
CURAND LIBRARY

PG-05328-050 _v7.5 | September 2015

Programming Guide

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | ii

TABLE OF CONTENTS

Introduction.. vii
Chapter 1. Compatibility and Versioning.. 1
Chapter 2. Host API Overview... 2

2.1. Generator Types...3
2.2. Generator Options.. 3

2.2.1. Seed.. 3
2.2.2. Offset.. 4
2.2.3. Order...4

2.3. Return Values.. 6
2.4. Generation Functions...6
2.5. Host API Example... 9
2.6. Static Library support...10
2.7. Performance Notes.. 10

Chapter 3. Device API Overview...12
3.1. Pseudorandom Sequences.. 12

3.1.1. Bit Generation with XORWOW and MRG32k3a generators................................... 12
3.1.2. Bit Generation with the MTGP32 generator... 13
3.1.3. Bit Generation with Philox_4x32_10 generator... 15
3.1.4. Distributions... 16

3.2. Quasirandom Sequences.. 18
3.3. Skip-Ahead.. 19
3.4. Device API for discrete distributions...19
3.5. Performance Notes.. 20
3.6. Device API Examples.. 21
3.7. Thrust and cuRAND Example.. 25
3.8. Poisson API Example.. 27

Chapter 4. Testing...29
Chapter 5. Modules... 37

5.1. Host API... 37
curandCreateGenerator (curandGenerator_t, curandRngType_t)...................................39
curandCreateGeneratorHost (curandGenerator_t, curandRngType_t)............................. 42
curandCreatePoissonDistribution (double, curandDiscreteDistribution_t).........................44
curandDestroyDistribution (curandDiscreteDistribution_t)...45
curandDestroyGenerator (curandGenerator_t).. 45
curandGenerate (curandGenerator_t, unsigned int, size_t).. 46
curandGenerateLogNormal (curandGenerator_t, float, size_t, float, float)......................47
curandGenerateLogNormalDouble (curandGenerator_t, double, size_t, double, double)...... 48
curandGenerateLongLong (curandGenerator_t, unsigned long long, size_t)......................49
curandGenerateNormal (curandGenerator_t, float, size_t, float, float)..........................50
curandGenerateNormalDouble (curandGenerator_t, double, size_t, double, double).......... 51

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | iii

curandGeneratePoisson (curandGenerator_t, unsigned int, size_t, double)......................52
curandGenerateSeeds (curandGenerator_t)..53
curandGenerateUniform (curandGenerator_t, float, size_t)..54
curandGenerateUniformDouble (curandGenerator_t, double, size_t)............................. 55
curandGetDirectionVectors32 (curandDirectionVectors32_t, curandDirectionVectorSet_t).....55
curandGetDirectionVectors64 (curandDirectionVectors64_t, curandDirectionVectorSet_t).....56
curandGetScrambleConstants32 (unsigned int)..57
curandGetScrambleConstants64 (unsigned long long)..58
curandGetVersion (int).. 58
curandSetGeneratorOffset (curandGenerator_t, unsigned long long)............................. 59
curandSetGeneratorOrdering (curandGenerator_t, curandOrdering_t)............................59
curandSetPseudoRandomGeneratorSeed (curandGenerator_t, unsigned long long)............. 60
curandSetQuasiRandomGeneratorDimensions (curandGenerator_t, unsigned int)............... 60
curandSetStream (curandGenerator_t, cudaStream_t).. 61

5.2. Device API.. 62
curand (curandStateMtgp32_t)... 62
curand (curandStateScrambledSobol64_t)..62
curand (curandStateSobol64_t).. 63
curand (curandStateScrambledSobol32_t)..63
curand (curandStateSobol32_t).. 64
curand (curandStateMRG32k3a_t)... 64
curand (curandStatePhilox4_32_10_t).. 65
curand (curandStateXORWOW_t)...65
curand4 (curandStatePhilox4_32_10_t)... 66
curand_init (curandDirectionVectors64_t, unsigned long long, unsigned long long,

curandStateScrambledSobol64_t).. 66
curand_init (curandDirectionVectors64_t, unsigned long long, curandStateSobol64_t)......... 67
curand_init (curandDirectionVectors32_t, unsigned int, unsigned int,

curandStateScrambledSobol32_t).. 67
curand_init (curandDirectionVectors32_t, unsigned int, curandStateSobol32_t).................68
curand_init (unsigned long long, unsigned long long, unsigned long long,

curandStateMRG32k3a_t)..68
curand_init (unsigned long long, unsigned long long, unsigned long long,

curandStatePhilox4_32_10_t)... 69
curand_init (unsigned long long, unsigned long long, unsigned long long,

curandStateXORWOW_t)... 69
curand_log_normal (curandStateScrambledSobol64_t, float, float)............................... 70
curand_log_normal (curandStateSobol64_t, float, float).. 71
curand_log_normal (curandStateScrambledSobol32_t, float, float)............................... 71
curand_log_normal (curandStateSobol32_t, float, float).. 72
curand_log_normal (curandStateMtgp32_t, float, float)...72
curand_log_normal (curandStateMRG32k3a_t, float, float)... 73
curand_log_normal (curandStatePhilox4_32_10_t, float, float).................................... 74

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | iv

curand_log_normal (curandStateXORWOW_t, float, float).. 74
curand_log_normal2 (curandStateMRG32k3a_t, float, float)..75
curand_log_normal2 (curandStatePhilox4_32_10_t, float, float)...................................76
curand_log_normal2 (curandStateXORWOW_t, float, float)...76
curand_log_normal2_double (curandStateMRG32k3a_t, double, double)......................... 77
curand_log_normal2_double (curandStatePhilox4_32_10_t, double, double).................... 78
curand_log_normal2_double (curandStateXORWOW_t, double, double).......................... 78
curand_log_normal4 (curandStatePhilox4_32_10_t, float, float)...................................79
curand_log_normal_double (curandStateScrambledSobol64_t, double, double)................. 80
curand_log_normal_double (curandStateSobol64_t, double, double)............................. 80
curand_log_normal_double (curandStateScrambledSobol32_t, double, double)................. 81
curand_log_normal_double (curandStateSobol32_t, double, double)............................. 82
curand_log_normal_double (curandStateMtgp32_t, double, double).............................. 82
curand_log_normal_double (curandStateMRG32k3a_t, double, double).......................... 83
curand_log_normal_double (curandStatePhilox4_32_10_t, double, double)......................84
curand_log_normal_double (curandStateXORWOW_t, double, double)............................84
curand_mtgp32_single (curandStateMtgp32_t).. 85
curand_mtgp32_single_specific (curandStateMtgp32_t, unsigned char, unsigned char)........ 86
curand_mtgp32_specific (curandStateMtgp32_t, unsigned char, unsigned char).................86
curand_normal (curandStateScrambledSobol64_t)..87
curand_normal (curandStateSobol64_t).. 88
curand_normal (curandStateScrambledSobol32_t)..88
curand_normal (curandStateSobol32_t).. 89
curand_normal (curandStateMtgp32_t)... 89
curand_normal (curandStateMRG32k3a_t)... 90
curand_normal (curandStatePhilox4_32_10_t)...90
curand_normal (curandStateXORWOW_t)...91
curand_normal2 (curandStateMRG32k3a_t).. 91
curand_normal2 (curandStatePhilox4_32_10_t)... 92
curand_normal2 (curandStateXORWOW_t)... 92
curand_normal2_double (curandStateMRG32k3a_t).. 93
curand_normal2_double (curandStatePhilox4_32_10_t)..93
curand_normal2_double (curandStateXORWOW_t)..94
curand_normal4 (curandStatePhilox4_32_10_t)... 94
curand_normal_double (curandStateScrambledSobol64_t).. 95
curand_normal_double (curandStateSobol64_t)...95
curand_normal_double (curandStateScrambledSobol32_t).. 96
curand_normal_double (curandStateSobol32_t)...96
curand_normal_double (curandStateMtgp32_t)... 97
curand_normal_double (curandStateMRG32k3a_t)..97
curand_normal_double (curandStatePhilox4_32_10_t)... 98
curand_normal_double (curandStateXORWOW_t)... 98
curand_poisson (curandStateScrambledSobol64_t, double)... 99

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | v

curand_poisson (curandStateSobol64_t, double)..99
curand_poisson (curandStateScrambledSobol32_t, double)..100
curand_poisson (curandStateSobol32_t, double).. 100
curand_poisson (curandStateMtgp32_t, double)... 101
curand_poisson (curandStateMRG32k3a_t, double)... 101
curand_poisson (curandStatePhilox4_32_10_t, double)...102
curand_poisson (curandStateXORWOW_t, double)...102
curand_poisson4 (curandStatePhilox4_32_10_t, double)... 103
curand_uniform (curandStateScrambledSobol64_t)... 103
curand_uniform (curandStateSobol64_t).. 104
curand_uniform (curandStateScrambledSobol32_t)... 104
curand_uniform (curandStateSobol32_t).. 105
curand_uniform (curandStateMtgp32_t)...105
curand_uniform (curandStatePhilox4_32_10_t).. 106
curand_uniform (curandStateMRG32k3a_t)... 106
curand_uniform (curandStateXORWOW_t).. 107
curand_uniform2_double (curandStatePhilox4_32_10_t)... 107
curand_uniform4 (curandStatePhilox4_32_10_t)...108
curand_uniform_double (curandStateScrambledSobol64_t)..108
curand_uniform_double (curandStateSobol64_t).. 109
curand_uniform_double (curandStateScrambledSobol32_t)..109
curand_uniform_double (curandStateSobol32_t).. 110
curand_uniform_double (curandStatePhilox4_32_10_t).. 110
curand_uniform_double (curandStateMtgp32_t)... 111
curand_uniform_double (curandStateMRG32k3a_t)... 111
curand_uniform_double (curandStateXORWOW_t)...112
curandMakeMTGP32Constants (const mtgp32_params_fast_t, mtgp32_kernel_params_t).... 112
curandMakeMTGP32KernelState (curandStateMtgp32_t, mtgp32_params_fast_t,

mtgp32_kernel_params_t, int, unsigned long long)... 113
skipahead (unsigned long long, T)... 114
skipahead (unsigned int, T)... 114
skipahead (unsigned long long, curandStateMRG32k3a_t)... 114
skipahead (unsigned long long, curandStatePhilox4_32_10_t).....................................115
skipahead (unsigned long long, curandStateXORWOW_t)...115
skipahead_sequence (unsigned long long, curandStateMRG32k3a_t).............................116
skipahead_sequence (unsigned long long, curandStatePhilox4_32_10_t)........................ 116
skipahead_sequence (unsigned long long, curandStateXORWOW_t).............................. 117
skipahead_subsequence (unsigned long long, curandStateMRG32k3a_t).........................117

Appendix A. Bibliography.. 118
Appendix B. Acknowledgements..120

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | vi

LIST OF FIGURES

Figure 1 MTGP32 Block and Thread Operation .. 14

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | vii

INTRODUCTION

The cuRAND library provides facilities that focus on the simple and efficient generation
of high-quality pseudorandom and quasirandom numbers. A pseudorandom sequence
of numbers satisfies most of the statistical properties of a truly random sequence but is
generated by a deterministic algorithm. A quasirandom sequence of -dimensional points
is generated by a deterministic algorithm designed to fill an -dimensional space evenly.

cuRAND consists of two pieces: a library on the host (CPU) side and a device (GPU)
header file. The host-side library is treated like any other CPU library: users include the
header file, /include/curand.h, to get function declarations and then link against
the library. Random numbers can be generated on the device or on the host CPU. For
device generation, calls to the library happen on the host, but the actual work of random
number generation occurs on the device. The resulting random numbers are stored in
global memory on the device. Users can then call their own kernels to use the random
numbers, or they can copy the random numbers back to the host for further processing.
For host CPU generation, all of the work is done on the host, and the random numbers
are stored in host memory.

The second piece of cuRAND is the device header file, /include/curand_kernel.h.
This file defines device functions for setting up random number generator states and
generating sequences of random numbers. User code may include this header file, and
user-written kernels may then call the device functions defined in the header file. This
allows random numbers to be generated and immediately consumed by user kernels
without requiring the random numbers to be written to and then read from global
memory.

Introduction

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | viii

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 1

Chapter 1.
COMPATIBILITY AND VERSIONING

The host API of cuRAND is intended to be backward compatible at the source level with
future releases (unless stated otherwise in the release notes of a specific future release).
In other words, if a program uses cuRAND, it should continue to compile and work
correctly with newer versions of cuRAND without source code changes.

cuRAND is not guaranteed to be backward compatible at the binary level. Using
different versions of the curand.h header file and the shared library is not supported.
Using different versions of cuRAND and the CUDA runtime is not supported.

The device API should be backward compatible at the source level for public functions
in most cases.

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 2

Chapter 2.
HOST API OVERVIEW

To use the host API, user code should include the library header file curand.h and
dynamically link against the cuRAND library. The library uses the CUDA runtime,
so user code must also use the runtime. The CUDA driver API is not supported by
cuRAND.

Random numbers are produced by generators. A generator in cuRAND encapsulates
all the internal state necessary to produce a sequence of pseudorandom or quasirandom
numbers. The normal sequence of operations is as follows:

1. Create a new generator of the desired type (see Generator Types) with
curandCreateGenerator().

2. Set the generator options (see Generator Options); for example, use
curandSetPseudoRandomGeneratorSeed() to set the seed.

3. Allocate memory on the device with cudaMalloc().

4. Generate random numbers with curandGenerate() or another generation function.

5. Use the results.

6. If desired, generate more random numbers with more calls to curandGenerate().

7. Clean up with curandDestroyGenerator().

To generate random numbers on the host CPU, in step one above call
curandCreateGeneratorHost(), and in step three, allocate a host memory buffer to
receive the results. All other calls work identically whether you are generating random
numbers on the device or on the host CPU.

It is legal to create several generators at the same time. Each generator encapsulates
a separate state and is independent of all other generators. The sequence of numbers
produced by each generator is deterministic. Given the same set-up parameters, the
same sequence will be generated with every run of the program. Generating random
numbers on the device will result in the same sequence as generating them on the host
CPU.

Note that curandGenerate() in step 4 above launches a kernel and returns
asynchronously. If you launch another kernel in a different stream, and that kernel needs
to use the results of curandGenerate(), you must either call cudaThreadSynchronize()

Host API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 3

or use the stream management/event management routines, to ensure that the random
generation kernel has finished execution before the new kernel is launched.

Note that it is not valid to pass a host memory pointer to a generator that is running
on the device, and it is not valid to pass a device memory pointer to a generator that is
running on the CPU. Behavior in these cases is undefined.

2.1. Generator Types
Random number generators are created by passing a type to
curandCreateGenerator(). There are nine types of random number generators
in cuRAND, that fall into two categories. CURAND_RNG_PSEUDO_XORWOW,
CURAND_RNG_PSEUDO_MRG32K3A, CURAND_RNG_PSEUDO_MTGP32,
CURAND_RNG_PSEUDO_PHILOX4_32_10 and CURAND_RNG_PSEUDO_MT19937
are pseudorandom number generators. CURAND_RNG_PSEUDO_XORWOW is
implemented using the XORWOW algorithm, a member of the xor-shift family
of pseudorandom number generators. CURAND_RNG_PSEUDO_MRG32K3A is a
member of the Combined Multiple Recursive family of pseudorandom number
generators. CURAND_RNG_PSEUDO_MT19937 and CURAND_RNG_PSEUDO_MTGP32
are members of the Mersenne Twister family of pseudorandom number generators.
CURAND_RNG_PSEUDO_MTGP32 has parameters customized for operation on the
GPU. CURAND_RNG_PSEUDO_MT19937 has the same parameters as CPU version, but
ordering is different. CURNAD_RNG_PSEUDO_MT19937 supports only HOST API and
can be used only on architecture sm_35 or higher. CURAND_RNG_PHILOX4_32_10 is a
member of Philox family, which is one of the three non-cryptographic Counter Based
Random Number Generators presented on SC11 conference by D E Shaw Research.
There are 4 variants of the basic SOBOL’ quasi random number generator. All of the
variants generate sequences in up to 20,000 dimensions. CURAND_RNG_QUASI_SOBOL32,
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32, CURAND_RNG_QUASI_SOBOL64, and
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 are quasirandom number generator
types. CURAND_RNG_QUASI_SOBOL32 is a Sobol’ generator of 32-bit sequences.
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 is a scrambled Sobol’ generator of 32-bit
sequences. CURAND_RNG_QUASI_SOBOL64 is a Sobol’ generator of 64-bit sequences.
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 is a scrambled Sobol’ generator of 64-bit
sequences.

2.2. Generator Options
Once created, random number generators can be defined using the general options seed,
offset, and order.

2.2.1. Seed
The seed parameter is a 64-bit integer that initializes the starting state of a
pseudorandom number generator. The same seed always produces the same sequence of
results.

