter = (struct http_parse*)((*parse_memory)->mem);
 }

 return((rule_filter->the_method & packet_parsed_filter->the_method) ? 1 /* match */ : 0);
}

ntop.org
AMIS 2008 - July 2008

Plugin Packet Filtering (kernel)

27

Using PF_RING Filters: HTTP Monitoring [3/5]

static void parse_http_packet(struct http_parse *packet_parsed,
 struct pfring_pkthdr *hdr,
 struct sk_buff *skb) {
 u_int offset = hdr->parsed_pkt.pkt_detail.offset.payload_offset; /* Use PF_RING Parsing */
 char *payload = &skb->data[offset];

 /* Fill PF_RING parsing information datastructure just allocated */
 if((hdr->caplen > offset) && !memcmp(payload, "OPTIONS", 7)) packet_parsed->the_method = method_options;
 else if((hdr->caplen > offset) && !memcmp(payload, "GET", 3)) packet_parsed->the_method = method_get;
 else if((hdr->caplen > offset) && !memcmp(payload, "HEAD", 4)) packet_parsed->the_method = method_head;
 else if((hdr->caplen > offset) && !memcmp(payload, "POST", 4)) packet_parsed->the_method = method_post;
 else if((hdr->caplen > offset) && !memcmp(payload, "PUT", 3)) packet_parsed->the_method = method_put;
 else if((hdr->caplen > offset) && !memcmp(payload, "DELETE", 6)) packet_parsed->the_method = method_delete;
 else if((hdr->caplen > offset) && !memcmp(payload, "TRACE", 5)) packet_parsed->the_method = method_trace;
 else if((hdr->caplen > offset) && !memcmp(payload, "CONNECT", 7)) packet_parsed->the_method = method_connect;
 else if((hdr->caplen > offset) && !memcmp(payload, "HTTP ", 4)) packet_parsed->the_method = method_http_status_code;
 else packet_parsed->the_method = method_other;
}

ntop.org
AMIS 2008 - July 2008

Plugin Packet Parsing (kernel)

28

Using PF_RING Filters: HTTP Monitoring [4/5]

 if((pd = pfring_open(device, promisc, 0)) == NULL) { printf("pfring_open error\n"); return(-1); }

 pfring_toggle_filtering_policy(pd, 0); /* Default to drop */

 memset(&rule, 0, sizeof(rule));
 rule.rule_id = 5, rule.rule_action = forward_packet_and_stop_rule_evaluation;
 rule.core_fields.proto = 6 /* tcp */;
 rule.core_fields.port_low = 80, rule.core_fields.port_high = 80;
 rule.plugin_action.plugin_id = HTTP_PLUGIN_ID; /* HTTP plugin */
 rule.extended_fields.filter_plugin_id = HTTP_PLUGIN_ID; /* Enable packet parsing/filtering */
 filter = (struct http_filter*)rule.extended_fields.filter_plugin_data;
 filter->the_method = method_get | method_http_status_code;

 if(pfring_add_filtering_rule(pd, &rule) < 0) { printf("pfring_add_filtering_rule() failed\n"); return(-1); }

 while(1) {
 u_char buffer[2048];
 struct pfring_pkthdr hdr;

 if(pfring_recv(pd, (char*)buffer, sizeof(buffer), &hdr, 1) > 0)
 dummyProcesssPacket(&hdr, buffer);
 }

 pfring_close(pd);

ntop.org
AMIS 2008 - July 2008

Userland application

29

Using PF_RING Filters: HTTP Monitoring [5/5]

ntop.org
AMIS 2008 - July 2008

Advanced PF_RING Filtering: NetFlow [1/5]
• Goal

– Using PF_RING for packet capture and processing in user space, the target
performance (just packet capture, not flow generation) is:
• Standard Intel driver: 550 Mbps

• Enhanced Intel driver (see later in this presentation): 950 Mbps

– Ability to compute NetFlow/IPFIX flows at wire speed at 1 Gbit regardless of
the CPU being used and packet size.

• Solution

– Use PF_RING plugin to “pack” packets belonging to the same flow. This acts
as level-1 NetFlow cache.

– Periodically (e.g. once every 1-5 sec) flush cache flows by forwarding packet
digest to userspace via PF_RING.

– Forwarded packets contains a header, used for computing flows, but not the
packet as this is unnecessary. Each PF_RING slot can host several packets/
flows if needed.

30

ntop.org
AMIS 2008 - July 2008

Advanced PF_RING Filtering: NetFlow [2/5]
• Each PF_RING cache entry contains exactly the same information

necessary to generate flows.

