
Nullcon 2015
James Forshaw @tiraniddo

The Windows Sandbox
Paradox

Obligatory Background Slide

● Researcher in Google’s Project Zero
● Specialize in Windows, especially local

privilege escalation
● Never met a logical vulnerability I didn’t

like

What I’m Going to Talk About

https://www.flickr.com/photos/23258385@N04/2237739552/

Let’s Write a Sandbox

https://openclipart.org/detail/101707/happy-pencil-by-jonata

Sandboxing Requirement #1

● Easy to get in, hard to get out

http://upload.wikimedia.org/wikipedia/commons/d/d9/GravityPotential.jpg

Sandboxing Requirement #2

● Protects the user’s data from disclosure

https://openclipart.org/detail/190821/cles-de-serrure---lock-keys-by-enolynn-190821

Sandboxing Requirement #3

● Work within the limits of the OS

http://upload.wikimedia.org/wikipedia/commons/8/8b/MUTCD_R2-1.svg

Sandboxing Requirement #4

● Sandboxed application is usable
○ Limited Performance Impact

http://pixabay.com/p-305189/

Typical User-Mode Approach

Sandboxed Process

Low-Privilege

Normal-Privilege

Broker Process

IPC Services

Resources
Files, Registry,

Network,
Processes etc.

Object Security Descriptor

Owner of
Secured Resource

Mandatory Integrity
Label

Discretionary
Access Control List

(DACL)

Access Tokens

User Security
Identifier

Groups

Privileges

Mandatory
Label

Resource Access Check

Deny AccessGrant Access

IL Check

Owner
Check

DACL Check

Desired Access:
e.g. Read and Write

Mandatory Integrity Level Check

Deny AccessContinue to
Owner Check

Greater
or Equal

Token IL Resource IL

Allowed
By Policy

Resource IL PolicyDesired Access

Policy for:
Read Access
Write Access
Execute Access

True

Owner Check

Grant AccessContinue to
DACL Check

Is Equal

User SID Owner

All
Access
Granted

Grant Write DACL if
requested

True

False

Kernel DACL Check

Everyone RO

BUILTIN\Administrators RW

BUILTIN\Users RW

DACL

User SID

BUILTIN\Users

Logon SID

Token User and Groups

Kernel Access Check

Everyone

BUILTIN\Administrators

BUILTIN\Users

DACL

User SID

BUILTIN\Users

Logon SID

Token User and Groups

Request Read/Write Access

RO

RW

RW

Kernel Access Check

Everyone

BUILTIN\Administrators

BUILTIN\Users

DACL

User SID

BUILTIN\Users

Everyone

Token User and Groups

Request Read/Write Access

RO

RW

RW

Current Granted Access: Read Only

Kernel Access Check

Everyone

BUILTIN\Administrators

BUILTIN\Users

DACL

User SID

BUILTIN\Users

Everyone

Token User and Groups

Request Read/Write Access

RO

RW

RW

Final Granted Access: Read/Write

Quick and Dirty Sandbox

● Reduce IL of Token from Medium to Low
● Used for IEProtected Mode
● Has many problems:

○ Can create as many processes as it likes
○ Can sniff on certain Windows events
○ Can read almost any common resource, files,

registry keys etc.
● Not a supported “Security Boundary”

Job Object Restrictions

● Allow us to prevent
process creation

● Limit access to
certain aspects of
the window system

● Still not a “Security
Boundary”

Restricted Access Tokens

Restricted Token Access Check

Deny AccessGrant Access

IL Check

Owner
Check

DACL Check

Desired Access:
e.g. Read and Write

Restricted
SIDs Owner

Check

Restricted
SIDs DACL

Check

Limits of Restricted Tokens

● What we CAN do:
○ Disable all group SIDs (Deny only)
○ Remove all privileges
○ Add a unused restricted SID
○ Lower the integrity level

● What we CAN’T do:
○ Change the user’s identity
○ Remove any UAC linked tokens

Create Our Sandboxed Process

Crash!