Host API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 4

2.2.2. Offset
The offset parameter is used to skip ahead in the sequence. If offset = 100, the
first random number generated will be the 100th in the sequence. This allows
multiple runs of the same program to continue generating results from the same
sequence without overlap. Note that the skip ahead function is not available for the
CURAND_RNG_PSEUDO_MTGP32 and CURAND_RNG_PSEUDO_MT19937 generators.

2.2.3. Order
The order parameter is used to choose how the results are ordered in global
memory. There are three ordering choices for pseudorandom sequences:
CURAND_ORDERING_PSEUDO_DEFAULT, CURAND_ORDERING_PSEUDO_BEST, and
CURAND_ORDERING_PSEUDO_SEEDED. There is one ordering choice for quasirandom
numbers, CURAND_ORDERING_QUASI_DEFAULT. The default ordering for pseudorandom
number generators is CURAND_ORDERING_PSEUDO_DEFAULT, while the default ordering
for quasirandom number generators is CURAND_ORDERING_QUASI_DEFAULT.

The two pseudorandom orderings CURAND_ORDERING_PSEUDO_DEFAULT and
CURAND_ORDERING_PSEUDO_BEST produce the same output ordering for all pseudo-
random generators, except MT19937 for which CURAND_ORDERING_BEST may
generate different output on different models of GPUs. Future releases of cuRAND
may change the ordering associated with CURAND_ORDERING_PSEUDO_BEST
to improve either performance or the quality of the results. It will always be
the case that the ordering obtained with CURAND_ORDERING_PSEUDO_BEST is
deterministic and is the same for each run of the program. The ordering returned by
CURAND_ORDERING_PSEUDO_DEFAULT is guaranteed to remain the same for all cuRAND
releases. In the current release, only XORWOW and MT19937 generators have more than
one ordering.

The behavior of the ordering parameters for each generator type is outlined below:

‣ XORWOW pseudorandom generator

‣ CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

‣ CURAND_ORDERING_PSEUDO_DEFAULT

The result at offset in global memory is from position

in the original XORWOW sequence.
‣ CURAND_ORDERING_PSEUDO_SEEDED

The result at offset in global memory is from position in the
XORWOW sequence seeded with a combination of the user seed and the
number . In other words, each of 4096 threads uses a different seed.
This seeding method reduces state setup time but may result in statistical
weaknesses of the pseudorandom output for some user seed values.

Host API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 5

MRG32k3a pseudorandom generator

‣ CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

‣ CURAND_ORDERING_PSEUDO_DEFAULT

The result at offset in global memory is from position

in the original MRG32k3a sequence. (Note that the stride between subsequent
samples for MRG32k3a is not the same as for XORWOW)

MTGP32 pseudorandom generator

‣ CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

‣ CURAND_ORDERING_PSEUDO_DEFAULT

The MTGP32 generator actually generates 64 distinct sequences based on
different parameter sets for the basic algorithm. Let be the sequence for
parameter set .

The result at offset in global memory is from position from the
sequence

In other words 256 samples from are followed by 256 samples from and
so-on, up to . This pattern repeats, so the subsequent 256 samples are from

, followed by 256 samples from , ands so on.

MT19937 pseudorandom generator

‣ CURAND_ORDERING_PSEUDO_DEFAULT

Ordering is based heavily on the standard MT19937 CPU implementation.
Output is generated by 8192 independent generators. Each generator generates
consecutive subsequence of the original sequence. Length of each subsequence
is . Random numbers are generated by eights thus first 8 elements come
from first subsequence, next 8 elements come form second subsequence and
so on. Results are permuted differently than originally to achieve higher
performance. Ordering is independent of the hardware that you are using. For
more information please see [18].

‣ CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST to achieve
better performance depends on number of SMs that composed your
GPU. Random numbers are generated in the same way as with
CURAND_ORDERING_PSEUDO_DEFAULT but the number of generators may be
different to achieve better performance. Generating seeds is much faster using
this ordering.

Host API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 6

Philox_4x32_10 pseudorandom generator

‣ CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

‣ CURAND_ORDERING_PSEUDO_DEFAULT

Each thread in Philox_4x32_10 generator generates distinct sequences based
on different parameter sets for the basic algorithm. In host API there are 8192
different sequences. Each four values from one sequence are followed by four
values from next sequence.

32 and 64 bit SOBOL and Scrambled SOBOL quasirandom generators

‣ CURAND_ORDERING_QUASI_DEFAULT

When generating results in dimensions, the output will consist of
 results from dimension 1, followed by results from dimension

2, and so on up to dimension . Only exact multiples of the dimension
size may be generated. The dimension parameter is set with
curandSetQuasiRandomGeneratorDimensions() and defaults to 1.

2.3. Return Values
All cuRAND host library calls have a return value of curandStatus_t. Calls
that succeed without errors return CURAND_STATUS_SUCCESS. If errors occur,
other values are returned depending on the error. Because CUDA allows kernels
to execute asynchronously from CPU code, it is possible that errors in a non-
cuRAND kernel will be detected during a call to a library function. In this case,
CURAND_STATUS_PREEXISTING_ERROR is returned.

2.4. Generation Functions
curandStatus_t
curandGenerate(
 curandGenerator_t generator,
 unsigned int *outputPtr, size_t num)

curandStatus_t
curandGenerateLongLong(
 curandGenerator_t generator,
 unsigned long long *outputPtr, size_t num)

The curandGenerate() function is used to generate pseudo- or quasirandom bits of
output for XORWOW, MRG32k3a, MTGP32, MT19937, Philox_4x32_10 and SOBOL32
generators. Each output element is a 32-bit unsigned int where all bits are random.
For SOBOL64 generators, each output element is a 64-bit unsigned long long where all

Host API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 7

bits are random. curandGenerate() returns an error for SOBOL64 generators. Use
curandGenerateLongLong() to generate 64 bit integers with the SOBOL64 generators.

curandStatus_t
curandGenerateUniform(
 curandGenerator_t generator,
 float *outputPtr, size_t num)

The curandGenerateUniform() function is used to generate uniformly distributed
floating point values between 0.0 and 1.0, where 0.0 is excluded and 1.0 is included.

curandStatus_t
curandGenerateNormal(
 curandGenerator_t generator,
 float *outputPtr, size_t n,
 float mean, float stddev)

The curandGenerateNormal() function is used to generate normally distributed
floating point values with the given mean and standard deviation.

curandStatus_t
curandGenerateLogNormal(
 curandGenerator_t generator,
 float *outputPtr, size_t n,
 float mean, float stddev)

The curandGenerateLogNormal() function is used to generate log-normally
distributed floating point values based on a normal distribution with the given mean
and standard deviation.

curandStatus_t
curandGeneratePoisson(
 curandGenerator_t generator,
 unsigned int *outputPtr, size_t n,
 double lambda)

The curandGeneratePoisson() function is used to generate Poisson-distributed
integer values based on a Poisson distribution with the given lambda.

curandStatus_t
curandGenerateUniformDouble(
 curandGenerator_t generator,
 double *outputPtr, size_t num)

The curandGenerateUniformDouble() function generates uniformly distributed
random numbers in double precision.

curandStatus_t
curandGenerateNormalDouble(
 curandGenerator_t generator,
 double *outputPtr, size_t n,
 double mean, double stddev)

Host API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 8

curandGenerateNormalDouble() generates normally distributed results in double
precision with the given mean and standard deviation. Double precision results can only
be generated on devices of compute capability 1.3 or above, and the host.

curandStatus_t
curandGenerateLogNormalDouble(
 curandGenerator_t generator,
 double *outputPtr, size_t n,
 double mean, double stddev)

curandGenerateLogNormalDouble() generates log-normally distributed results in
double precision, based on a normal distribution with the given mean and standard
deviation.

For quasirandom generation, the number of results returned must be a multiple of the
dimension of the generator.

Generation functions can be called multiple times on the same generator to generate
successive blocks of results. For pseudorandom generators, multiple calls to generation
functions will yield the same result as a single call with a large size. For quasirandom
generators, because of the ordering of dimensions in memory, many shorter calls will
not produce the same results in memory as one larger call; however the generated -
dimensional vectors will be the same.

Double precision results can only be generated on devices of compute capability 1.3 or
above, and the host.

Host API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 9

2.5. Host API Example

/*
 * This program uses the host CURAND API to generate 100
 * pseudorandom floats.
 */
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand.h>

#define CUDA_CALL(x) do { if((x)!=cudaSuccess) { \
 printf("Error at %s:%d\n",__FILE__,__LINE__);\
 return EXIT_FAILURE;}} while(0)
#define CURAND_CALL(x) do { if((x)!=CURAND_STATUS_SUCCESS) { \
 printf("Error at %s:%d\n",__FILE__,__LINE__);\
 return EXIT_FAILURE;}} while(0)

int main(int argc, char *argv[])
{
 size_t n = 100;
 size_t i;
 curandGenerator_t gen;
 float *devData, *hostData;

 /* Allocate n floats on host */
 hostData = (float *)calloc(n, sizeof(float));

 /* Allocate n floats on device */
 CUDA_CALL(cudaMalloc((void **)&devData, n*sizeof(float)));

 /* Create pseudo-random number generator */
 CURAND_CALL(curandCreateGenerator(&gen,
 CURAND_RNG_PSEUDO_DEFAULT));

 /* Set seed */
 CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen,
 1234ULL));

 /* Generate n floats on device */
 CURAND_CALL(curandGenerateUniform(gen, devData, n));

 /* Copy device memory to host */
 CUDA_CALL(cudaMemcpy(hostData, devData, n * sizeof(float),
 cudaMemcpyDeviceToHost));

 /* Show result */
 for(i = 0; i < n; i++) {
 printf("%1.4f ", hostData[i]);
 }
 printf("\n");

 /* Cleanup */
 CURAND_CALL(curandDestroyGenerator(gen));
 CUDA_CALL(cudaFree(devData));
 free(hostData);
 return EXIT_SUCCESS;
}

Host API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 10

2.6. Static Library support
Starting with release 6.5, the cuRAND Library is also delivered in a static form as
libcurand_static.a on Linux and Mac and as curand_static.lib on Windows. The static
cuRAND library depends on a common thread abstraction layer library called libcuos.a
on Linux and Mac and cuos.lib on Windows.

For example, on linux, to compile a small application using cuRAND against the
dynamic library, the following command can be used:

 nvcc myCurandApp.c -lcurand -o myCurandApp

Whereas to compile against the static cuRAND library, the following command has to be
used:

 nvcc myCurandApp.c -lcurand_static -lculibos -o myCurandApp

It is also possible to use the native Host C++ compiler. Depending on the Host Operating
system, some additional libraries like pthread or dl might be needed on the linking
line. The following command on Linux is suggested :

 g++ myCurandApp.c -lcurand_static -lculibos -lcudart_static -lpthread -
ldl -I <cuda-toolkit-path>/include -L <cuda-toolkit-path>/lib64 -o myCurandApp

Note that in the latter case, the library cuda is not needed. The CUDA Runtime will try
to open explicitly the cuda library if needed. In the case of a system which does not have
the CUDA driver installed, this allows the application to gracefully manage this issue
and potentially run if a CPU-only path is available.

2.7. Performance Notes
In general you will get the best performance from the cuRAND library by generating
blocks of random numbers that are as large as possible. Fewer calls to generate
many random numbers is more efficient than many calls generating only a few
random numbers. The default pseudorandom generator, XORWOW, with the
default ordering takes some time to setup the first time it is called. Subsequent
generation calls do not require this setup. To avoid this setup time, use the
CURAND_ORDERING_PSEUDO_SEEDED ordering.

The MTGP32 Mersenne Twister algorithm is closely tied to the thread and block count.
The state structure for MTGP32 actually contains the state for 256 consecutive samples
from a given sequence, as determined by a specific parameter set. Each of 64 blocks uses
a different parameter set and each of 256 threads generates one sample from the state,
and updates the state. Hence the most efficient use of MTGP32 is to generate a multiple
of 16384 samples.

The MT19937 algorithm performance depends on number of samples generated during
the single call. Peak performance can be achieved while generating more than 2GB of

Host API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 11

data, but 80% of peak performance can be achieved while generating only 80MB. Please
see [18] for reference.

The Philox_4x32_10 algorithm is closely tied to the thread and block count. Each
thread computes 4 random numbers in the same time thus the most efficient use of
Philox_4x32_10 is to generate a multiple of 4 times number of threads.

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 12

Chapter 3.
DEVICE API OVERVIEW

To use the device API, include the file curand_kernel.h in files that define kernels
that use cuRAND device functions. The device API includes functions pseudorandom
generation for and quasirandom generation.

3.1. Pseudorandom Sequences
The functions for pseudorandom sequences support bit generation and generation from
distributions.

3.1.1. Bit Generation with XORWOW and MRG32k3a
generators
__device__ unsigned int
curand (curandState_t *state)

Following a call to curand_init(), curand() returns a sequence of pseudorandom
numbers with a period greater than . If curand() is called with the same initial
state each time, and the state is not modified between the calls to curand(), the same
sequence is always generated.

__device__ void
curand_init (
 unsigned long long seed, unsigned long long sequence,
 unsigned long long offset, curandState_t *state)

The curand_init() function sets up an initial state allocated by the caller using the
given seed, sequence number, and offset within the sequence. Different seeds are
guaranteed to produce different starting states and different sequences. The same seed
always produces the same state and the same sequence. The state set up will be the state
after ⋅ sequence + offset calls to curand() from the seed state.

Sequences generated with different seeds usually do not have statistically correlated
values, but some choices of seeds may give statistically correlated sequences. Sequences
generated with the same seed and different sequence numbers will not have statistically
correlated values.

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 13

For the highest quality parallel pseudorandom number generation, each experiment
should be assigned a unique seed. Within an experiment, each thread of computation
should be assigned a unique sequence number. If an experiment spans multiple kernel
launches, it is recommended that threads between kernel launches be given the same
seed, and sequence numbers be assigned in a monotonically increasing way. If the same
configuration of threads is launched, random state can be preserved in global memory
between launches to avoid state setup time.

3.1.2. Bit Generation with the MTGP32 generator
The MTGP32 generator is an adaptation of code developed at Hiroshima University
(see [1]). In this algorithm, samples are generated for multiple sequences, each sequence
based on a set of computed parameters. cuRAND uses the 200 parameter sets that have
been pre-generated for the 32-bit generator with period 211214. It would be possible to
generate other parameter sets, as described in [1], and use those instead. There is one
state structure for each parameter set (sequence), and the algorithm allows thread-safe
generation and state update for up to 256 concurrent threads (within a single block) for
each of the 200 sequences.

Note that two different blocks can not operate on the same state safely. Also note that,
within a block, at most 256 threads may operate on a given state.

For the MTGP32 generator, two host functions are provided to help set up parameters
for the different sequences in device memory, and to set up the initial state.
__host__ curandStatust curandMakeMTGP32Constants(mtgp32paramsfastt params[],
 mtgp32kernelparamst *p)

This function reorganizes the parameter set data from the pre-generated
format (mtgp32_params_fast_t) into the format used by the kernel functions
(mtgp32_kernel_params_t), and copies them to device memory.
__host__ curandStatus_t
curandMakeMTGP32KernelState(curandStateMtgp32_t *s,
 mtgp32_params_fast_t params[],
 mtgp32_kernel_params_t *k,
 int n,
 unsigned long long seed)

This function initializes n states, based on the specified parameter set and seed, and
copies them to device memory indicated by s. Note that if you are using the pre-
generated states, the maximum value of n is 200.

The cuRAND MTGP32 generator provides two kernel functions to generate random bits.
__device__ unsigned int
curand (curandStateMtgp32_t *state)

This function computes a thread index, and for that index generates a result and updates
state. The thread index t is computed as:

t= (blockDim.z * blockDim.y * threadIdx.z) + (blockDim.x *
threadIdx.y) + threadIdx.x

This function may be called repeatedly from a single kernel launch, with the following
constraints:

‣ It may only be called safely from a block that has 256 or fewer threads.

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 14

‣ A given state may not be used by more than one block.
‣ A given block may generate randoms using multiple states.
‣ At a given point in the code, all threads in the block, or none of them, must call this

function.
__device__ unsigned int
curandmtgp32specific(curandStateMtgp32_t *state, unsigned char index,
 unsigned char n)

This function generates a result and updates state for the position specified
by a thread-specific index, and advances the offset in the state by n
positions.curand_mtgp32_specific may be called multiple times within a kernel
launch, with the following constraints:

‣ At most 256 threads may call this function for a given state.
‣ Within a block, for a given state, if n threads are calling the function, the indices

must run from 0...n-1. The indices do not have to match the thread numbers,
and may be distributed among the threads as required by the calling program. At a
given point in the code, all of the indices from 0...n-1, or none of them, must be
used.

‣ A given state may not be used by more than one block.
‣ A given block may generate randoms using multiple states.

s(n) s(n+ 351)s(n+ 2)s(n+ 1) s(n+ 352)s(1)s(0) s(1023)s(1022)

T(0) T(1)

s(n+ p) s(n+ p+ 1)

s(n) s(n+ 351)s(n+ 2)s(n+ 1) s(n+ 352)s(1)s(0) s(1023)s(1022)

T(0) T(1)

s(n+ p) s(n+ p+ 1).