• NetFlow cache is walked (for searching expired flows) by user-space
application through a dummy call to getsockopt() that allows to keep
kernel code simple as there’s no need to spawn a kernel thread for
walking the cache.

31

struct pkt_aggregation_info {
 u_int32_t num_pkts, num_bytes;
 struct timeval first_seen, last_seen;
};

struct netflow_l1_pf_ring_packet_cache {
 /* Standard PF_RING fields */
 u_int16_t eth_type; /* Ethernet type */
 u_int16_t vlan_id; /* VLAN Id or NO_VLAN */
 u_int8_t l3_proto, ipv4_tos; /* Layer 3 protocol/TOS */
 u_int32_t ipv4_src, ipv4_dst; /* IPv4 src/dst IP addresses */
 u_int16_t l4_src_port, l4_dst_port; /* Layer 4 src/dst ports */
 u_int8_t tcp_flags; /* TCP flags (0 if not available) */

 struct pkt_aggregation_info aggregation; /* NetFlow */
};

ntop.org
AMIS 2008 - July 2008

Advanced PF_RING Filtering: NetFlow [3/5]
• The PF_RING cache has (by default) 4096 entries and it is implemented as

an array (circular buffer) in order to keep the code simple.

• User-space application can modify cache policy/size when PF_RING is
instrumented.

• The plugin is activated with a wildcard-ed rule of ‘any’ so that any IP
packet matching the filter can be computed.

• Modus Operandi
– When an incoming packet is received, PF_RING parses it, and then it is passed

to the plugin.

– Using parsing information the packet is searched in the cache
• If found the cache entry is updated

• if not found the packet is added to the cache. In case the cache slot where the
packet is supposed to be stored is already occupied, the slot is flushed (i.e. the entry
is forwarded to the userland) and the packet is accommodated.

32

ntop.org
AMIS 2008 - July 2008

Advanced PF_RING Filtering: NetFlow [4/5]
• Using the kernel cache, packets are “merged” in kernel without any

userland application intervention.

• In-kernel packet merging does not require any memory/packet copy and
it’s very fast as the packet is already in the CPU cache (thanks to Intel RSS/
DCA, see later in this presentation).

• The “merging rate” increases (in efficiency) with flows speed. In other terms
the cache is more efficient as flows are faster. Example:
– 1 Gbit (1.48 Mpps) flow with minimal packets.

– Kernel cache duration of 3 sec (i.e. flows older than this duration are exported)

– “Vanilla” PF_RING: in 3 sec the application receives 4.44 Million packets (3 x
1.48 Mpps).

– In-kernel cache generates 1 flow for the same amount of traffic.

33

ntop.org
AMIS 2008 - July 2008

Advanced PF_RING Filtering: NetFlow [5/5]
• Performance Evaluation

– Testbed: 1.86 GHz Intel CoreDuo (cost < 100 Euro), IXIA 400 Traffic generator,
minimal packet size (64 bytes), Intel e1000 driver, Full 1 Gbit stream, with packet
rotation, nProbe (home grown NetFlow probe) used as probe.

• Vanilla PF_RING + nProbe: 100% CPU, ~600 Kpps processed with no loss.

• Kernel NetFlow PF_RING plugin + nProbe: ~60-70% CPU used, wire-rate,
64-128 bytes packet, with no packet-loss.

• Comparison:

– spare CPU cycles compared to vanilla PF_RING.

– wire-speed with minimal packet size.

– not suitable (yet) for generating flows with packet payload information
(e.g. HTTP URL).

34

ntop.org
AMIS 2008 - July 2008

Dynamic PF_RING Filtering: VoIP [1/6]
• Goal

– Track VoIP (SIP+RTP) calls at any rate on a Gbit link using commodity
hardware.

– Track RTP streams and calculate call quality information such as jitter, packet
loss,without having to handle packets in userland.

• Solution

– Code a PF_RING plugin for tracking SIP methods and filter-out:
• Uninteresting (e.g. SIP Options) SIP methods

• Not well-formed SIP packets

• Dummy/self calls (i.e. calls used to keep the line open but that do not result in a
real call).

– Code a RTP plugin for computing in-kernel call statistics (no pkt forwarding).

– The SIP plugin adds/removes a precise RTP PF_RING filtering rule whenever a
call starts/ends.

35

ntop.org
AMIS 2008 - July 2008

Dynamic PF_RING Filtering: VoIP [2/6]
– Before removing the RTP rule though PF_RING library calls, call information is

read and then the rule is deleted.

– Keeping the call state in userland and do not forward RTP packets, allows the
code of VoIP monitoring applications to be greatly simplified.