Process Initialization

Uninitialized Process
External

Resources

Process Initialization

Uninitialized Process
External

Resources
Initial Thread

Process Initialization

Uninitialized Process
External

Resources
Initial Thread

LdrInitializeThunk

Attack Surface

Broker
Process

Sandboxed
Process

User Level Other User Applications

SYSTEM
Level

System
Services

Kernel

Kernel
Services Win32k

Resources:
● Files
● Registry

Hives
● WEVT

Device
Drivers

Kernel Attack Surface

~300 Syscalls

Kernel Attack Surface

~300 Syscalls ~400 Syscalls

Kernel Attack Surface

~300 Syscalls ~400 Syscalls ~1000 Win32k

Other Platforms Have it Easy?

Device Drivers

Opening a Device Name

\Device\Harddisk1\SomeName
Native NT Path

Opening a Device Name

\Device\Harddisk1\SomeName

\Device\Harddisk1 \SomeName
Device Path

Native NT Path

Device
Namespace Path

Opening a Device Name

\Device\Harddisk1\SomeName

\Device\Harddisk1 \SomeName
Device Path

Native NT Path

Device
Namespace Path

Harddisk Driver

Create File
Handler

Securing the Device

● So what’s the problem?
○ By default security of device path enforced by kernel
○ Security of namespace IS NOT enforced by kernel

● If the driver doesn’t do its own checking or
sets appropriate flags there’s NO security

Example: Windows Sockets

● Would like to block network access, so let’
s do a quick test:

WORD wVersionRequested = MAKEWORD(2, 2);

WSADATA wsaData;

if (WSAStartup(wVersionRequested, &wsaData) != 0)

 return 1;

}

/* Do socket stuff*/

WSACleanup();

Example: Windows Sockets

● Would like to block network access, so let’
s do a quick test:

WORD wVersionRequested = MAKEWORD(2, 2);

WSADATA wsaData;

if (WSAStartup(wVersionRequested, &wsaData) != 0)

 return 1;

}

/* Do socket stuff*/

WSACleanup();

Fails here!

Example: Windows Sockets

● On Linux/OSX sockets implemented as
system calls

● Implemented in the Ancillary Function
Driver

● You interact with it via \Device\Afd, open
the device namespace such as
\Device\Afd\Endpoint

● No security on the namespace :(
● Further interaction via DeviceIoControl

Native Sockets

BOOL ConnectSocket(HANDLE hSocket, u_short srcport,
 const SOCKADDR_IN& inaddr)
{
 ConnectData data = { 0 };
 data.sin_family = AF_INET;
 data.sin_port = htons(srcport);
 data.inaddr = inaddr;

 DWORD dwSize;

 return DeviceIoControl(hSocket, 0x00012007,
 &data, sizeof(data), nullptr,
 0, &dwSize, nullptr);
}

Demo

Enumerating Unrestricted Device Drivers

Accessing Resources

● Two schools of thought
○ Ensure the sandboxed token can access the

resources you need
○ Heavily restrict and handle all access through the

broker
● Each has pros and cons:

○ Direct access is going to have a slightly better
performance

○ Broker access means you can meditate what is
accessed with a finer grain of control

Low Privilege

Normal Privilege

Direct Resource Access

Broker

Sandbox Process

Set permission
of resource

Resources, Files,
Registry etc.

Create, Read
and Write

Sharing Resource Access

● Adding appropriate entries to security
descriptor is easy to allow shared access