Block(63) using P(63)

Block(2) using P(2)

Block(1) using P(1)

Block(0) using P(0)

.

. . .

. . .

. . .

. . .

s(n) s(n+ 351)s(n+ 2)s(n+ 1) s(n+ 352)s(1)s(0) s(1023)s(1022)

T(0) T(1)

s(n+ p) s(n+ p+ 1)

s(n) s(n+ 351)s(n+ 2)s(n+ 1) s(n+ 352)s(1)s(0) s(1023)s(1022)

T(0) T(1)

s(n+ p) s(n+ p+ 1)

.

.

.

Figure 1 MTGP32 Block and Thread Operation

Figure 1 is an illustration of how blocks and threads in MTGP32 operate on the
generator states. Each row represents a circular state array of 32-bit integers s(n).
Threads operating on the array are identified as T(m). The specific case shown matches
the internal implementation of the host API, which launches 64 blocks of 256 threads.

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 15

Each block operates on a different sequence, determined by a unique set of parameters,
P(n). One complete state of an MTGP32 sequence is defined by 351 32-bit integers. Each
thread T(m) operates on one of these integers, s(n+m) combining it with s(n+m+1) and
a pickup element s(n+m+p), where p <= 95. It stores the new state at position s(n+m
+351) in the state array. After thread synchronization, the base index n is advanced by
the number of threads that have updated the state. To avoid being overwritten, the array
itself must be at least 256 + 351 integers in length. In fact it is sized at 1024 integers for
efficiency of indexing.

The limitation on the number of threads in a block, which can operate on a given state
array, arises from the need to ensure that state s(n+351) has been updated before it
is needed as a pickup state. If there were a thread T(256), it could use s(n+256+95)
i.e. s(n+351) before thread zero has updated s(n+351). If an application requires that
more than 256 threads in a block invoke an MTGP32 generator function, it must use
multiple MTGP32 states, either by using multiple parameter sets, or by using multiple
generators with different seeds. Also note that the generator functions synchronize
threads at the end of each call, so it is most efficient for 256 threads in a block to invoke
the generator.

3.1.3. Bit Generation with Philox_4x32_10 generator
__device__ unsigned int
curand (curandState_t *state)

Following a call to curand_init(), curand() returns a sequence of pseudorandom
numbers with a period . If curand() is called with the same initial state each time,
and the state is not modified between the calls to curand(), the same sequence is
always generated.

__device__ void
curand_init (
 unsigned long long seed, unsigned long long subsequence,
 unsigned long long offset, curandState_t *state)

The curand_init() function sets up an initial state allocated by the caller using the
given seed, subsequence and offset. Different seed is guaranteed to produce different
starting states and different sequences. Subsequence and offset together define offset in
a sequence with period . Offset defines offset in subsequence of length . When last
element from subsequence was generated, then the next random number is first element
from consecutive subsequence. The same seed always produces the same state and the
same sequence.

Sequences generated with different seeds usually do not have statistically correlated
values, but some choices of seeds may give statistically correlated sequences.

For the highest quality parallel pseudorandom number generation, each experiment
should be assigned a unique seed value. Within an experiment, each thread of
computation should be assigned a unique id number. If an experiment spans multiple
kernel launches, it is recommended that threads between kernel launches be given the
same seed, and id numbers be assigned in a monotonically increasing way. If the same
configuration of threads is launched, random state can be preserved in global memory
between launches to avoid state setup time.

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 16

3.1.4. Distributions
__device__ float
curand_uniform (curandState_t *state)

This function returns a sequence of pseudorandom floats uniformly distributed between
0.0 and 1.0. It may return from 0.0 to 1.0, where 1.0 is included and 0.0 is excluded.
Distribution functions may use any number of unsigned integer values from a basic
generator. The number of values consumed is not guaranteed to be fixed.
__device__ float
curand_normal (curandState_t *state)

This function returns a single normally distributed float with mean 0.0 and standard
deviation 1.0. This result can be scaled and shifted to produce normally distributed
values with any mean and standard deviation.
__device__ float
curand_log_normal (curandState_t *state, float mean, float stddev)

This function returns a single log-normally distributed float based on a normal
distribution with the given mean and standard deviation.
__device__ unsigned int
curand_poisson (curandState_t *state, double lambda)

This function returns a single Poisson-distributed unsigned int based on a Poisson
distribution with the given lambda. The algorithm used to derive a Poisson result from
a uniformly distributed result varies depending on the value of lambda and the type
of generator. Some algorithms draw more than one sample for a single output. Also
note that this distribuition requires pre-processing on the host. See the description of
curandCreatePoissonDistribution() below.
__device__ double
curand_uniform_double (curandState_t *state)

__device__ double
curand_normal_double (curandState_t *state)

__device__ double
curand_log_normal_double (curandState_t *state, double mean, double stddev)

The three functions above are the double precision versions of curand_uniform(),
curand_normal(), and curand_log_normal().

For pseudorandom generators, the double precision functions use multiple calls to
curand() to generate 53 random bits.
__device__ float2
curand_normal2 (curandState_t *state)

__device__ float2
curand_log_normal2 (curandState_t *state)

__device__ double2
curand_normal2_double (curandState_t *state)

__device__ double2
curand_log_normal2_double (curandState_t *state)

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 17

The above functions generate two normally or log normally distributed pseudorandom
results with each call. Because the underlying implementation uses the Box-Muller
transform, this is generally more efficient than generating a single result with each call.
__device__ uint4
curand4 (curandStatePhilox4_32_10_t *state)

__device__ float4
curand_uniform4 (curandStatePhilox4_32_10_t *state)

__device__ float4
curand_normal4 (curandStatePhilox4_32_10_t *state)

__device__ float4
curand_log_normal4 (curandStatePhilox4_32_10_t *state, float mean, float stddev)

__device__ uint4
curand_poisson4 (curandStatePhilox4_32_10_t *state, double lambda)

__device__ uint4
curand_discrete4 (curandStatePhilox4_32_10_t *state,
 curandDiscreteDistribution_t discrete_distribution)

__device__ double2
curand_uniform2_double (curandStatePhilox4_32_10_t *state)

__device__ double2
curand_normal2_double (curandStatePhilox4_32_10_t *state)

__device__ double2
curand_log_normal2_double (curandStatePhilox4_32_10_t *state, double mean,
 double stddev)

The above functions generate four single precision or two double precision results with
each call. Because the underlying implementation uses the Philox generator, this is
generally more efficient than generating a single result with each call.

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 18

3.2. Quasirandom Sequences
Although the default generator type is pseudorandom numbers from XORWOW,
Sobol’ sequences based on Sobol’ 32-bit integers can be generated using the following
functions:
__device__ void
curand_init (
 unsigned int *direction_vectors,
 unsigned int offset,
 curandStateSobol32_t *state)

__device__ void
curand_init (
 unsigned int *direction_vectors,
 unsigned int scramble_c,
 unsigned int offset,
 curandStateScrambledSobol32_t *state)

__device__ unsigned int
curand (curandStateSobol32_t *state)

__device__ float
curand_uniform (curandStateSobol32_t *state)

__device__ float
curand_normal (curandStateSobol32_t *state)

__device__ float
curand_log_normal (
 curandStateSobol32_t *state,
 float mean,
 float stddev)

__device__ unsigned int
curand_poisson (curandStateSobol32_t *state, double lambda)

__device__ double
curand_uniform_double (curandStateSobol32_t *state)

__device__ double
curand_normal_double (curandStateSobol32_t *state)

__device__ double
curand_log_normal_double (
 curandStateSobol32_t *state,
 double mean,
 double stddev)

The curand_init() function initializes the quasirandom number generator
state. There is no seed parameter, only direction vectors and offset. For scrambled
Sobol’ generators, there is an additional parameter scramble_c, which is the
initial value of the scrambled sequence. For the curandStateSobol32_t type
and the curandStateScrambledSobol32_t type the direction vectors are an
array of 32 unsigned integer values. For the curandStateSobol64_t type and the
curandStateScrambledSobol64_t type the direction vectors are an array of 64
unsigned long long values. Offsets and initial constants for the scrambled sequence
are of type unsigned int for 32-bit Sobol’ generators. These parameters are of type
unsigned long long for 64-bit Soblol’ generators. For the curandStateSobol32_t type
and the curandStateScrambledSobol32_t type the sequence is exactly elements
long where each element is 32 bits. For the curandStateSobol64_t type and the

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 19

curandStateScrambledSobol64_t type the sequence is exactly elements long
where each element is 64 bits. Each call to curand() returns the next quasirandom
element. Calls to curand_uniform() return quasirandom floats or doubles from 0.0
to 1.0, where 1.0 is included and 0.0 is excluded. Similarly, calls to curand_normal()
return normally distributed floats or doubles with mean 0.0 and standard deviation
1.0. Calls to curand_log_normal() return log-normally distributed floats or doubles,
derived from the normal distribution with the specified mean and standard deviation.
All of the generation functions may be called with any type of Sobol’ generator.

As an example, generating quasirandom coordinates that fill a unit cube requires
keeping track of three quasirandom generators. All three would start at offset = 0 and
would have dimensions 0, 1, and 2, respectively. A single call to curand_uniform()
for each generator state would generate the , , and coordinates. Tables of direction
vectors are accessible on the host through the curandGetDirectionVectors32() and
curandGetDirectionVectors64() functions. The direction vectors needed should be
copied into device memory before use.

The normal distribution functions for quasirandom generation use the inverse
cumulative density function to preserve the dimensionality of the quasirandom
sequence. Therefore there are no functions that generate more than one result at a time
as there are with the pseudorandom generators.

The double precision Sobol32 functions return results in double precision that use 32 bits
of internal precision from the underlying generator.

The double precision Sobol64 functions return results in double precision that use 53 bits
of internal precision from the underlying generator. These bits are taken from the high
order 53 bits of the 64 bit samples.

3.3. Skip-Ahead
There are several functions to skip ahead from a generator state.
__device__ void
skipahead (unsigned long long n, curandState_t *state)

__device__ void
skipahead (unsigned int n, curandStateSobol32_t *state)

Using this function is equivalent to calling curand() times without using the return
value, but it is much faster.
__device__ void
skipaheadsequence (unsigned long long n, curandState_t *state)

This function is the equivalent of calling curand() times without using the
return value and is much faster.

3.4. Device API for discrete distributions
Discrete distributions, such as the Poisson distribution, require additional API’s
that perform preprocessing on HOST side to generate a histogram for the specific
distribution. In the case of the Poisson distribution this histogram is different for

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 20

different values of lambda. Best performance for these distributions will be seen on
GPUs with at least 48KB of L1 cache.
curandStatus_t
curandCreatePoissonDistribution(
 double lambda,
 curandDiscreteDistribution_t *discrete_distribution)

The curandCreatePoissonDistribution() function is used to create a histogram for
the Poisson distribution with the given lambda.
__device__ unsigned int
curand_discrete (
 curandState_t *state,
 curandDiscreteDistribution_t discrete_distribution)

This function returns a single discrete distributed unsigned int based on a distribution
for the given discrete distribution histogram.
curandStatus_t
curandDestroyDistribution(
 curandDiscreteDistribution_t discrete_distribution)

The curandDestroyDistribution() function is used to clean up structures related to
the histogram.

3.5. Performance Notes
Calls to curand_init() are slower than calls to curand() or curand_uniform().
Large offsets to curand_init() take more time than smaller offsets. It is much faster to
save and restore random generator state than to recalculate the starting state repeatedly.

As shown below, generator state can be stored in global memory between kernel
launches, used in local memory for fast generation, and then stored back into global
memory.

__global__ void example(curandState *global_state)
{
 curandState local_state;
 local_state = global_state[threadIdx.x];
 for(int i = 0; i < 10000; i++) {
 unsigned int x = curand(&local_state);
 ...
 }
 global_state[threadIdx.x] = local_state;
}

Initialization of the random generator state generally requires more registers and local
memory than random number generation. It may be beneficial to separate calls to
curand_init() and curand() into separate kernels for maximum performance.

State setup can be an expensive operation. One way to speed up the setup is to use
different seeds for each thread and a constant sequence number of 0. This can be
especially helpful if many generators need to be created. While faster to set up, this
method provides less guarantees about the mathematical properties of the generated
sequences. If there happens to be a bad interaction between the hash function that
initializes the generator state from the seed and the periodicity of the generators, there

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 21

might be threads with highly correlated outputs for some seed values. We do not know
of any problem values; if they do exist they are likely to be rare.

3.6. Device API Examples
This example uses the cuRAND device API to generate pseudorandom numbers using
either the XORWOW or MRG32k3a generators. For integers, it calculates the proportion
that have the low bit set. For uniformly distributed real numbers, it calculates the

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 22

proportion that are greater than 0.5. For normally distributed real numbers, it calculates
the proportion that are within one standard deviation of the mean.

/*
 * This program uses the device CURAND API to calculate what
 * proportion of pseudo-random ints have low bit set.
 * It then generates uniform results to calculate how many
 * are greater than .5.
 * It then generates normal results to calculate how many
 * are within one standard deviation of the mean.
 */
#include <stdio.h>
#include <stdlib.h>

#include <cuda.h>
#include <curand_kernel.h>

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \
 printf("Error at %s:%d\n",__FILE__,__LINE__); \
 return EXIT_FAILURE;}} while(0)

__global__ void setup_kernel(curandState *state)
{
 int id = threadIdx.x + blockIdx.x * 64;
 /* Each thread gets same seed, a different sequence
 number, no offset */
 curand_init(1234, id, 0, &state[id]);
}

__global__ void setup_kernel(curandStatePhilox4_32_10_t *state)
{
 int id = threadIdx.x + blockIdx.x * 64;
 /* Each thread gets same seed, a different sequence
 number, no offset */
 curand_init(1234, id, 0, &state[id]);
}

__global__ void setup_kernel(curandStateMRG32k3a *state)
{
 int id = threadIdx.x + blockIdx.x * 64;
 /* Each thread gets same seed, a different sequence
 number, no offset */
 curand_init(0, id, 0, &state[id]);
}

__global__ void generate_kernel(curandState *state,
 int n,
 unsigned int *result)
{
 int id = threadIdx.x + blockIdx.x * 64;
 int count = 0;
 unsigned int x;
 /* Copy state to local memory for efficiency */
 curandState localState = state[id];
 /* Generate pseudo-random unsigned ints */
 for(int i = 0; i < n; i++) {
 x = curand(&localState);
 /* Check if low bit set */
 if(x & 1) {
 count++;
 }
 }
 /* Copy state back to global memory */
 state[id] = localState;
 /* Store results */
 result[id] += count;
}

__global__ void generate_kernel(curandStatePhilox4_32_10_t *state,
 int n,
 unsigned int *result)
{
 int id = threadIdx.x + blockIdx.x * 64;
 int count = 0;
 unsigned int x;
 /* Copy state to local memory for efficiency */
 curandStatePhilox4_32_10_t localState = state[id];
 /* Generate pseudo-random unsigned ints */
 for(int i = 0; i < n; i++) {
 x = curand(&localState);
 /* Check if low bit set */
 if(x & 1) {
 count++;
 }
 }
 /* Copy state back to global memory */
 state[id] = localState;
 /* Store results */
 result[id] += count;
}

__global__ void generate_uniform_kernel(curandState *state,
 int n,
 unsigned int *result)
{
 int id = threadIdx.x + blockIdx.x * 64;
 unsigned int count = 0;
 float x;
 /* Copy state to local memory for efficiency */
 curandState localState = state[id];
 /* Generate pseudo-random uniforms */
 for(int i = 0; i < n; i++) {
 x = curand_uniform(&localState);
 /* Check if > .5 */
 if(x > .5) {
 count++;
 }
 }
 /* Copy state back to global memory */
 state[id] = localState;
 /* Store results */
 result[id] += count;
}

__global__ void generate_uniform_kernel(curandStatePhilox4_32_10_t *state,
 int n,
 unsigned int *result)
{
 int id = threadIdx.x + blockIdx.x * 64;
 unsigned int count = 0;
 float x;
 /* Copy state to local memory for efficiency */
 curandStatePhilox4_32_10_t localState = state[id];
 /* Generate pseudo-random uniforms */
 for(int i = 0; i < n; i++) {
 x = curand_uniform(&localState);
 /* Check if > .5 */
 if(x > .5) {
 count++;
 }
 }
 /* Copy state back to global memory */
 state[id] = localState;
 /* Store results */
 result[id] += count;
}

__global__ void generate_normal_kernel(curandState *state,
 int n,
 unsigned int *result)
{
 int id = threadIdx.x + blockIdx.x * 64;
 unsigned int count = 0;
 float2 x;
 /* Copy state to local memory for efficiency */
 curandState localState = state[id];
 /* Generate pseudo-random normals */
 for(int i = 0; i < n/2; i++) {
 x = curand_normal2(&localState);
 /* Check if within one standard deviaton */
 if((x.x > -1.0) && (x.x < 1.0)) {
 count++;
 }
 if((x.y > -1.0) && (x.y < 1.0)) {
 count++;
 }
 }
 /* Copy state back to global memory */
 state[id] = localState;
 /* Store results */
 result[id] += count;
}