– Furthermore as SIP packets are very few compared to RTP packets, the
outcome is that most packets are not forwarded to userland contributing to
reduce the overall system load.

36

(user space)

(kernel space)

RTP media
SIP signaling

SIP filter RTP
analyzer

 VoIP Monitor
RTP packets
Add/remove flow

SIP packets

RTP statistics (poll)

ntop.org
AMIS 2008 - July 2008

Dynamic PF_RING Filtering: VoIP [3/6]
• SIP Plugin

– It allows filters to be set on SIP fields (e.g. From, To, Via, CallID)

– Some fields are not parsed but the plugin returns an offset inside the SIP
packet (e.g. SDP offset, used to find out the IP:port that will be used for
carrying the RTP/RTCP streams).

– Forwarded packets contain parsing information in addition to SIP payload.

• RTP Plugin
– It tracks RTP (mono/bi-directional) flows.

– The following, per-flow, statistics are computed: jitter, packet loss, malformed
packets, out of order, transit time, max packet delta.

– Developers can decide not to forward packets (this is the default behavior) or
to forward them (usually not needed unless activities like lawful interception
need to be carried on).

37

ntop.org
AMIS 2008 - July 2008

Dynamic PF_RING Filtering: VoIP [4/6]
• Validation

– A SIP test tool and traffic generator (sipp) is used to create synthetic SIP/RTP
traffic.

– A test application has been developed: it receives SIP packets (signaling) and
based on them it computes RTP stats.

– A traffic generator (IXIA 400) is used to generate noise in the line and fill it up.
As RTP packets are 100 bytes in average, all tests are run with 128 bytes
packets.

– The test code runs on a cheap single-core Celeron 3.2 GHz (cost < 40 Euro).

– In order to evaluate the speed gain due to PF_RING kernel modules, the same
test application code is tested:
• Forwarding SIP/RTP packets to userland without exploiting kernel modules (i.e. the

code uses the standard PF_RING).

• RTP packets are not forwarded, SIP packets are parsed/filtered in kernel.

38

ntop.org
AMIS 2008 - July 2008

Dynamic PF_RING Filtering: VoIP [5/6]

39

0

5

10

15

20

1000 10’000 20’000 30’000 40’000 50’000

% Idle CPU [128 bytes packets]

RTP Plugin
RTP stats computed in userland
PF_RING capture only (no RTP analysis)

0

175

350

525

700

1000 10’000 20’000 30’000 40’000 50’000

Max Throughput (Mbps) with no loss [128 bytes packets]

Kernel
Rules

Kernel
Rules

ntop.org
AMIS 2008 - July 2008

Dynamic PF_RING Filtering: VoIP [6/6]
• Validation Evaluation

– In-kernel acceleration has demonstrated that up until 40K rules, kernel
plugins are faster than a dummy application that simply captures packets
without any processing.

– On a Gbit link it is possible to have up to ~10K concurrent calls with G.711 (872
Mbit) or ~30K calls with G.729 (936 Mbit). This means that with the current
setup and a slow processor, it is basically possible to monitor a medium/
large ISP.

• Future Work Items

– The plugins are currently used as building blocks glued together by means of
the user-space applications.

– The SIP plugin can dynamically add/remove RTP rules, so that it is possible to
avoid (even for SIP) packet forwarding and send to userland just VoIP statistics
for even better performance figures.

40

ntop.org
AMIS 2008 - July 2008

Even further acceleration:
nCap

Multithreaded NIC Drivers.

41

ntop.org
AMIS 2008 - July 2008

Beyond PF_RING
• PF_RING has shown to be an excellent packet capture acceleration

technology compared to vanilla Linux.

• It has reduced the cost of packet capture and forward to userland.

• However it has some design limitations as it requires two actors for
capturing packets that result in sub-optimal performance:

– kernel: copy packet from NIC to ring.

– userland: read packet from ring and process it.

• PF_RING kernel modules demonstrated that limiting packet processing in
user-space by moving it to kernel results in major performance
improvements.

• A possible solution is to map a NIC to user-space and prevent the kernel
from using it.

42

nCap Library

Receive

Monitoring
Application

Monitoring
Application

Monitoring
Application

Ethernet Device Driver

nCap

Legacy

St
ra

ig
h

t C
a

p
tu

re

U
se

rl
a

n
d

K
e

rn
e

l Send

ntop.org
AMIS 2008 - July 2008

nCap [1/2]

43

ntop.org
AMIS 2008 - July 2008

nCap [2/2]
• Evaluation

– Technology developed by the author in 2004.

– High-speed packet capture: 1 Gbit wire-rate (1.48 Mpps) using a 3 GHz P4
with HyperThreading.