● Has advantage that everything can be
done in the sandboxed process

● No overhead
● Trouble is any “supported” operation can

be performed

Bad Registry

● The registry supports symbolic links
● This isn’t very well documented
● No permissions required to create these

links other than being able to create a
registry

● Surely not an issue?
○ It is if a higher privileged process also accesses

those keys

Low Privilege

System Privilege

IE EPM Escape / Audio Server

Audio Service

IE Sandbox Process

User’s Registry

https://code.google.com/p/google-security-research/issues/detail?id=99

Low Privilege

System Privilege

IE EPM Escape / Audio Server

Audio Service

IE Sandbox Process

User’s Registry

Write symbolic link pointing to a sensitive
part of the registry

https://code.google.com/p/google-security-research/issues/detail?id=99

Low Privilege

System Privilege

IE EPM Escape / Audio Server

Audio Service

IE Sandbox Process

User’s Registry

Audio Service creates key which instead
follows symbolic link

https://code.google.com/p/google-security-research/issues/detail?id=99

Lack of Documentation

● No documentation on how to defend
yourself against this attack

Lack of Documentation

● No documentation on how to defend
yourself against this attack

Lack of Documentation

● No documentation on how to defend
yourself against this attack

Low Privilege

Normal Privilege

Broker Resource Access

Broker

Sandbox Process

Resources, Files,
Registry etc.

Create, Read
and Write

Create, Read
and Write

Filesystem Fun

● Instead of changing security of resources
instead we’ll do everything through the
broker

● Let’s us hook calls to CreateFile and pass
them to the broker

Win32 Path Support

Path Description

some\path Relative path to current
directory

c:\some\path Absolute directory

\\.\c:\some\path Device path, canonicalized

\\?\c:\some\path Device path, non-
canonicalized

\\server\share\path UNC path to share on server

Legacy Filesystem Behaviour

● MS-DOS has a lot to answer for, these
files names don’t do what you expect:
○ “COM1” -> Opens the first serial port!
○ “LPT1” -> Opens the parallel port?!
○ And others

Legacy Filesystem Behaviour

● MS-DOS has a lot to answer for, these
files names don’t do what you expect:
○ “COM1” -> Opens the first serial port!
○ “LPT1” -> Opens the parallel port?!
○ And others

● Surely an absolute path will work?
○ c:\path\LPT1 -> Opens the parallel port!
○ \\.\c:\path\LPT1 -> Creates the file you expect

● Now got a file the user can’t delete!

More edge cases

● Trailing spaces are removed from paths:
○ "c:\some\path " -> "c:\some\path"
○ "\\.\some\path " -> "c:\some\path"
○ "\\?\some\path " -> "c:\some\path "

● Congratulations you’ve again made a file
a user can’t delete

Canonicalization

● Type of Win32 path affects
canonicalization behaviour

Path Result of Canonicalization

c:\path\..\badgers c:\badgers

c:\..\d:\badgers c:\d:\badgers

\\.\c:\path\..\badgers c:\badgers

\\.\c:\..\d:\badgers d:\badgers (WTF!)

\\?\c:\path\..\badgers c:\path\..\badgers

Device Escape Syntax

● Paths \\.\ and \\?\ really escape CreateFile
into the NT object namespace, can do fun
like:

Path Result

\\.\GLOBALROOT\??\c:\badgers c:\badgers

\\.\c:\..\GLOBALROOT\??\c:\badgers c:\badgers

\\.\c:\..\UNC\server\share\path \\server\share\path

Invalid Character Checks

● NTFS has a number of invalid characters:
○ < > : “ / \ | ? *

● Tempting to use this to prevent things like
command injection

● Use canonicalization:
○ c:\windows\system32\calc.exe”\..\..\..\some\path

● Use alternate data streams
○ c:\some\path\my.exe:” something

Low Privilege

Normal Privilege

Hybrid Resource Access

Broker

Sandbox Process

Resources, Files,
Registry etc.

Create,
DuplicateHandle

Create

Read/Write

Hybrid Resource Access

● Windows uses handles to reference open
resources

● We can use the DuplicateHandle method
from the broker to copy that handle back

● Only pay penalty on resource open/create
not read and write

● Any risks in doing this?

Reparse Points

● NTFS supports directory symlinks
○ Supports file symlinks as well but you need

additional privileges
● Linux/OSX have a specific system call

‘symlink’ to create file system symbolic
links

● In Windows you just a file handle to a
directory

Reparse Points

● Need to open a handle to a directory
○ Pass FILE_DIRECTORY_FILE to NtCreateFile

● What if the broker doesn’t allow you to
specify that?