__global__ void generate_normal_kernel(curandStatePhilox4_32_10_t *state,
 int n,
 unsigned int *result)
{
 int id = threadIdx.x + blockIdx.x * 64;
 unsigned int count = 0;
 float2 x;
 /* Copy state to local memory for efficiency */
 curandStatePhilox4_32_10_t localState = state[id];
 /* Generate pseudo-random normals */
 for(int i = 0; i < n/2; i++) {
 x = curand_normal2(&localState);
 /* Check if within one standard deviaton */
 if((x.x > -1.0) && (x.x < 1.0)) {
 count++;
 }
 if((x.y > -1.0) && (x.y < 1.0)) {
 count++;
 }
 }
 /* Copy state back to global memory */
 state[id] = localState;
 /* Store results */
 result[id] += count;
}

__global__ void generate_kernel(curandStateMRG32k3a *state,
 int n,
 unsigned int *result)
{
 int id = threadIdx.x + blockIdx.x * 64;
 unsigned int count = 0;
 unsigned int x;
 /* Copy state to local memory for efficiency */
 curandStateMRG32k3a localState = state[id];
 /* Generate pseudo-random unsigned ints */
 for(int i = 0; i < n; i++) {
 x = curand(&localState);
 /* Check if low bit set */
 if(x & 1) {
 count++;
 }
 }
 /* Copy state back to global memory */
 state[id] = localState;
 /* Store results */
 result[id] += count;
}

__global__ void generate_uniform_kernel(curandStateMRG32k3a *state,
 int n,
 unsigned int *result)
{
 int id = threadIdx.x + blockIdx.x * 64;
 unsigned int count = 0;
 double x;
 /* Copy state to local memory for efficiency */
 curandStateMRG32k3a localState = state[id];
 /* Generate pseudo-random uniforms */
 for(int i = 0; i < n; i++) {
 x = curand_uniform_double(&localState);
 /* Check if > .5 */
 if(x > .5) {
 count++;
 }
 }
 /* Copy state back to global memory */
 state[id] = localState;
 /* Store results */
 result[id] += count;
}

__global__ void generate_normal_kernel(curandStateMRG32k3a *state,
 int n,
 unsigned int *result)
{
 int id = threadIdx.x + blockIdx.x * 64;
 unsigned int count = 0;
 double2 x;
 /* Copy state to local memory for efficiency */
 curandStateMRG32k3a localState = state[id];
 /* Generate pseudo-random normals */
 for(int i = 0; i < n/2; i++) {
 x = curand_normal2_double(&localState);
 /* Check if within one standard deviaton */
 if((x.x > -1.0) && (x.x < 1.0)) {
 count++;
 }
 if((x.y > -1.0) && (x.y < 1.0)) {
 count++;
 }
 }
 /* Copy state back to global memory */
 state[id] = localState;
 /* Store results */
 result[id] += count;
}

int main(int argc, char *argv[])
{

 int i;
 unsigned int total;
 curandState *devStates;
 curandStateMRG32k3a *devMRGStates;
 curandStatePhilox4_32_10_t *devPHILOXStates;
 unsigned int *devResults, *hostResults;
 bool useMRG = 0;
 bool usePHILOX = 0;
 int sampleCount = 10000;
 bool doubleSupported = 0;
 int device;
 struct cudaDeviceProp properties;

 /* check for double precision support */
 CUDA_CALL(cudaGetDevice(&device));
 CUDA_CALL(cudaGetDeviceProperties(&properties,device));
 if (properties.major >= 2 || (properties.major == 1 && properties.minor >=
 3)) {
 doubleSupported = 1;
 }

 /* Check for MRG32k3a option (default is XORWOW) */
 if (argc >= 2) {
 if (strcmp(argv[1],"-m") == 0) {
 useMRG = 1;
 if (!doubleSupported){
 printf("MRG32k3a requires double precision\n");
 printf("^^^^ test WAIVED due to lack of double precision\n");
 return EXIT_SUCCESS;
 }
 }else if (strcmp(argv[1],"-p") == 0) {
 usePHILOX = 1;
 }
 /* Allow over-ride of sample count */
 sscanf(argv[argc-1],"%d",&sampleCount);
 }

 /* Allocate space for results on host */
 hostResults = (unsigned int *)calloc(64 * 64, sizeof(int));

 /* Allocate space for results on device */
 CUDA_CALL(cudaMalloc((void **)&devResults, 64 * 64 *
 sizeof(unsigned int)));

 /* Set results to 0 */
 CUDA_CALL(cudaMemset(devResults, 0, 64 * 64 *
 sizeof(unsigned int)));

 /* Allocate space for prng states on device */
 if (useMRG) {
 CUDA_CALL(cudaMalloc((void **)&devMRGStates, 64 * 64 *
 sizeof(curandStateMRG32k3a)));
 }else if(usePHILOX) {
 CUDA_CALL(cudaMalloc((void **)&devPHILOXStates, 64 * 64 *
 sizeof(curandStatePhilox4_32_10_t)));
 }else {
 CUDA_CALL(cudaMalloc((void **)&devStates, 64 * 64 *
 sizeof(curandState)));
 }

 /* Setup prng states */
 if (useMRG) {
 setup_kernel<<<64, 64>>>(devMRGStates);
 }else if(usePHILOX)
 {
 setup_kernel<<<64, 64>>>(devPHILOXStates);
 }else {
 setup_kernel<<<64, 64>>>(devStates);
 }

 /* Generate and use pseudo-random */
 for(i = 0; i < 50; i++) {
 if (useMRG) {
 generate_kernel<<<64, 64>>>(devMRGStates, sampleCount, devResults);
 }else if (usePHILOX){
 generate_kernel<<<64, 64>>>(devPHILOXStates, sampleCount,
 devResults);
 }else {
 generate_kernel<<<64, 64>>>(devStates, sampleCount, devResults);
 }
 }

 /* Copy device memory to host */
 CUDA_CALL(cudaMemcpy(hostResults, devResults, 64 * 64 *
 sizeof(unsigned int), cudaMemcpyDeviceToHost));

 /* Show result */
 total = 0;
 for(i = 0; i < 64 * 64; i++) {
 total += hostResults[i];
 }
 printf("Fraction with low bit set was %10.13f\n",
 (float)total / (64.0f * 64.0f * sampleCount * 50.0f));

 /* Set results to 0 */
 CUDA_CALL(cudaMemset(devResults, 0, 64 * 64 *
 sizeof(unsigned int)));

 /* Generate and use uniform pseudo-random */
 for(i = 0; i < 50; i++) {
 if (useMRG) {
 generate_uniform_kernel<<<64, 64>>>(devMRGStates, sampleCount,
 devResults);
 }else if(usePHILOX) {
 generate_uniform_kernel<<<64, 64>>>(devPHILOXStates, sampleCount,
 devResults);
 }else {
 generate_uniform_kernel<<<64, 64>>>(devStates, sampleCount,
 devResults);
 }
 }

 /* Copy device memory to host */
 CUDA_CALL(cudaMemcpy(hostResults, devResults, 64 * 64 *
 sizeof(unsigned int), cudaMemcpyDeviceToHost));

 /* Show result */
 total = 0;
 for(i = 0; i < 64 * 64; i++) {
 total += hostResults[i];
 }
 printf("Fraction of uniforms > 0.5 was %10.13f\n",
 (float)total / (64.0f * 64.0f * sampleCount * 50.0f));
 /* Set results to 0 */
 CUDA_CALL(cudaMemset(devResults, 0, 64 * 64 *
 sizeof(unsigned int)));

 /* Generate and use normal pseudo-random */
 for(i = 0; i < 50; i++) {
 if (useMRG) {
 generate_normal_kernel<<<64, 64>>>(devMRGStates, sampleCount,
 devResults);
 }else if(usePHILOX) {
 generate_normal_kernel<<<64, 64>>>(devPHILOXStates, sampleCount,
 devResults);
 }else {
 generate_normal_kernel<<<64, 64>>>(devStates, sampleCount,
 devResults);
 }
 }

 /* Copy device memory to host */
 CUDA_CALL(cudaMemcpy(hostResults, devResults, 64 * 64 *
 sizeof(unsigned int), cudaMemcpyDeviceToHost));

 /* Show result */
 total = 0;
 for(i = 0; i < 64 * 64; i++) {
 total += hostResults[i];
 }
 printf("Fraction of normals within 1 standard deviation was %10.13f\n",
 (float)total / (64.0f * 64.0f * sampleCount * 50.0f));

 /* Cleanup */
 if (useMRG) {
 CUDA_CALL(cudaFree(devMRGStates));
 }else if(usePHILOX)
 {
 CUDA_CALL(cudaFree(devPHILOXStates));
 }else {
 CUDA_CALL(cudaFree(devStates));
 }
 CUDA_CALL(cudaFree(devResults));
 free(hostResults);
 printf("^^^^ kernel_example PASSED\n");
 return EXIT_SUCCESS;
}

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 23

The following example uses the cuRAND host MTGP setup API, and the cuRAND
device API, to generate integers using the MTGP32 generator, and calculates the
proportion that have the low bit set.

/*
 * This program uses the device CURAND API to calculate what
 * proportion of pseudo-random ints have low bit set.
 */
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand_kernel.h>
/* include MTGP host helper functions */
#include <curand_mtgp32_host.h>
/* include MTGP pre-computed parameter sets */
#include <curand_mtgp32dc_p_11213.h>

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \
 printf("Error at %s:%d\n",__FILE__,__LINE__); \
 return EXIT_FAILURE;}} while(0)

#define CURAND_CALL(x) do { if((x) != CURAND_STATUS_SUCCESS) { \
 printf("Error at %s:%d\n",__FILE__,__LINE__); \
 return EXIT_FAILURE;}} while(0)

__global__ void generate_kernel(curandStateMtgp32 *state,
 int n,
 int *result)
{
 int id = threadIdx.x + blockIdx.x * 256;
 int count = 0;
 unsigned int x;
 /* Generate pseudo-random unsigned ints */
 for(int i = 0; i < n; i++) {
 x = curand(&state[blockIdx.x]);
 /* Check if low bit set */
 if(x & 1) {
 count++;
 }
 }
 /* Store results */
 result[id] += count;
}

int main(int argc, char *argv[])
{
 int i;
 long long total;
 curandStateMtgp32 *devMTGPStates;
 mtgp32_kernel_params *devKernelParams;
 int *devResults, *hostResults;
 int sampleCount = 10000;

 /* Allow over-ride of sample count */
 if (argc == 2) {
 sscanf(argv[1],"%d",&sampleCount);
 }

 /* Allocate space for results on host */
 hostResults = (int *)calloc(64 * 256, sizeof(int));

 /* Allocate space for results on device */
 CUDA_CALL(cudaMalloc((void **)&devResults, 64 * 256 *
 sizeof(int)));

 /* Set results to 0 */
 CUDA_CALL(cudaMemset(devResults, 0, 64 * 256 *
 sizeof(int)));

 /* Allocate space for prng states on device */
 CUDA_CALL(cudaMalloc((void **)&devMTGPStates, 64 *
 sizeof(curandStateMtgp32)));

 /* Setup MTGP prng states */

 /* Allocate space for MTGP kernel parameters */

 CUDA_CALL(cudaMalloc((void**)&devKernelParams, sizeof(mtgp32_kernel_params)));

 /* Reformat from predefined parameter sets to kernel format, */
 /* and copy kernel parameters to device memory */
 CURAND_CALL(curandMakeMTGP32Constants(mtgp32dc_params_fast_11213,
 devKernelParams));

 /* Initialize one state per thread block */
 CURAND_CALL(curandMakeMTGP32KernelState(devMTGPStates,
 mtgp32dc_params_fast_11213, devKernelParams, 64, 1234));

 /* State setup is complete */

 /* Generate and use pseudo-random */
 for(i = 0; i < 10; i++) {
 generate_kernel<<<64, 256>>>(devMTGPStates, sampleCount, devResults);
 }

 /* Copy device memory to host */
 CUDA_CALL(cudaMemcpy(hostResults, devResults, 64 * 256 *
 sizeof(int), cudaMemcpyDeviceToHost));

 /* Show result */
 total = 0;
 for(i = 0; i < 64 * 256; i++) {
 total += hostResults[i];
 }

 printf("Fraction with low bit set was %10.13g\n",
 (double)total / (64.0f * 256.0f * sampleCount * 10.0f));

 /* Cleanup */
 CUDA_CALL(cudaFree(devMTGPStates));
 CUDA_CALL(cudaFree(devResults));
 free(hostResults);
 printf("^^^^ kernel_mtgp_example PASSED\n");
 return EXIT_SUCCESS;
}

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 24

The following example uses the cuRAND device API to generate uniform double
precision numbers with the 64 bit scrambled Sobol generator. It uses the results to derive
an approximation of the volume of a sphere.

/*
 * This program uses the device CURAND API to calculate what
 * proportion of quasi-random 3D points fall within a sphere
 * of radius 1, and to derive the volume of the sphere.
 *
 * In particular it uses 64 bit scrambled Sobol direction
 * vectors from the file sobol_direction_vectors.h, to
 * generate double precision uniform samples.
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand_kernel.h>
#include <curand.h>

#define THREADS_PER_BLOCK 64
#define BLOCK_COUNT 64
#define TOTAL_THREADS (THREADS_PER_BLOCK * BLOCK_COUNT)

/* Number of 64-bit vectors per dimension */
#define VECTOR_SIZE 64

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \
 printf("Error at %s:%d\n",__FILE__,__LINE__); \
 return EXIT_FAILURE;}} while(0)

#define CURAND_CALL(x) do { if((x) != CURAND_STATUS_SUCCESS) { \
 printf("Error at %s:%d\n",__FILE__,__LINE__); \
 return EXIT_FAILURE;}} while(0)

/* This kernel initializes state per thread for each of x, y, and z */

__global__ void setup_kernel(unsigned long long * sobolDirectionVectors,
 unsigned long long *sobolScrambleConstants,
 curandStateScrambledSobol64 *state)
{
 int id = threadIdx.x + blockIdx.x * THREADS_PER_BLOCK;
 int dim = 3*id;
 /* Each thread uses 3 different dimensions */
 curand_init(sobolDirectionVectors + VECTOR_SIZE*dim,
 sobolScrambleConstants[dim],
 1234,
 &state[dim]);

 curand_init(sobolDirectionVectors + VECTOR_SIZE*(dim + 1),
 sobolScrambleConstants[dim + 1],
 1234,
 &state[dim + 1]);

 curand_init(sobolDirectionVectors + VECTOR_SIZE*(dim + 2),
 sobolScrambleConstants[dim + 2],
 1234,
 &state[dim + 2]);
}

/* This kernel generates random 3D points and increments a counter if
 * a point is within a unit sphere
 */
__global__ void generate_kernel(curandStateScrambledSobol64 *state,
 int n,
 long long int *result)
{
 int id = threadIdx.x + blockIdx.x * THREADS_PER_BLOCK;
 int baseDim = 3 * id;
 long long int count = 0;
 double x, y, z;

 /* Generate quasi-random double precision coordinates */
 for(int i = 0; i < n; i++) {
 x = curand_uniform_double(&state[baseDim]);
 y = curand_uniform_double(&state[baseDim + 1]);
 z = curand_uniform_double(&state[baseDim + 2]);

 /* Check if within sphere of radius 1 */
 if((x*x + y*y + z*z) < 1.0) {
 count++;
 }
 }
 /* Store results */
 result[id] += count;
}

int main(int argc, char *argv[])
{
 int i;
 long long total;
 curandStateScrambledSobol64 *devSobol64States;
 curandDirectionVectors64_t *hostVectors64;
 unsigned long long int * hostScrambleConstants64;
 unsigned long long int * devDirectionVectors64;
 unsigned long long int * devScrambleConstants64;
 long long int *devResults, *hostResults;
 int sampleCount = 10000;
 int iterations = 100;
 double fraction;
 double pi = 3.1415926535897932;

 /* Allow over-ride of sample count */
 if (argc == 2) {
 sscanf(argv[1],"%d",&sampleCount);
 }

 /* Allocate space for results on host */
 hostResults = (long long int*)calloc(TOTAL_THREADS,
 sizeof(long long int));

 /* Allocate space for results on device */
 CUDA_CALL(cudaMalloc((void **)&devResults,
 TOTAL_THREADS * sizeof(long long int)));

 /* Set results to 0 */
 CUDA_CALL(cudaMemset(devResults, 0,
 TOTAL_THREADS * sizeof(long long int)));

 /* Get pointers to the 64 bit scrambled direction vectors and constants*/
 CURAND_CALL(curandGetDirectionVectors64(&hostVectors64,

 CURAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6));

 CURAND_CALL(curandGetScrambleConstants64(&hostScrambleConstants64));

