Privacy Leaks on 4G/LTE networks

<u>Altaf Shaik</u> & Jean Pierre Seifert Ravishankar Borgaonkar

TU Berlin & T-Labs

Oxford University

N. Asokan

Aalto & Uni. of Helsinki

Valtteri Niemi

Uni. of Helsinki

12 March 2016 Nullcon, Goa

Outline

- Evolution of security in mobile networks
 - ✓ 2G/GSM, 3G/UMTS, 4G/LTE
- Practical attacks against 4G/LTE
 - ✓ Location and identity leaks
 - ✓ Denial of service
- Vulnerabilities and attacks
- Impact

Motivation

- Baseband GPS access rights (no android or iOS)
 - user is unaware
- Platform for practical security research in LTE/4G
 - closed source telco industry
 - 2G, 3G open source available osmocom

Fake base-stations..1

Used for: IMSI/IMEI/location tracking, call & data interception

- Exploit weaknesses in 2G & 3G (partially)
- Knows as IMSI Catchers, very expensive
- Difficult to detect on normal phones (Darshak, Cryptophone or Snoopsnitch)

Fake base-stations..2

LTE/4G

- Widely deployed, 1.37 billion users by end of 2015
- More secure than previous generations

High speed data connection and quality of service

Fig. source: Wikipedia

4G Architecture

eNodeB: Evolved Node B ("base station")

E-UTRAN: Evolved Universal Terrestrial Access Network

MME: Mobility Management Entity

UE: User Equipment

S1: Interface

Security evolution in mobile networks

Enhanced security in LTE

- Mutual authentication between base station & mobiles
- Mandatory integrity protection for signaling messages
- IMEI is not given in non-integrity messages
- Fake base-stations fail (partly)
- Stronger security algorithms (AES)

Challenge

- Analysis of access network protocols and integrity protection in practice
- ➤ LTE fake base stations: thought to be complex* and less effective
- But in practice:
 - ✓ Implementation/configuration flaws, specification/protocol deficiencies?

* https://insidersurveillance.com/rayzone-piranha-lte-imsi-catcher/

Evaluating 4G Security: Experiment Set-up

Set-up cost - little over 1000 Euros!

- Hardware USRP, 4G dongle, 4G phones
- Software OpenLTE & srsLTE
- Base station and sniffer

Thanks to OpenLTE and srsLTE group!

Results

- Vulnerabilities in 4G specifications and networks
- Demonstrating impact by practical attacks
 - ✓ Location and identity leaks
 - ✓ Denial-of-service

Relevant 4G Features

- (Smart) Paging
- Diagnostic Reports from UE
- Mobility Management

Feature: Paging in LTE

Paging from base station

Why: locate subscriber to deliver calls/messages

Paging Request

{404220522xxxxxx : A000FFFF }

"GUTI" = A000FFFF

GUTI: Globally Unique Temporary Identifier IMSI: International Mobile subscriber Identity

Paging configuration vulnerabilities

	-	
F7	(0	17 EF
FF	11	12 EF
F	IB	17EF
FZ	14	17EF
Fa	16	17 EF
FZ	18	17EF
F7	12	176F
Fa	11	17E F

- sent onto a small cell instead of a big tracking area
- ✓ Allows attacker to locate 4G subscriber in a cell

GUTI persistence

- ✓ MNOs don't change GUTI sufficiently & frequently
- / MME configuration issues

LTE Smart Paging

Feature: Reports from UE to eNodeB

- eNodeB can demand diagnostic reports from UE
 - ✓ List of visible eNodeBs, signal strengths, UE's GPS co-ordinates
- UE Measurements reports
 - ✓ Necessary for smooth handovers
- Radio link failure (RLF) reports
 - ✓ Necessary for troubleshooting failures

Feature: Reports from UE to eNodeB

Vulnerabilities in the feature

Specification

UE measurement reports

- ✓ Requests not authenticated
- ✓ Reports are not encrypted

Implementations

RLF reports

- Requests not authenticated
- Reports are not encrypted
- ✓ All baseband vendors

Feature: Mobility Management in 4G

Tracking Area Update (TAU) procedure

- ✓ During TAU, MME & UE agree on network mode (2G/3G/4G)
- ✓ "TAU Reject" used to reject some services services (e.g., 4G) to UE

Specification vulnerability: Reject messages are not integrity protected

Feature: Mobility Management in 4G

Specification vulnerability: Network capabilities not protected

IMEI leak: implementation vulnerability

*

TAU reject – special cause number!

- IMEI is leaked by popular phones
- Triggered by a special message
- Fixed now but still your device leak;)
- IMEI request not authenticated correctly

```
Non-Access-Stratum (NAS)PDU

O000 ... = Security header type: Plain NAS message, not security protected (0)

NAS EPS Mobility

Mobile identity

Length: 8

O011 ... = Identity Digit 1: 3

... 1... = Odd/even indication: Odd number of identity digits

SCD Digits: 357506057669310
```

Discovered Vulnerabilities in 4G

Specification

- UE measurement reports
 - Requests not authenticated: reports are not encrypted
- Tracking Area Update (TAU) procedure
 - ✓ Reject messages are not integrity protected
- Attach procedure
 - ✓ Network capabilities are not protected against bidding down attacks

Implementations: (baseband vendors)

- IMEI leak
- RLF reports
 - Requests not authenticated: reports are not encrypted

Attacks: Location leaks

Location Leaks: Coarse level

Location Accuracy: 2 Sq. Km

Location Leaks: Precise level

```
measResultNeighCells: measResultListEUTRA (0)
  measResultListEUTRA: 1 item
     □ Item 0

⊢ MeasResultEUTRA

           physCellId: 200
           measResult
              rsrpResult: -112dBm <= RSRP < -111dBm (29)
- locationInfo-r10
  ☐ locationCoordinates-r10: ellipsoidPointWithAltitude-r10 (1)
       ellipsoidPointWithAltitude-r10:
     □ EllipsoidPointWithAltitude
         - latitudeSign: north (0)
          degreesLatitude: 52,
          degreesLongitude: 13,
          altitudeDirection: height (0)
          altitude: 116 m
     gnss-TOD-msec-r10:
```


Active attacker

Location Accuracy: 50 meters (or) GPS co-ordinates

Attacks: Denial of service

DoS

DoS

Exploiting specification vulnerability in EMM protocol!

- Downgrade to non-LTE network services (2G/3G)
- Deny all services (2G/3G/4G)
- Deny selected services (block incoming calls)
- Persistent DoS
- Requires reboot/SIM re-insertion

Impact

All (4) affected baseband manufacturers

- ✓ Responsible disclosure of bugs: acknowledged and patches released
- ✓ But OEMs do not yet have security updates to phones

Network operators

✓ Configuration issues were acknowledged and fixed

Standards organizations

- ✓ Security issues presented at SA3 (in Anaheim, Nov 2015) and GSMA
- ✓ Changes into LTE specifications are in progress

Social network applications

✓ Facebook no longer supports completely silent messages

Conclusions

- New vulnerabilities in 4G standards/chipsets
- Configuration by operators do not follow best practices
- Lead to attacks:
 - ✓ Social applications used for silent tracking
 - ✓ Locating 4G devices using trilateration , GPS co-ordinates!
 - ✓ DoS attacks are persistent & silent to users

Solution!

Use any old Nokia phone without battery and SIM card!

Thank You.

Questions?