● Use the NTFS alternate data stream
name instead
○ dir::$INDEX_ALLOCATION or
○ dir::$I30:$INDEX_ALLOCATION

● Just because

Mixed Semantics

● ActiveX install broker has a function to
load a signed DLL

BOOL IsSignedFile(string path) {
 CreateFile(path, ...);
 ...
}

BOOL RunInstaller(string path) {
 path = CanonicalizePath(path);

 if (IsSignedFile(path)) {
 LoadLibrary(path);
 }
}

Mixed Semantics

Mixed Semantics

Mixed Semantics

lpFileName Parameter Path loaded

c:\my\path\test.dll c:\my\path\test.dll

Mixed Semantics

lpFileName Parameter Path loaded

c:\my\path\test.dll c:\my\path\test.dll

c:\my\path\test c:\my\path\test.dll

Mixed Semantics

lpFileName Parameter Path loaded

c:\my\path\test.dll c:\my\path\test.dll

c:\my\path\test c:\my\path\test.dll

c:\my\path\test. c:\my\path\test

Sharing Sections

Unnamed Resources

● Certain classes of Windows resources opt
out of security when they have no names

● Section objects are just one such type
● Leads to problems.

IPC Technologies

● Three main ways of doing IPC on
Windows
○ Named Pipes
○ Local RPC (ALPC)
○ Sockets

● Already seen sockets aren’t securabled
resources

● What problems would these come with?

Named Pipes

● Named pipe servers are created using
CreateNamedPipe method (really
NtCreateNamedPipeFile)

● Named pipe clients are created using the
normal NtCreateFile API

Supporting Creating Pipes

Chrome CreateNamedPipe IPC

HANDLE CreateNamedPipeAction(string name, ...) {

 // Name is lowercase already

 if (name.beginswith("\\\\.\\pipe\\chrome.") {

 return CreateNamedPipe(name, ...);

 } else {

 return NULL;

 }

}

Chrome CreateNamedPipe IPC

● Intention was to only allow named pipes
with a prefix

● Even though the function should only ever
open named pipes it’s using the \\.\
syntax.

● Canonicalize!
○ \\.\pipe\chrome.xxx\..\mypipe

Is Windows Getting Better?

Reducing Kernel Attack Surface

Kernel Attack Surface

~300 Syscalls ~400 Syscalls ~1000 Win32k

Bring Forth the LowBox Token
NTSTATUS NtCreateLowBoxToken(

PHANDLE LowBoxTokenHandle,

HANDLE TokenHandle,

ACCESS_MASK DesiredAccess,

OBJECT_ATTRIBUTES * ObjectAttributes,

PSID PackageSid,

ULONG CapabilityCount,

PSID_AND_ATTRIBUTES Capabilities,

ULONG HandleCount,

PHANDLE Handles

);

The Good Parts

● LowBox tokens work much like restricted
tokens
○ Replace restricted SIDs with capability SIDs

● Built in firewall rules to restrict sockets
based on capabilities

● Makes it easy to restrict access to user
files without having to worry as much
about configuration

LowBox Token Access Check

Deny AccessGrant Access

IL Check

Owner
Check

DACL Check

Desired Access:
e.g. Read and Write

Capability
SIDs Owner

Check

Capability
SIDs DACL

Check

Integrity Level Check

● LowBox tokens are always marked as
having Low Integrity

● So it works as before?
● NO!

Mandatory Integrity Level Check

Deny AccessContinue to
Owner Check

Greater
or Equal

Medium IL Resource IL

Allowed
By Policy

Resource IL PolicyDesired Access

Policy for:
Read Access
Write Access
Execute Access

True

Hardcoded

Drawbridge / PicoProcess

● Isolation/sandbox technologies developed
by Microsoft

● Uses process isolation to secure an
application

● Can be completely isolated from the
kernel, including system call filtering

● Currently not available in consumer
versions of Windows :(

Questions?