 /* Allocate memory for 3 states per thread (x, y, z), each state to get a
 unique dimension */
 CUDA_CALL(cudaMalloc((void **)&devSobol64States,
 TOTAL_THREADS * 3 * sizeof(curandStateScrambledSobol64)));

 /* Allocate memory and copy 3 sets of vectors per thread to the device */

 CUDA_CALL(cudaMalloc((void **)&(devDirectionVectors64),
 3 * TOTAL_THREADS * VECTOR_SIZE
 * sizeof(long long int)));

 CUDA_CALL(cudaMemcpy(devDirectionVectors64, hostVectors64,
 3 * TOTAL_THREADS * VECTOR_SIZE
 * sizeof(long long int),
 cudaMemcpyHostToDevice));

 /* Allocate memory and copy 3 scramble constants (one costant per
 dimension)
 per thread to the device */

 CUDA_CALL(cudaMalloc((void **)&(devScrambleConstants64),
 3 * TOTAL_THREADS * sizeof(long long int)));

 CUDA_CALL(cudaMemcpy(devScrambleConstants64, hostScrambleConstants64,
 3 * TOTAL_THREADS * sizeof(long long int),
 cudaMemcpyHostToDevice));

 /* Initialize the states */

 setup_kernel<<<BLOCK_COUNT, THREADS_PER_BLOCK>>>(devDirectionVectors64,
 devScrambleConstants64,
 devSobol64States);

 /* Generate and count quasi-random points */

 for(i = 0; i < iterations; i++) {
 generate_kernel<<<BLOCK_COUNT, THREADS_PER_BLOCK>>>(devSobol64States,
 sampleCount, devResults);
 }

 /* Copy device memory to host */

 CUDA_CALL(cudaMemcpy(hostResults,
 devResults,
 TOTAL_THREADS * sizeof(long long int),
 cudaMemcpyDeviceToHost));

 /* Tally and show result */

 total = 0;
 for(i = 0; i < TOTAL_THREADS; i++) {
 total += hostResults[i];
 }

 fraction = (double)total / ((double)TOTAL_THREADS * (double)sampleCount *
 (double)iterations);
 printf("Fraction inside sphere was %g\n", fraction);
 printf("(4/3) pi = %g, sampled volume = %g\n",(4.0*pi/3.0),8.0 * fraction);

 /* Cleanup */

 CUDA_CALL(cudaFree(devSobol64States));
 CUDA_CALL(cudaFree(devDirectionVectors64));
 CUDA_CALL(cudaFree(devScrambleConstants64));
 CUDA_CALL(cudaFree(devResults));
 free(hostResults);
 printf("^^^^ kernel_sobol_example PASSED\n");

 return EXIT_SUCCESS;
}

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 25

3.7. Thrust and cuRAND Example
The following example demonstrates mixing cuRAND and Thrust. It is a minimally
modified version of monte_carlo.cu, one of the standard Thrust examples. The

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 26

example estimates by randomly picking points in the unit square and calculating the
distance to the origin to see if the points are in the quarter unit circle.
#include <thrust/iterator/counting_iterator.h>
#include <thrust/functional.h>
#include <thrust/transform_reduce.h>
#include <curand_kernel.h>

#include <iostream>
#include <iomanip>

// we could vary M & N to find the perf sweet spot

struct estimate_pi :
 public thrust::unary_function<unsigned int, float>
{
 __device__
 float operator()(unsigned int thread_id)
 {
 float sum = 0;
 unsigned int N = 10000; // samples per thread

 unsigned int seed = thread_id;

 curandState s;

 // seed a random number generator
 curand_init(seed, 0, 0, &s);

 // take N samples in a quarter circle
 for(unsigned int i = 0; i < N; ++i)
 {
 // draw a sample from the unit square
 float x = curand_uniform(&s);
 float y = curand_uniform(&s);

 // measure distance from the origin
 float dist = sqrtf(x*x + y*y);

 // add 1.0f if (u0,u1) is inside the quarter circle
 if(dist <= 1.0f)
 sum += 1.0f;
 }

 // multiply by 4 to get the area of the whole circle
 sum *= 4.0f;

 // divide by N
 return sum / N;
 }
};

int main(void)
{
 // use 30K independent seeds
 int M = 30000;

 float estimate = thrust::transform_reduce(
 thrust::counting_iterator<int>(0),
 thrust::counting_iterator<int>(M),
 estimate_pi(),
 0.0f,
 thrust::plus<float>());
 estimate /= M;

 std::cout << std::setprecision(3);
 std::cout << "pi is approximately ";
 std::cout << estimate << std::endl;
 return 0;
}

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 27

3.8. Poisson API Example
This example shows the differences between the 3 API types for the Poisson distribution.
It is a simulation of queues in a store. The host API is the most robust for generating
large vectors of Poisson-distributed random numbers. (i.e. it has the best statistical
properties across the full range of lambda values) The discrete Device API is almost
as robust as the HOST API and allows Poisson-distributed random numbers to be

Device API Overview

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 28

generated inside a kernel. The simple Device API is the least robust but is more efficient
when generating Poisson-distributed random numbers for many different lambdas.
/*
 * This program uses CURAND library for Poisson distribution
 * to simulate queues in store for 16 hours. It shows the
 * difference of using 3 different APIs:
 * - HOST API -arrival of customers is described by Poisson(4)
 * - SIMPLE DEVICE API -arrival of customers is described by
 * Poisson(4*(sin(x/100)+1)), where x is number of minutes
 * from store opening time.
 * - ROBUST DEVICE API -arrival of customers is described by:
 * - Poisson(2) for first 3 hours.
 * - Poisson(1) for second 3 hours.
 * - Poisson(3) after 6 hours.
 */

#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <curand_kernel.h>
#include <curand.h>

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \
 printf("Error at %s:%d\n",__FILE__,__LINE__); \
 return EXIT_FAILURE;}} while(0)
#define CURAND_CALL(x) do { if((x)!=CURAND_STATUS_SUCCESS) { \
 printf("Error at %s:%d\n",__FILE__,__LINE__);\
 return EXIT_FAILURE;}} while(0)

#define HOURS 16
#define OPENING_HOUR 7
#define CLOSING_HOUR (OPENING_HOUR + HOURS)

#define access_2D(type, ptr, row, column, pitch)\
 ((type)((char*)ptr + (row) * pitch) + column)

enum API_TYPE {
 HOST_API = 0,
 SIMPLE_DEVICE_API = 1,
 ROBUST_DEVICE_API = 2,
};

/* global variables */
API_TYPE api;
int report_break;
int cashiers_load_h[HOURS];
__constant__ int cashiers_load[HOURS];

__global__ void setup_kernel(curandState *state)
{
 int id = threadIdx.x + blockIdx.x * blockDim.x;
 /* Each thread gets same seed, a different sequence
 number, no offset */
 curand_init(1234, id, 0, &state[id]);
}

__inline__ __device__
void update_queue(int id, int min, unsigned int new_customers,
 unsigned int &queue_length,
 unsigned int *queue_lengths, size_t pitch)
{
 int balance;
 balance = new_customers - 2 * cashiers_load[(min-1)/60];
 if (balance + (int)queue_length <= 0){
 queue_length = 0;
 }else{
 queue_length += balance;
 }
 /* Store results */
 access_2D(unsigned int, queue_lengths, min-1, id, pitch)
 = queue_length;
}

__global__ void simple_device_API_kernel(curandState *state,
 unsigned int *queue_lengths, size_t pitch)
{
 int id = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int new_customers;
 unsigned int queue_length = 0;
 /* Copy state to local memory for efficiency */
 curandState localState = state[id];
 /* Simulate queue in time */
 for(int min = 1; min <= 60 * HOURS; min++) {
 /* Draw number of new customers depending on API */
 new_customers = curand_poisson(&localState,
 4*(sin((float)min/100.0)+1));
 /* Update queue */
 update_queue(id, min, new_customers, queue_length,
 queue_lengths, pitch);
 }
 /* Copy state back to global memory */
 state[id] = localState;
}

__global__ void host_API_kernel(unsigned int *poisson_numbers,
 unsigned int *queue_lengths, size_t pitch)
{
 int id = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int new_customers;
 unsigned int queue_length = 0;
 /* Simulate queue in time */
 for(int min = 1; min <= 60 * HOURS; min++) {
 /* Get random number from global memory */
 new_customers = poisson_numbers
 [blockDim.x * gridDim.x * (min -1) + id];
 /* Update queue */
 update_queue(id, min, new_customers, queue_length,
 queue_lengths, pitch);
 }
}

__global__ void robust_device_API_kernel(curandState *state,
 curandDiscreteDistribution_t poisson_1,
 curandDiscreteDistribution_t poisson_2,
 curandDiscreteDistribution_t poisson_3,
 unsigned int *queue_lengths, size_t pitch)
{
 int id = threadIdx.x + blockIdx.x * 64;
 unsigned int new_customers;
 unsigned int queue_length = 0;
 /* Copy state to local memory for efficiency */
 curandState localState = state[id];
 /* Simulate queue in time */
 /* first 3 hours */
 for(int min = 1; min <= 60 * 3; min++) {
 /* draw number of new customers depending on API */
 new_customers =
 curand_discrete(&localState, poisson_2);
 /* Update queue */
 update_queue(id, min, new_customers, queue_length,
 queue_lengths, pitch);
 }
 /* second 3 hours */
 for(int min = 60 * 3 + 1; min <= 60 * 6; min++) {
 /* draw number of new customers depending on API */
 new_customers =
 curand_discrete(&localState, poisson_1);
 /* Update queue */
 update_queue(id, min, new_customers, queue_length,
 queue_lengths, pitch);
 }
 /* after 6 hours */
 for(int min = 60 * 6 + 1; min <= 60 * HOURS; min++) {
 /* draw number of new customers depending on API */
 new_customers =
 curand_discrete(&localState, poisson_3);
 /* Update queue */
 update_queue(id, min, new_customers, queue_length,
 queue_lengths, pitch);
 }
 /* Copy state back to global memory */
 state[id] = localState;
}

/* Set time intervals between reports */
void report_settings()
{
 do{
 printf("Set time intervals between queue reports");
 printf("(in minutes > 0)\n");
 if (scanf("%d", &report_break) == 0) continue;
 }while(report_break <= 0);
}

/* Set number of cashiers each hour */
void add_cachiers(int *cashiers_load)
{
 int i, min, max, begin, end;
 printf("Cashier serves 2 customers per minute...\n");
 for (i = 0; i < HOURS; i++){
 cashiers_load_h[i] = 0;
 }
 while (true){
 printf("Adding cashier...\n");
 min = OPENING_HOUR;
 max = CLOSING_HOUR-1;
 do{
 printf("Set hour that cahier comes (%d-%d)",
 min, max);
 printf(" [type 0 to finish adding cashiers]\n");
 if (scanf("%d", &begin) == 0) continue;
 }while (begin > max || (begin < min && begin != 0));
 if (begin == 0) break;
 min = begin+1;
 max = CLOSING_HOUR;
 do{
 printf("Set hour that cahier leaves (%d-%d)",
 min, max);
 printf(" [type 0 to finish adding cashiers]\n");
 if (scanf("%d", &end) == 0) continue;
 }while (end > max || (end < min && end != 0));
 if (end == 0) break;
 for (i = begin - OPENING_HOUR;
 i < end - OPENING_HOUR; i++){
 cashiers_load_h[i]++;
 }
 }
 for (i = OPENING_HOUR; i < CLOSING_HOUR; i++){
 printf("\n%2d:00 - %2d:00 %d cashier",
 i, i+1, cashiers_load_h[i-OPENING_HOUR]);
 if (cashiers_load[i-OPENING_HOUR] != 1) printf("s");
 }
 printf("\n");
}

/* Set API type */
API_TYPE set_API_type()
{
 printf("Choose API type:\n");
 int choose;
 do{
 printf("type 1 for HOST API\n");
 printf("type 2 for SIMPLE DEVICE API\n");
 printf("type 3 for ROBUST DEVICE API\n");
 if (scanf("%d", &choose) == 0) continue;
 }while(choose < 1 || choose > 3);
 switch(choose){
 case 1: return HOST_API;
 case 2: return SIMPLE_DEVICE_API;
 case 3: return ROBUST_DEVICE_API;
 default:
 fprintf(stderr, "wrong API\n");
 return HOST_API;
 }
}

void settings()
{
 add_cachiers(cashiers_load);
 cudaMemcpyToSymbol("cashiers_load", cashiers_load_h,
 HOURS * sizeof(int), 0, cudaMemcpyHostToDevice);
 report_settings();
 api = set_API_type();
}

void print_statistics(unsigned int *hostResults, size_t pitch)
{
 int min, i, hour, minute;
 unsigned int sum;
 for(min = report_break; min <= 60 * HOURS;
 min += report_break) {
 sum = 0;
 for(i = 0; i < 64 * 64; i++) {
 sum += access_2D(unsigned int, hostResults,
 min-1, i, pitch);
 }
 hour = OPENING_HOUR + min/60;
 minute = min%60;
 printf("%2d:%02d # of waiting customers = %10.4g |",
 hour, minute, (float)sum/(64.0 * 64.0));
 printf(" # of cashiers = %d | ",
 cashiers_load_h[(min-1)/60]);
 printf("# of new customers/min ~= ");
 switch (api){
 case HOST_API:
 printf("%2.2f\n", 4.0);
 break;
 case SIMPLE_DEVICE_API:
 printf("%2.2f\n",
 4*(sin((float)min/100.0)+1));
 break;
 case ROBUST_DEVICE_API:
 if (min <= 3 * 60){
 printf("%2.2f\n", 2.0);
 }else{
 if (min <= 6 * 60){
 printf("%2.2f\n", 1.0);
 }else{
 printf("%2.2f\n", 3.0);
 }
 }
 break;
 default:
 fprintf(stderr, "Wrong API\n");
 }
 }
}

int main(int argc, char *argv[])
{
 int n;
 size_t pitch;
 curandState *devStates;
 unsigned int *devResults, *hostResults;
 unsigned int *poisson_numbers_d;
 curandDiscreteDistribution_t poisson_1, poisson_2;
 curandDiscreteDistribution_t poisson_3;
 curandGenerator_t gen;

 /* Setting cashiers, report and API */
 settings();

 /* Allocate space for results on device */
 CUDA_CALL(cudaMallocPitch((void **)&devResults, &pitch,
 64 * 64 * sizeof(unsigned int), 60 * HOURS));

 /* Allocate space for results on host */
 hostResults = (unsigned int *)calloc(pitch * 60 * HOURS,
 sizeof(unsigned int));

 /* Allocate space for prng states on device */
 CUDA_CALL(cudaMalloc((void **)&devStates, 64 * 64 *
 sizeof(curandState)));

 /* Setup prng states */
 if (api != HOST_API){
 setup_kernel<<<64, 64>>>(devStates);
 }
 /* Simulate queue */
 switch (api){
 case HOST_API:
 /* Create pseudo-random number generator */
 CURAND_CALL(curandCreateGenerator(&gen,
 CURAND_RNG_PSEUDO_DEFAULT));
 /* Set seed */
 CURAND_CALL(curandSetPseudoRandomGeneratorSeed(
 gen, 1234ULL));
 /* compute n */
 n = 64 * 64 * HOURS * 60;
 /* Allocate n unsigned ints on device */
 CUDA_CALL(cudaMalloc((void **)&poisson_numbers_d,
 n * sizeof(unsigned int)));
 /* Generate n unsigned ints on device */
 CURAND_CALL(curandGeneratePoisson(gen,
 poisson_numbers_d, n, 4.0));
 host_API_kernel<<<64, 64>>>(poisson_numbers_d,
 devResults, pitch);
 /* Cleanup */
 CURAND_CALL(curandDestroyGenerator(gen));
 break;
 case SIMPLE_DEVICE_API:
 simple_device_API_kernel<<<64, 64>>>(devStates,
 devResults, pitch);
 break;
 case ROBUST_DEVICE_API:
 /* Create histograms for Poisson(1) */
 CURAND_CALL(curandCreatePoissonDistribution(1.0,
 &poisson_1));
 /* Create histograms for Poisson(2) */
 CURAND_CALL(curandCreatePoissonDistribution(2.0,
 &poisson_2));
 /* Create histograms for Poisson(3) */
 CURAND_CALL(curandCreatePoissonDistribution(3.0,
 &poisson_3));
 robust_device_API_kernel<<<64, 64>>>(devStates,
 poisson_1, poisson_2, poisson_3,
 devResults, pitch);
 /* Cleanup */
 CURAND_CALL(curandDestroyDistribution(poisson_1));
 CURAND_CALL(curandDestroyDistribution(poisson_2));
 CURAND_CALL(curandDestroyDistribution(poisson_3));
 break;
 default:
 fprintf(stderr, "Wrong API\n");
 }
 /* Copy device memory to host */
 CUDA_CALL(cudaMemcpy2D(hostResults, pitch, devResults,
 pitch, 64 * 64 * sizeof(unsigned int),
 60 * HOURS, cudaMemcpyDeviceToHost));
 /* Show result */
 print_statistics(hostResults, pitch);
 /* Cleanup */
 CUDA_CALL(cudaFree(devStates));
 CUDA_CALL(cudaFree(devResults));
 free(hostResults);
 return EXIT_SUCCESS;
}

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 29

Chapter 4.
TESTING

The XORWOW generator was proposed by Marsaglia [5] and has been tested using
the TestU01 "Crush" framework of tests [6]. The full suite of NIST pseudorandomness
tests [7] has also been run, though the focus has been on TestU01. The most rigorous the
the TestU01 batteries is "BigCrush", which executes 106 statistical tests over the course
of approximately 5 hours on a high-end CPU/GPU. The XORWOW generator passes
all of the tests on most runs, but does produce occasional suspect statistics. Below is an
example of the summary output from a run that did not pass all tests, with the detail of
the specific failure.