– High-speed packet generation: as fast as a a hardware traffic generator at a
portion of the price.

– Solution similar to http://sourceforge.net/projects/channel-sock/.

• Drawbacks

– Only one application at time can use the NIC (as most accelerator cards
including Endace and Napatech).

– Driver-dependent (it supported only Intel 1 Gbit cards).

– nCap on 2.4 Linux kernel series is much faster than nCap on 2.6 due to
scheduler changes: realtime patches required.

44

ntop.org
AMIS 2008 - July 2008

Enhanced NIC Drivers [1/5]

• The current trend in computer architecture is towards multi-core systems.

• Currently 4-core CPUs are relatively cheap, some manufacturers
announced a 64-core x86 CPU by the end of 2008.

• Exploiting multi-core in userland applications is relatively simple by using
threads.

• Exploiting multi-core in kernel networking code is much more complex.

• Linux kernel networking drivers are single-threaded and the model is still
the same since many years.

• It’s not possible to achieve good networking performance unless NIC
drivers are also accelerated and exploit multi-core.

45

ntop.org
AMIS 2008 - July 2008

Enhanced NIC Drivers [2/5]

Intel has recently introduced a few innovations in the Xeon 5000 chipset
series that have been designed to accelerate networking applications:

• I/O Acceleration Technology (I/OAT)

– QuickData Technology

– Direct Cache Access (DCA) move packets directly on CPU’s cache

– Multiple TX/RX queues (one per core) that improve system throughput and
utilization

— MSI-X, low latency interrupts and load balancing across multiple RX queues.

— RSS (Receive-Side Scaling) balances packets across RX queue/cores

— Low-latency with adaptive and flexible interrupt moderation

In a nutshell: increase performance by distributing workloads across available CPU
cores.

46

ntop.org
AMIS 2008 - July 2008

Enhanced NIC Drivers [3/5]

47

ntop.org
AMIS 2008 - July 2008

Enhanced NIC Drivers [4/5]

• In order to enhance and accelerate packet capture under Linux, the
author has implemented a new Linux driver for Intel 1 and 10 Gbit cards
that features:

– Multithreaded capture (one thread per RX queue, per NIC adapter). The
number of rings is the number of cores (i.e. a 4 core system has 4 RX rings).
Caveat: interrupts can be disabled per-ring but are enabled per card.

– RX packet balancing across cores based on RSS: one core, one RX ring.

– Driver-based packet filtering (PF_RING filters port into the driver) for stopping
unwanted packets at the source.

– Development drivers for Intel 82598 (10G) and 82575 (1G) ethernet controllers.

48

ntop.org
AMIS 2008 - July 2008

Enhanced NIC Drivers [5/5]
• Preliminary performance results:

– 10 Gbit
• The testbed is a 4 x 1 G ports IXIA 400 traffic generator that are mixed into a 10G

stream using a HP ProCurve 3400cl-24 switch.

• A dual 4-core 3 GHz Xeon has been used for testing.

• Using the accelerated driver it is possible to driver-filter 512 bytes packets at 7 Gbps
with a 1:256 packet forward rate to user-space with no loss.

– 1 Gbit
• The same testbed for 10G has been used.

• The same packet filtering policy applied to 2 x 1 Gbit ports works with no loss and
with minimal (~10%) CPU load.

• The performance improvement also affects packet capture. For instance with a
Core 2 Duo 1.86 GHz, packet capture improved from 580 Kpps to over 900 Kpps.

49

ntop.org
AMIS 2008 - July 2008

References

• libpcap: http://www.tcpdump.org

• PF_RING: http://www.ntop.org/PF_RING.html

• BPF: http://www.tcpdump.org/papers/bpf-usenix93.pdf

• Bloom Filters: http://en.wikipedia.org/wiki/Bloom_filter

• Intel I/OAT: http://www.intel.com/technology/ioacceleration/

• ntop Web Site: http://www.ntop.org/

• Author Papers: http://luca.ntop.org

All work is open-source and released under GPL.

50

http://www.tcpdump.org
http://www.tcpdump.org
http://www.ntop.org/PF_RING.html
http://www.ntop.org/PF_RING.html
http://www.tcpdump.org/papers/bpf-usenix93.pdf
http://www.tcpdump.org/papers/bpf-usenix93.pdf
http://en.wikipedia.org/wiki/Bloom_filter
http://en.wikipedia.org/wiki/Bloom_filter
http://www.intel.com/technology/ioacceleration/
http://www.intel.com/technology/ioacceleration/
http://luca.ntop.org
http://luca.ntop.org