========= Summary results of BigCrush =========

 Version: TestU01 1.2.3
 Generator: curandXORWOW
 Number of statistics: 160
 Total CPU time: 05:17:59.63
 The following tests gave p-values outside [0.001, 0.9990]:
 (eps means a value < 1.0e-300):
 (eps1 means a value < 1.0e-15):

 Test p-value
 --
 81 LinearComp, r = 29 1 - 7.1e-11
 --
 All other tests were passed

Detail from test 81:

scomp_LinearComp test:

 N = 1, n = 400020, r = 29, s = 1

Number of degrees of freedom : 12
Chi2 statistic for size of jumps : 7.11
p-value of test : 0.85

Normal statistic for number of jumps : -6.41

Testing

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 30

p-value of test : 1 - 7.1e-11 *****

To put this into perspective, there is a table in [6] that gives the results of running
various levels of the "Crush" tests on a broad selection of generators. Only a small
number of generators pass all of the BigCrush tests. For example the widely-respected
Mersenne twister [8] consistently fails two of the linear complexity tests.

The MRG32k3a generator was proposed in [9], with a specific implementation suggested
in [10]. This generator passes all "BigCrush" tests frequently, with occasional marginal
results similar to those shown below.

========= Summary results of BigCrush =========

 Version: TestU01 1.2.3
 Generator: curandMRG32k3a
 Number of statistics: 160
 Total CPU time: 07:14:55.41
 The following tests gave p-values outside [0.001, 0.9990]:
 (eps means a value < 1.0e-300):
 (eps1 means a value < 1.0e-15):

 Test p-value
 --
 59 WeightDistrib, r = 0 5.2e-4
 --
 All other tests were passed

Detail from test 59:

svaria_WeightDistrib test:

 N = 1, n = 20000000, r = 0, k = 256, Alpha = 0, Beta =
 0.25

Number of degrees of freedom : 67
Chi-square statistic : 111.55
p-value of test : 5.2e-4 *****

CPU time used : 00:02:56.25

The MTGP32 generator is an adaptation of the work outlined in [1]. The MTGP32
generator exhibits some marginal results on "BigCrush". Below is an example.

========= Summary results of BigCrush =========

 Version: TestU01 1.2.3
 Generator: curandMtgp32Int
 Number of statistics: 160
 Total CPU time: 05:45:29.49
 The following tests gave p-values outside [0.001, 0.9990]:
 (eps means a value < 1.0e-300):
 (eps1 means a value < 1.0e-15):

 Test p-value
 --
 12 CollisionOver, t = 21 0.9993
 --

Testing

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 31

 All other tests were passed

Detail from test 12:

smultin_MultinomialOver test:

 N = 30, n = 20000000, r = 28, d = 4, t = 21,
 Sparse = TRUE

 GenerCell = smultin_GenerCellSerial
 Number of cells = d^t = 4398046511104
 Expected number per cell = 1 / 219902.33
 EColl = n^2 / (2k) = 45.47473509
 Hashing = TRUE

 Collision test

 CollisionOver: density = n / k = 1 / 219902.33
 Expected number of collisions = Mu = 45.47

Results of CollisionOver test:

POISSON approximation :
Expected number of collisions = N*Mu : 1364.24
Observed number of collisions : 1248
p-value of test : 0.9993 *****

Total number of cells containing j balls

 j = 0 : 131940795334368
 j = 1 : 599997504
 j = 2 : 1248
 j = 3 : 0
 j = 4 : 0
 j = 5 : 0

CPU time used : 00:04:32.52

The MT19937 generator is, by far, the most widely used PRNG

========= Summary results of BigCrush =========

 Version: TestU01 1.2.3
 Generator: curandMT19937Int
 Number of statistics: 160
 Total CPU time: 03:12:59.34

 All tests were passed

The Philox4_32_10 generator is one of the counter-based RNGs described in [17].

========= Summary results of BigCrush =========

 Version: TestU01 1.2.3
 Generator: curandPHILOXInt
 Number of statistics: 160
 Total CPU time: 03:18:50.30

Testing

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 32

 All tests were passed

Sobol’ sequences are generated using the direction vectors recommended by Joe and
Kuo [2]. The scrambled Sobol’ method is described in [3] and [4].

Testing of the normal distribution, with the each of the generators, has been done
using the Pearson chi-squared test [11], [12], the Jarque-Bera test [13], the Kolmogorov-
Smirnov test [14], [15], and the Anderson-Darling test [16].

Tests are run over the range +/- 6 standard deviations. Three Pearson tests are run, with
cell counts 1000, 100, and 25. The test output has columns labeled PK for Pearson with
1000 cells, PC for Pearson with 100 cells, P25 for Pearson with 25 cells, JB for Jarque-Bera,
KS for Kolmogorov-Smirnov, and AD for Anderson-Darling. The rejection criterion for
each test is printed below the label.

The following tables are representative of the test output for statistical testing of the
normal distribution for XORWOW, MRG32k3a, MTGP32, MT19937, Philox, Sobol’ 32-bit,
and scrambled Sobol’ 32-bit generators. The rows of each table represent the statistical
results computed over successive sequences of 10000 samples.

XORWOW Generator:

 PK PC P25 JB KS
 AD
 <1058 <118 <33 <4.6 <0.0122
 <.632

 --
 684.48120 58.97784 20.44693 2.84152 0.00540
 0.32829
 686.37925 54.84938 7.79583 0.55109 0.00900
 0.25832
 673.21437 69.15825 15.46540 0.30335 0.00872
 0.26772
 568.26999 49.99519 8.85046 0.66624 0.00870
 0.22939
 639.10690 84.23040 10.19753 0.19844 0.00542
 0.27939

MRg32k3a Generator:

 PK PC P25 JB KS
 AD
 <1058 <118 <33 <4.6 <0.0122
 <.632

 --

 764.38500 74.48157 19.32716 1.50118 0.01103
 0.60351
 795.31006 74.15086 11.78414 1.15159 0.00821
 0.35343
 741.85426 91.88692 20.67103 2.34232 0.00900
 0.61787
 644.62093 70.68369 17.18277 0.32870 0.01243*
 0.34630
 806.02693 93.50691 23.10548 2.67340 0.00978
 0.51466

Testing

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 33

MTGP32 Generator:

 PK PC P25 JB KS
 AD
 <1058 <118 <33 <4.6 <0.0122
 <.632

 --

 924.62604 110.19868 23.45811 0.86919 0.00519
 0.33411
 708.76047 79.42919 20.67913 1.13427 0.01142
 0.54632
 674.17713 65.80415 13.09834 1.07799 0.01040
 0.23860
 733.35915 57.13829 17.66337 3.17017 0.01188
 0.30864
 620.17297 50.39043 14.75682 0.57970 0.00845
 0.28916

MT19937 Generator:

 PK PC P25 JB KS
 AD
 <1058 <118 <33 <4.6 <0.0077
 <.632

 --

 663.51515 67.53027 9.70908 0.70428 0.00482
 0.22643
 758.11526 65.27417 10.81213 0.16740 0.00541
 0.24615
 678.79743 60.92754 27.50102 1.33330 0.00546
 0.42693
 741.21087 82.42319 24.10450 1.84422 0.00570
 0.41724
 644.92464 71.74918 18.32281 1.01582 0.00546
 0.30622

Philox_4x32_10 Generator:

 PK PC P25 JB KS
 AD
 <1058 <118 <33 <4.6 <0.0122
 <.632

 --

 688.73231 78.60241 18.28300 0.23786 0.00520
 0.24052
 600.66650 59.78966 21.59090 4.24401 0.00464
 0.49806
 916.60146 78.16294 10.01345 1.53526 0.00660
 0.25025
 713.67544 61.20329 15.82239 0.79568 0.00614
 0.26091
 699.84498 80.73224 16.07304 1.37786 0.00464
 0.29227

Sobol’ 32-bit generator:

Testing

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 34

 PK PC P25 JB KS
 AD
 <1058 <118 <33 <4.6 <0.0122
 <.632

 --

 157.04578 6.47398 1.45802 0.19007 0.00024
 0.00188
 243.82767 11.98164 1.34982 0.00668 0.00030
 0.00086
 229.87234 10.40206 2.73912 0.04165 0.00036
 0.00137
 290.29451 17.09013 3.25717 0.02583 0.00042
 0.00172
 327.32072 19.22832 5.09510 0.00335 0.00036
 0.00127

Scrambled Sobol’ 32-bit generator:

 PK PC P25 JB KS
 AD
 <1058 <118 <33 <4.6 <0.0122
 <.632

 --
 255.80606 10.93180 1.33766 0.01226 0.00036
 0.00112
 258.84244 8.45589 1.56766 0.04164 0.00036
 0.00170
 585.34346 49.33610 5.32037 0.04069 0.00043
 0.00208
 337.50312 27.64720 3.38925 0.01953 0.00041
 0.00211
 729.56687 56.89682 32.89772 0.00911 0.00040
 0.00204

Even though the log-normal distribution is closely derived from the normal distribution,
it has also been tested using the Pearson chi-squared test and the Kolmogorov-Smirnov
test.

The following tables are representative of the test output for statistical testing of the log
normal distribution for XORWOW, MRG32k3a, MTGP32, MT19937, Philox, Sobol’ 32-bit,
and scrambled Sobol’ 32-bit generators.

XORWOW generator:

 PK PC P25 KS
 <1058 <118 <33 <0.0122
 --

 1019.57936 105.63667 13.15820 0.00540
 991.93663 91.95369 20.46549 0.00900
 983.09678 115.34978 20.50434 0.00872
 966.45604 113.30013 24.54060 0.00870
 996.35262 111.50026 21.01332 0.00542

MRG32k3a generator:

 PK PC P25 KS

Testing

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 35

 <1058 <118 <33 <0.0122
 --

 1000.00359 90.12428 22.82709 0.00826
 942.17843 81.16259 16.13670 0.00739
 1005.62148 102.29924 23.62705 0.00697
 1053.68391 98.75565 28.65422 0.01107
 998.38936 103.43649 19.26568 0.00803

MTGP32 generator:

 PK PC P25 KS
 <1058 <118 <33 <0.0122
 --

 1010.18903 94.51850 17.98126 0.00771
 993.78319 76.86543 12.48859 0.00831
 1010.22068 63.76027 11.65743 0.00677
 963.33103 89.44369 17.96636 0.01200
 927.15616 75.85515 13.64221 0.00566

MT19937 generator:

 PK PC P25 KS
 <1058 <118 <33 <0.0122
 --

 929.15309 83.63208 16.91037 0.00482
 1058.79511 114.19971 27.28300 0.00541
 963.35338 103.52657 26.68634 0.00546
 1009.21512 114.36706 38.44470 0.00570
 976.91303 84.83272 14.78584 0.00546

Philox_4x32_10 generator:

 PK PC P25 KS
 <1058 <118 <33 <0.0122
 --

 992.19843 100.39826 14.91235 0.00357
 962.03714 115.40663 18.03086 0.00595
 1006.41781 92.84903 27.33686 0.00385
 1009.75491 96.93654 11.99484 0.00520
 1003.85449 89.00801 15.64060 0.00464

Sobol’ 32-bit generator:

 PK PC P25 KS
 <1058 <118 <33 <0.0122
 --

 289.42589 5.03327 0.48858 0.00024
 386.79860 6.57783 0.76902 0.00030
 355.04631 8.54472 1.12228 0.00036
 434.19211 9.54021 2.07006 0.00042
 343.57507 10.71571 0.42503 0.00036

Scrambled Sobol- 32-bit generator:

 PK PC P25 KS
 <1058 <118 <33 <0.0122

Testing

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 36

 --

 354.55037 8.20727 0.24592 0.00036
 506.45280 12.93848 0.73323 0.00036
 451.96949 18.18903 0.69465 0.00043
 593.25666 16.55782 0.54769 0.00041
 423.05263 12.06600 0.53472 0.00040

Testing of the Poisson-distribution, with the each of the generators, has been done using
the Pearson chi-squared test [11].

Tests are run over a broad range of lambda values, and the statistics are compared to
those for Poisson distribution results using MKL.

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 37

Chapter 5.
MODULES

Here is a list of all modules:

‣ Host API
‣ Device API

5.1. Host API

enum curandDirectionVectorSet

CURAND choice of direction vector set

Values

CURAND_DIRECTION_VECTORS_32_JOEKUO6 = 101
Specific set of 32-bit direction vectors generated from polynomials recommended by
S. Joe and F. Y. Kuo, for up to 20,000 dimensions.

CURAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6 = 102
Specific set of 32-bit direction vectors generated from polynomials recommended by
S. Joe and F. Y. Kuo, for up to 20,000 dimensions, and scrambled.

CURAND_DIRECTION_VECTORS_64_JOEKUO6 = 103
Specific set of 64-bit direction vectors generated from polynomials recommended by
S. Joe and F. Y. Kuo, for up to 20,000 dimensions.

CURAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6 = 104
Specific set of 64-bit direction vectors generated from polynomials recommended by
S. Joe and F. Y. Kuo, for up to 20,000 dimensions, and scrambled.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 38

enum curandOrdering

CURAND ordering of results in memory

Values

CURAND_ORDERING_PSEUDO_BEST = 100
Best ordering for pseudorandom results.

CURAND_ORDERING_PSEUDO_DEFAULT = 101
Specific default 4096 thread sequence for pseudorandom results.

CURAND_ORDERING_PSEUDO_SEEDED = 102
Specific seeding pattern for fast lower quality pseudorandom results.

CURAND_ORDERING_QUASI_DEFAULT = 201
Specific n-dimensional ordering for quasirandom results.

enum curandRngType

CURAND generator types

Values

CURAND_RNG_TEST = 0
CURAND_RNG_PSEUDO_DEFAULT = 100

Default pseudorandom generator.
CURAND_RNG_PSEUDO_XORWOW = 101

XORWOW pseudorandom generator.
CURAND_RNG_PSEUDO_MRG32K3A = 121

MRG32k3a pseudorandom generator.
CURAND_RNG_PSEUDO_MTGP32 = 141

Mersenne Twister MTGP32 pseudorandom generator.
CURAND_RNG_PSEUDO_MT19937 = 142

Mersenne Twister MT19937 pseudorandom generator.
CURAND_RNG_PSEUDO_PHILOX4_32_10 = 161

PHILOX-4x32-10 pseudorandom generator.
CURAND_RNG_QUASI_DEFAULT = 200

Default quasirandom generator.
CURAND_RNG_QUASI_SOBOL32 = 201

Sobol32 quasirandom generator.
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 = 202

Scrambled Sobol32 quasirandom generator.
CURAND_RNG_QUASI_SOBOL64 = 203

Sobol64 quasirandom generator.
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 = 204

Scrambled Sobol64 quasirandom generator.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 39

enum curandStatus

CURAND function call status types

Values

CURAND_STATUS_SUCCESS = 0
No errors.

CURAND_STATUS_VERSION_MISMATCH = 100
Header file and linked library version do not match.

CURAND_STATUS_NOT_INITIALIZED = 101
Generator not initialized.

CURAND_STATUS_ALLOCATION_FAILED = 102
Memory allocation failed.

CURAND_STATUS_TYPE_ERROR = 103
Generator is wrong type.

CURAND_STATUS_OUT_OF_RANGE = 104
Argument out of range.

CURAND_STATUS_LENGTH_NOT_MULTIPLE = 105
Length requested is not a multple of dimension.

CURAND_STATUS_DOUBLE_PRECISION_REQUIRED = 106
GPU does not have double precision required by MRG32k3a.

CURAND_STATUS_LAUNCH_FAILURE = 201
Kernel launch failure.

CURAND_STATUS_PREEXISTING_FAILURE = 202
Preexisting failure on library entry.

CURAND_STATUS_INITIALIZATION_FAILED = 203
Initialization of CUDA failed.

CURAND_STATUS_ARCH_MISMATCH = 204
Architecture mismatch, GPU does not support requested feature.

CURAND_STATUS_INTERNAL_ERROR = 999
Internal library error.

curandStatus_t CURANDAPI curandCreateGenerator
(curandGenerator_t *generator, curandRngType_t
rng_type)
Create new random number generator.

Parameters

generator
- Pointer to generator

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 40

rng_type
- Type of generator to create

Returns

‣ CURAND_STATUS_ALLOCATION_FAILED, if memory could not be allocated
‣ CURAND_STATUS_INITIALIZATION_FAILED if there was a problem setting up

the GPU
‣ CURAND_STATUS_VERSION_MISMATCH if the header file version does not

match the dynamically linked library version
‣ CURAND_STATUS_TYPE_ERROR if the value for rng_type is invalid
‣ CURAND_STATUS_SUCCESS if generator was created successfully

Description

CURAND generator CURAND distribution CURAND distribution M2 Creates a new
random number generator of type rng_type and returns it in *generator.

Legal values for rng_type are:

‣ CURAND_RNG_PSEUDO_DEFAULT
‣ CURAND_RNG_PSEUDO_XORWOW
‣ CURAND_RNG_PSEUDO_MRG32K3A
‣ CURAND_RNG_PSEUDO_MTGP32
‣ CURAND_RNG_PSEUDO_MT19937
‣ CURAND_RNG_PSEUDO_PHILOX4_32_10
‣ CURAND_RNG_QUASI_DEFAULT
‣ CURAND_RNG_QUASI_SOBOL32
‣ CURAND_RNG_QUASI_SCRAMBLED_SOBOL32
‣ CURAND_RNG_QUASI_SOBOL64
‣ CURAND_RNG_QUASI_SCRAMBLED_SOBOL64

When rng_type is CURAND_RNG_PSEUDO_DEFAULT, the
type chosen is CURAND_RNG_PSEUDO_XORWOW. When
rng_type is CURAND_RNG_QUASI_DEFAULT, the type chosen is
CURAND_RNG_QUASI_SOBOL32.

The default values for rng_type = CURAND_RNG_PSEUDO_XORWOW are:

‣ seed = 0
‣ offset = 0
‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MRG32K3A are:

‣ seed = 0
‣ offset = 0

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 41

‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MTGP32 are:

‣ seed = 0
‣ offset = 0
‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MT19937 are:

‣ seed = 0
‣ offset = 0
‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

* The default values for rng_type = CURAND_RNG_PSEUDO_PHILOX4_32_10 are:

‣ seed = 0
‣ offset = 0
‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL32 are:

‣ dimensions = 1
‣ offset = 0
‣ ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL64 are:

‣ dimensions = 1
‣ offset = 0
‣ ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBBLED_SOBOL32
are:

‣ dimensions = 1
‣ offset = 0
‣ ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBLED_SOBOL64
are:

‣ dimensions = 1
‣ offset = 0
‣ ordering = CURAND_ORDERING_QUASI_DEFAULT

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 42

curandStatus_t CURANDAPI curandCreateGeneratorHost
(curandGenerator_t *generator, curandRngType_t
rng_type)
Create new host CPU random number generator.

Parameters

generator
- Pointer to generator

rng_type
- Type of generator to create

Returns

‣ CURAND_STATUS_ALLOCATION_FAILED if memory could not be allocated
‣ CURAND_STATUS_INITIALIZATION_FAILED if there was a problem setting up

the GPU
‣ CURAND_STATUS_VERSION_MISMATCH if the header file version does not

match the dynamically linked library version
‣ CURAND_STATUS_TYPE_ERROR if the value for rng_type is invalid
‣ CURAND_STATUS_SUCCESS if generator was created successfully

Description

Creates a new host CPU random number generator of type rng_type and returns it in
*generator.

Legal values for rng_type are:

‣ CURAND_RNG_PSEUDO_DEFAULT
‣ CURAND_RNG_PSEUDO_XORWOW
‣ CURAND_RNG_PSEUDO_MRG32K3A
‣ CURAND_RNG_PSEUDO_MTGP32
‣ CURAND_RNG_PSEUDO_MT19937
‣ CURAND_RNG_PSEUDO_PHILOX4_32_10
‣ CURAND_RNG_QUASI_DEFAULT
‣ CURAND_RNG_QUASI_SOBOL32

When rng_type is CURAND_RNG_PSEUDO_DEFAULT, the
type chosen is CURAND_RNG_PSEUDO_XORWOW. When
rng_type is CURAND_RNG_QUASI_DEFAULT, the type chosen is
CURAND_RNG_QUASI_SOBOL32.

The default values for rng_type = CURAND_RNG_PSEUDO_XORWOW are:

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 43

‣ seed = 0
‣ offset = 0
‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MRG32K3A are:

‣ seed = 0
‣ offset = 0
‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MTGP32 are:

‣ seed = 0
‣ offset = 0
‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MT19937 are:

‣ seed = 0
‣ offset = 0
‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

* The default values for rng_type = CURAND_RNG_PSEUDO_PHILOX4_32_10 are:

‣ seed = 0
‣ offset = 0
‣ ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL32 are:

‣ dimensions = 1
‣ offset = 0
‣ ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL64 are:

‣ dimensions = 1
‣ offset = 0
‣ ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBLED_SOBOL32
are:

‣ dimensions = 1
‣ offset = 0
‣ ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBLED_SOBOL64
are:

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 44

‣ dimensions = 1
‣ offset = 0
‣ ordering = CURAND_ORDERING_QUASI_DEFAULT

curandStatus_t CURANDAPI
curandCreatePoissonDistribution (double lambda,
curandDiscreteDistribution_t *discrete_distribution)
Construct the histogram array for a Poisson distribution.

Parameters

lambda
- lambda for the Poisson distribution

discrete_distribution
- pointer to the histogram in device memory

Returns

‣ CURAND_STATUS_ALLOCATION_FAILED if memory could not be allocated
‣ CURAND_STATUS_DOUBLE_PRECISION_REQUIRED if the GPU does not

support double precision
‣ CURAND_STATUS_INITIALIZATION_FAILED if there was a problem setting up

the GPU
‣ CURAND_STATUS_NOT_INITIALIZED if the distribution pointer was null
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_OUT_OF_RANGE if lambda is non-positive or greater than

400,000
‣ CURAND_STATUS_SUCCESS if the histogram was generated successfully

Description

Construct the histogram array for the Poisson distribution with lambda lambda. For
lambda greater than 2000, an approximation with a normal distribution is used.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 45

curandStatus_t CURANDAPI curandDestroyDistribution
(curandDiscreteDistribution_t discrete_distribution)
Destroy the histogram array for a discrete distribution (e.g. Poisson).

Parameters

discrete_distribution
- pointer to device memory where the histogram is stored

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the histogram was never created
‣ CURAND_STATUS_SUCCESS if the histogram was destroyed successfully

Description

Destroy the histogram array for a discrete distribution created by
curandCreatePoissonDistribution.

curandStatus_t CURANDAPI curandDestroyGenerator
(curandGenerator_t generator)
Destroy an existing generator.

Parameters

generator
- Generator to destroy

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_SUCCESS if generator was destroyed successfully

Description

Destroy an existing generator and free all memory associated with its state.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 46

curandStatus_t CURANDAPI curandGenerate
(curandGenerator_t generator, unsigned int *outputPtr,
size_t num)
Generate 32-bit pseudo or quasirandom numbers.

Parameters

generator
- Generator to use

outputPtr
- Pointer to device memory to store CUDA-generated results, or Pointer to host
memory to store CPU-generated results

num
- Number of random 32-bit values to generate

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples is

not a multiple of the quasirandom dimension
‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
‣ CURAND_STATUS_TYPE_ERROR if the generator is a 64 bit quasirandom

generator. (use curandGenerateLongLong() with 64 bit quasirandom generators)
‣ CURAND_STATUS_SUCCESS if the results were generated successfully

Description

Use generator to generate num 32-bit results into the device memory at outputPtr.
The device memory must have been previously allocated and be large enough to hold all
the results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit values with every bit random.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 47

curandStatus_t CURANDAPI curandGenerateLogNormal
(curandGenerator_t generator, float *outputPtr, size_t
n, float mean, float stddev)
Generate log-normally distributed floats.

Parameters

generator
- Generator to use

outputPtr
- Pointer to device memory to store CUDA-generated results, or Pointer to host
memory to store CPU-generated results

n
- Number of floats to generate

mean
- Mean of associated normal distribution

stddev
- Standard deviation of associated normal distribution

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
‣ CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples

is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators

‣ CURAND_STATUS_SUCCESS if the results were generated successfully

Description

Use generator to generate n float results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all
the results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit floating point values with log-normal distribution based on an
associated normal distribution with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a Box-
Muller transform, and so require n to be even. Quasirandom generators use an inverse
cumulative distribution function to preserve dimensionality. The normally distributed
results are transformed into log-normal distribution.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 48

There may be slight numerical differences between results generated on the GPU
with generators created with curandCreateGenerator() and results calculated on the
CPU with generators created with curandCreateGeneratorHost(). These differences
arise because of differences in results for transcendental functions. In addition, future
versions of CURAND may use newer versions of the CUDA math library, so different
versions of CURAND may give slightly different numerical values.

curandStatus_t CURANDAPI
curandGenerateLogNormalDouble (curandGenerator_t
generator, double *outputPtr, size_t n, double mean,
double stddev)
Generate log-normally distributed doubles.

Parameters

generator
- Generator to use

outputPtr
- Pointer to device memory to store CUDA-generated results, or Pointer to host
memory to store CPU-generated results

n
- Number of doubles to generate

mean
- Mean of normal distribution

stddev
- Standard deviation of normal distribution

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
‣ CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples

is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators

‣ CURAND_STATUS_DOUBLE_PRECISION_REQUIRED if the GPU does not
support double precision

‣ CURAND_STATUS_SUCCESS if the results were generated successfully

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 49

Description

Use generator to generate n double results into the device memory at outputPtr.
The device memory must have been previously allocated and be large enough to hold all
the results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit floating point values with log-normal distribution based on an
associated normal distribution with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a Box-
Muller transform, and so require n to be even. Quasirandom generators use an inverse
cumulative distribution function to preserve dimensionality. The normally distributed
results are transformed into log-normal distribution.

There may be slight numerical differences between results generated on the GPU
with generators created with curandCreateGenerator() and results calculated on the
CPU with generators created with curandCreateGeneratorHost(). These differences
arise because of differences in results for transcendental functions. In addition, future
versions of CURAND may use newer versions of the CUDA math library, so different
versions of CURAND may give slightly different numerical values.

curandStatus_t CURANDAPI curandGenerateLongLong
(curandGenerator_t generator, unsigned long long
*outputPtr, size_t num)
Generate 64-bit quasirandom numbers.

Parameters

generator
- Generator to use

outputPtr
- Pointer to device memory to store CUDA-generated results, or Pointer to host
memory to store CPU-generated results

num
- Number of random 64-bit values to generate

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples is

not a multiple of the quasirandom dimension
‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 50

‣ CURAND_STATUS_TYPE_ERROR if the generator is not a 64 bit quasirandom
generator

‣ CURAND_STATUS_SUCCESS if the results were generated successfully

Description

Use generator to generate num 64-bit results into the device memory at outputPtr.
The device memory must have been previously allocated and be large enough to hold all
the results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit values with every bit random.

curandStatus_t CURANDAPI curandGenerateNormal
(curandGenerator_t generator, float *outputPtr, size_t
n, float mean, float stddev)
Generate normally distributed doubles.

Parameters

generator
- Generator to use

outputPtr
- Pointer to device memory to store CUDA-generated results, or Pointer to host
memory to store CPU-generated results

n
- Number of floats to generate

mean
- Mean of normal distribution

stddev
- Standard deviation of normal distribution

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
‣ CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples

is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators

‣ CURAND_STATUS_SUCCESS if the results were generated successfully

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 51

Description

Use generator to generate n float results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all
the results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit floating point values with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a Box-
Muller transform, and so require n to be even. Quasirandom generators use an inverse
cumulative distribution function to preserve dimensionality.

There may be slight numerical differences between results generated on the GPU
with generators created with curandCreateGenerator() and results calculated on the
CPU with generators created with curandCreateGeneratorHost(). These differences
arise because of differences in results for transcendental functions. In addition, future
versions of CURAND may use newer versions of the CUDA math library, so different
versions of CURAND may give slightly different numerical values.

curandStatus_t CURANDAPI
curandGenerateNormalDouble (curandGenerator_t
generator, double *outputPtr, size_t n, double mean,
double stddev)
Generate normally distributed doubles.

Parameters

generator
- Generator to use

outputPtr
- Pointer to device memory to store CUDA-generated results, or Pointer to host
memory to store CPU-generated results

n
- Number of doubles to generate

mean
- Mean of normal distribution

stddev
- Standard deviation of normal distribution

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 52

‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
‣ CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples

is not a multiple of the quasirandom dimension, or is not a multiple of two for
pseudorandom generators

‣ CURAND_STATUS_DOUBLE_PRECISION_REQUIRED if the GPU does not
support double precision

‣ CURAND_STATUS_SUCCESS if the results were generated successfully

Description

Use generator to generate n double results into the device memory at outputPtr.
The device memory must have been previously allocated and be large enough to hold all
the results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit floating point values with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a Box-
Muller transform, and so require n to be even. Quasirandom generators use an inverse
cumulative distribution function to preserve dimensionality.

There may be slight numerical differences between results generated on the GPU
with generators created with curandCreateGenerator() and results calculated on the
CPU with generators created with curandCreateGeneratorHost(). These differences
arise because of differences in results for transcendental functions. In addition, future
versions of CURAND may use newer versions of the CUDA math library, so different
versions of CURAND may give slightly different numerical values.

curandStatus_t CURANDAPI curandGeneratePoisson
(curandGenerator_t generator, unsigned int *outputPtr,
size_t n, double lambda)
Generate Poisson-distributed unsigned ints.

Parameters

generator
- Generator to use

outputPtr
- Pointer to device memory to store CUDA-generated results, or Pointer to host
memory to store CPU-generated results

n
- Number of unsigned ints to generate

lambda
- lambda for the Poisson distribution

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 53

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
‣ CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples is

not a multiple of the quasirandom dimension
‣ CURAND_STATUS_DOUBLE_PRECISION_REQUIRED if the GPU or sm does not

support double precision
‣ CURAND_STATUS_OUT_OF_RANGE if lambda is non-positive or greater than

400,000
‣ CURAND_STATUS_SUCCESS if the results were generated successfully

Description

Use generator to generate n unsigned int results into device memory at outputPtr.
The device memory must have been previously allocated and must be large enough to
hold all the results. Launches are done with the stream set using curandSetStream(), or
the null stream if no stream has been set.

Results are 32-bit unsigned int point values with Poisson distribution, with lambda
lambda.

curandStatus_t CURANDAPI curandGenerateSeeds
(curandGenerator_t generator)
Setup starting states.

Parameters

generator
- Generator to update

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
‣ CURAND_STATUS_SUCCESS if the seeds were generated successfully

Description

Generate the starting state of the generator. This function is automatically called by
generation functions such as curandGenerate() and curandGenerateUniform(). It can be

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 54

called manually for performance testing reasons to separate timings for starting state
generation and random number generation.

curandStatus_t CURANDAPI curandGenerateUniform
(curandGenerator_t generator, float *outputPtr, size_t
num)
Generate uniformly distributed floats.

Parameters

generator
- Generator to use

outputPtr
- Pointer to device memory to store CUDA-generated results, or Pointer to host
memory to store CPU-generated results

num
- Number of floats to generate

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
‣ CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples is

not a multiple of the quasirandom dimension
‣ CURAND_STATUS_SUCCESS if the results were generated successfully

Description

Use generator to generate num float results into the device memory at outputPtr.
The device memory must have been previously allocated and be large enough to hold all
the results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit floating point values between 0.0f and 1.0f, excluding 0.0f and
including 1.0f.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 55

curandStatus_t CURANDAPI
curandGenerateUniformDouble (curandGenerator_t
generator, double *outputPtr, size_t num)
Generate uniformly distributed doubles.

Parameters

generator
- Generator to use

outputPtr
- Pointer to device memory to store CUDA-generated results, or Pointer to host
memory to store CPU-generated results

num
- Number of doubles to generate

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error from a

previous kernel launch
‣ CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any reason
‣ CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output samples is

not a multiple of the quasirandom dimension
‣ CURAND_STATUS_DOUBLE_PRECISION_REQUIRED if the GPU does not

support double precision
‣ CURAND_STATUS_SUCCESS if the results were generated successfully

Description

Use generator to generate num double results into the device memory at outputPtr.
The device memory must have been previously allocated and be large enough to hold all
the results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit double precision floating point values between 0.0 and 1.0,
excluding 0.0 and including 1.0.

curandStatus_t CURANDAPI
curandGetDirectionVectors32

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 56

(curandDirectionVectors32_t *vectors[],
curandDirectionVectorSet_t set)
Get direction vectors for 32-bit quasirandom number generation.

Parameters

vectors
- Address of pointer in which to return direction vectors

set
- Which set of direction vectors to use

Returns

‣ CURAND_STATUS_OUT_OF_RANGE if the choice of set is invalid
‣ CURAND_STATUS_SUCCESS if the pointer was set successfully

Description

Get a pointer to an array of direction vectors that can be used for quasirandom number
generation. The resulting pointer will reference an array of direction vectors in host
memory.

The array contains vectors for many dimensions. Each dimension has 32 vectors. Each
individual vector is an unsigned int.

Legal values for set are:

‣ CURAND_DIRECTION_VECTORS_32_JOEKUO6 (20,000 dimensions)
‣ CURAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6 (20,000

dimensions)

curandStatus_t CURANDAPI
curandGetDirectionVectors64
(curandDirectionVectors64_t *vectors[],
curandDirectionVectorSet_t set)
Get direction vectors for 64-bit quasirandom number generation.

Parameters

vectors
- Address of pointer in which to return direction vectors

set
- Which set of direction vectors to use

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 57

Returns

‣ CURAND_STATUS_OUT_OF_RANGE if the choice of set is invalid
‣ CURAND_STATUS_SUCCESS if the pointer was set successfully

Description

Get a pointer to an array of direction vectors that can be used for quasirandom number
generation. The resulting pointer will reference an array of direction vectors in host
memory.

The array contains vectors for many dimensions. Each dimension has 64 vectors. Each
individual vector is an unsigned long long.

Legal values for set are:

‣ CURAND_DIRECTION_VECTORS_64_JOEKUO6 (20,000 dimensions)
‣ CURAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6 (20,000

dimensions)

curandStatus_t CURANDAPI
curandGetScrambleConstants32 (unsigned int
**constants)
Get scramble constants for 32-bit scrambled Sobol' .

Parameters

constants
- Address of pointer in which to return scramble constants

Returns

‣ CURAND_STATUS_SUCCESS if the pointer was set successfully

Description

Get a pointer to an array of scramble constants that can be used for quasirandom
number generation. The resulting pointer will reference an array of unsinged ints in host
memory.

The array contains constants for many dimensions. Each dimension has a single
unsigned int constant.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 58

curandStatus_t CURANDAPI
curandGetScrambleConstants64 (unsigned long long
**constants)
Get scramble constants for 64-bit scrambled Sobol' .

Parameters

constants
- Address of pointer in which to return scramble constants

Returns

‣ CURAND_STATUS_SUCCESS if the pointer was set successfully

Description

Get a pointer to an array of scramble constants that can be used for quasirandom
number generation. The resulting pointer will reference an array of unsinged long longs
in host memory.

The array contains constants for many dimensions. Each dimension has a single
unsigned long long constant.

curandStatus_t CURANDAPI curandGetVersion (int
*version)
Return the version number of the library.

Parameters

version
- CURAND library version

Returns

‣ CURAND_STATUS_SUCCESS if the version number was successfully returned

Description

Return in *version the version number of the dynamically linked CURAND library.
The format is the same as CUDART_VERSION from the CUDA Runtime. The only
supported configuration is CURAND version equal to CUDA Runtime version.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 59

curandStatus_t CURANDAPI curandSetGeneratorOffset
(curandGenerator_t generator, unsigned long long
offset)
Set the absolute offset of the pseudo or quasirandom number generator.

Parameters

generator
- Generator to modify

offset
- Absolute offset position

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_SUCCESS if generator offset was set successfully

Description

Set the absolute offset of the pseudo or quasirandom number generator.

All values of offset are valid. The offset position is absolute, not relative to the current
position in the sequence.

curandStatus_t CURANDAPI curandSetGeneratorOrdering
(curandGenerator_t generator, curandOrdering_t order)
Set the ordering of results of the pseudo or quasirandom number generator.

Parameters

generator
- Generator to modify

order
- Ordering of results

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_OUT_OF_RANGE if the ordering is not valid
‣ CURAND_STATUS_SUCCESS if generator ordering was set successfully

Description

Set the ordering of results of the pseudo or quasirandom number generator.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 60

Legal values of order for pseudorandom generators are:

‣ CURAND_ORDERING_PSEUDO_DEFAULT
‣ CURAND_ORDERING_PSEUDO_BEST
‣ CURAND_ORDERING_PSEUDO_SEEDED

Legal values of order for quasirandom generators are:

‣ CURAND_ORDERING_QUASI_DEFAULT

curandStatus_t CURANDAPI
curandSetPseudoRandomGeneratorSeed
(curandGenerator_t generator, unsigned long long seed)
Set the seed value of the pseudo-random number generator.

Parameters

generator
- Generator to modify

seed
- Seed value

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_TYPE_ERROR if the generator is not a pseudorandom number

generator
‣ CURAND_STATUS_SUCCESS if generator seed was set successfully

Description

Set the seed value of the pseudorandom number generator. All values of seed are valid.
Different seeds will produce different sequences. Different seeds will often not be
statistically correlated with each other, but some pairs of seed values may generate
sequences which are statistically correlated.

curandStatus_t CURANDAPI
curandSetQuasiRandomGeneratorDimensions

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 61

(curandGenerator_t generator, unsigned int
num_dimensions)
Set the number of dimensions.

Parameters

generator
- Generator to modify

num_dimensions
- Number of dimensions

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_OUT_OF_RANGE if num_dimensions is not valid
‣ CURAND_STATUS_TYPE_ERROR if the generator is not a quasirandom number

generator
‣ CURAND_STATUS_SUCCESS if generator ordering was set successfully

Description

Set the number of dimensions to be generated by the quasirandom number generator.

Legal values for num_dimensions are 1 to 20000.

curandStatus_t CURANDAPI curandSetStream
(curandGenerator_t generator, cudaStream_t stream)
Set the current stream for CURAND kernel launches.

Parameters

generator
- Generator to modify

stream
- Stream to use or NULL for null stream

Returns

‣ CURAND_STATUS_NOT_INITIALIZED if the generator was never created
‣ CURAND_STATUS_SUCCESS if stream was set successfully

Description

Set the current stream for CURAND kernel launches. All library functions will use this
stream until set again.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 62

5.2. Device API

QUALIFIERS_MTGP32 unsigned int curand
(curandStateMtgp32_t *state)
Return 32-bits of pseudorandomness from a mtgp32 generator.

Parameters

state
- Pointer to state to update

Returns

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

Description

Return 32-bits of pseudorandomness from the mtgp32 generator in state, increment
position of generator by the number of threads in the block. Note the number of threads
in the block can not exceed 256.

__device__ unsigned long long curand
(curandStateScrambledSobol64_t *state)
Return 64-bits of quasirandomness from a scrambled Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

64-bits of quasirandomness as an unsigned long long, all bits valid to use.

Description

Return 64-bits of quasirandomness from the scrambled Sobol32 generator in state,
increment position of generator by one.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 63

__device__ unsigned long long curand
(curandStateSobol64_t *state)
Return 64-bits of quasirandomness from a Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

64-bits of quasirandomness as an unsigned long long, all bits valid to use.

Description

Return 64-bits of quasirandomness from the Sobol64 generator in state, increment
position of generator by one.

__device__ unsigned int curand
(curandStateScrambledSobol32_t *state)
Return 32-bits of quasirandomness from a scrambled Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

32-bits of quasirandomness as an unsigned int, all bits valid to use.

Description

Return 32-bits of quasirandomness from the scrambled Sobol32 generator in state,
increment position of generator by one.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 64

__device__ unsigned int curand (curandStateSobol32_t
*state)
Return 32-bits of quasirandomness from a Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

32-bits of quasirandomness as an unsigned int, all bits valid to use.

Description

Return 32-bits of quasirandomness from the Sobol32 generator in state, increment
position of generator by one.

__device__ unsigned int curand
(curandStateMRG32k3a_t *state)
Return 32-bits of pseudorandomness from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

Returns

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

Description

Return 32-bits of pseudorandomness from the MRG32k3a generator in state,
increment position of generator by one.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 65

__device__ unsigned int curand
(curandStatePhilox4_32_10_t *state)
Return 32-bits of pseudorandomness from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

Description

Return 32-bits of pseudorandomness from the Philox4_32_10 generator in state,
increment position of generator by one.

__device__ unsigned int curand (curandStateXORWOW_t
*state)
Return 32-bits of pseudorandomness from an XORWOW generator.

Parameters

state
- Pointer to state to update

Returns

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

Description

Return 32-bits of pseudorandomness from the XORWOW generator in state,
increment position of generator by one.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 66

__device__ uint4 curand4 (curandStatePhilox4_32_10_t
*state)
Return tuple of 4 32-bit pseudorandoms from a Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

128-bits of pseudorandomness as a uint4, all bits valid to use.

Description

Return 128 bits of pseudorandomness from the Philox4_32_10 generator in state,
increment position of generator by four.

__device__ void curand_init
(curandDirectionVectors64_t direction_vectors,
unsigned long long scramble_c, unsigned long long
offset, curandStateScrambledSobol64_t *state)
Initialize Scrambled Sobol64 state.

Parameters

direction_vectors
- Pointer to array of 64 unsigned long longs representing the direction vectors for the
desired dimension

scramble_c
Scramble constant

offset
- Absolute offset into sequence

state
- Pointer to state to initialize

Description

Initialize Sobol64 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 64 unsigned long longs. All input
values of offset are legal.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 67

__device__ void curand_init
(curandDirectionVectors64_t direction_vectors,
unsigned long long offset, curandStateSobol64_t *state)
Initialize Sobol64 state.

Parameters

direction_vectors
- Pointer to array of 64 unsigned long longs representing the direction vectors for the
desired dimension

offset
- Absolute offset into sequence

state
- Pointer to state to initialize

Description

Initialize Sobol64 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 64 unsigned long longs. All input
values of offset are legal.

__device__ void curand_init
(curandDirectionVectors32_t direction_vectors,
unsigned int scramble_c, unsigned int offset,
curandStateScrambledSobol32_t *state)
Initialize Scrambled Sobol32 state.

Parameters

direction_vectors
- Pointer to array of 32 unsigned ints representing the direction vectors for the desired
dimension

scramble_c
Scramble constant

offset
- Absolute offset into sequence

state
- Pointer to state to initialize

Description

Initialize Sobol32 state in state with the given direction vectors and offset.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 68

The direction vector is a device pointer to an array of 32 unsigned ints. All input values
of offset are legal.

__device__ void curand_init
(curandDirectionVectors32_t direction_vectors,
unsigned int offset, curandStateSobol32_t *state)
Initialize Sobol32 state.

Parameters

direction_vectors
- Pointer to array of 32 unsigned ints representing the direction vectors for the desired
dimension

offset
- Absolute offset into sequence

state
- Pointer to state to initialize

Description

Initialize Sobol32 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 32 unsigned ints. All input values
of offset are legal.

__device__ void curand_init (unsigned long long seed,
unsigned long long subsequence, unsigned long long
offset, curandStateMRG32k3a_t *state)
Initialize MRG32k3a state.

Parameters

seed
- Arbitrary bits to use as a seed

subsequence
- Subsequence to start at

offset
- Absolute offset into sequence

state
- Pointer to state to initialize

Description

Initialize MRG32k3a state in state with the given seed, subsequence, and offset.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 69

All input values of seed, subsequence, and offset are legal. subsequence will be
truncated to 51 bits to avoid running into the next sequence

A value of 0 for seed sets the state to the values of the original published version of the
MRG32k3a algorithm.

__device__ void curand_init (unsigned long long seed,
unsigned long long subsequence, unsigned long long
offset, curandStatePhilox4_32_10_t *state)
Initialize Philox4_32_10 state.

Parameters

seed
- Arbitrary bits to use as a seed

subsequence
- Subsequence to start at

offset
- Absolute offset into subsequence

state
- Pointer to state to initialize

Description

Initialize Philox4_32_10 state in state with the given seed, p\ subsequence, and
offset.

All input values for seed, subseqence and offset are legal. Each of the 264
possible values of seed selects an independent sequence of length 2130 . The first 266 *
subsequence + offset. values of the sequence are skipped. I.e., subsequences are of length
266 .

__device__ void curand_init (unsigned long long seed,
unsigned long long subsequence, unsigned long long
offset, curandStateXORWOW_t *state)
Initialize XORWOW state.

Parameters

seed
- Arbitrary bits to use as a seed

subsequence
- Subsequence to start at

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 70

offset
- Absolute offset into sequence

state
- Pointer to state to initialize

Description

Initialize XORWOW state in state with the given seed, subsequence, and offset.

All input values of seed, subsequence, and offset are legal. Large values for
subsequence and offset require more computation and so will take more time to
complete.

A value of 0 for seed sets the state to the values of the original published version of the
xorwow algorithm.

__device__ float curand_log_normal
(curandStateScrambledSobol64_t *state, float mean,
float stddev)
Return a log-normally distributed float from a scrambled Sobol64 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float with mean mean and standard deviation stddev

Description

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol64 generator in
state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results, then converts to log-normal distribution.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 71

__device__ float curand_log_normal
(curandStateSobol64_t *state, float mean, float stddev)
Return a log-normally distributed float from a Sobol64 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float with mean mean and standard deviation stddev

Description

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol64 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results, then converts to log-normal distribution.

__device__ float curand_log_normal
(curandStateScrambledSobol32_t *state, float mean,
float stddev)
Return a log-normally distributed float from a scrambled Sobol32 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float with mean mean and standard deviation stddev

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 72

Description

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol32 generator in
state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

__device__ float curand_log_normal
(curandStateSobol32_t *state, float mean, float stddev)
Return a log-normally distributed float from a Sobol32 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float with mean mean and standard deviation stddev

Description

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol32 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

__device__ float curand_log_normal
(curandStateMtgp32_t *state, float mean, float stddev)
Return a log-normally distributed float from an MTGP32 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 73

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float with mean mean and standard deviation stddev

Description

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the MTGP32 generator in state,
increment position of generator.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

__device__ float curand_log_normal
(curandStateMRG32k3a_t *state, float mean, float
stddev)
Return a log-normally distributed float from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float with mean mean and standard deviation stddev

Description

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the MRG32k3a generator in state,
increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2() for a more efficient version that returns both results at once.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 74

__device__ float curand_log_normal
(curandStatePhilox4_32_10_t *state, float mean, float
stddev)
Return a log-normally distributed float from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float with mean mean and standard deviation stddev

Description

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the Philox4_32_10 generator in state,
increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2() for a more efficient version that returns both results at once.

__device__ float curand_log_normal
(curandStateXORWOW_t *state, float mean, float
stddev)
Return a log-normally distributed float from an XORWOW generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 75

Returns

Log-normally distributed float with mean mean and standard deviation stddev

Description

Return a single log-normally distributed float derived from a normal distribution with
mean mean and standard deviation stddev from the XORWOW generator in state,
increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2() for a more efficient version that returns both results at once.

__device__ float2 curand_log_normal2
(curandStateMRG32k3a_t *state, float mean, float
stddev)
Return two normally distributed floats from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float2 where each element is from a distribution with mean
mean and standard deviation stddev

Description

Return two log-normally distributed floats derived from a normal distribution with
mean mean and standard deviation stddev from the MRG32k3a generator in state,
increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 76

__device__ float2 curand_log_normal2
(curandStatePhilox4_32_10_t *state, float mean, float
stddev)
Return two normally distributed floats from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float2 where each element is from a distribution with mean
mean and standard deviation stddev

Description

Return two log-normally distributed floats derived from a normal distribution with
mean mean and standard deviation stddev from the Philox4_32_10 generator in state,
increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

__device__ float2 curand_log_normal2
(curandStateXORWOW_t *state, float mean, float
stddev)
Return two normally distributed floats from an XORWOW generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 77

Returns

Log-normally distributed float2 where each element is from a distribution with mean
mean and standard deviation stddev

Description

Return two log-normally distributed floats derived from a normal distribution with
mean mean and standard deviation stddev from the XORWOW generator in state,
increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

__device__ double2 curand_log_normal2_double
(curandStateMRG32k3a_t *state, double mean, double
stddev)
Return two log-normally distributed doubles from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed double2 where each element is from a distribution with mean
mean and standard deviation stddev

Description

Return two log-normally distributed doubles derived from a normal distribution with
mean mean and standard deviation stddev from the MRG32k3a generator in state,
increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, and transforms them to log-normal distribution,.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 78

__device__ double2 curand_log_normal2_double
(curandStatePhilox4_32_10_t *state, double mean,
double stddev)
Return two log-normally distributed doubles from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed double4 where each element is from a distribution with mean
mean and standard deviation stddev

Description

Return two log-normally distributed doubles derived from a normal distribution with
mean mean and standard deviation stddev from the Philox4_32_10 generator in state,
increment position of generator by four.

The implementation uses a Box-Muller transform to generate two normally distributed
results, and transforms them to log-normal distribution,.

__device__ double2 curand_log_normal2_double
(curandStateXORWOW_t *state, double mean, double
stddev)
Return two log-normally distributed doubles from an XORWOW generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 79

Returns

Log-normally distributed double2 where each element is from a distribution with mean
mean and standard deviation stddev

Description

Return two log-normally distributed doubles derived from a normal distribution with
mean mean and standard deviation stddev from the XORWOW generator in state,
increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, and transforms them to log-normal distribution,.

__device__ float4 curand_log_normal4
(curandStatePhilox4_32_10_t *state, float mean, float
stddev)
Return four normally distributed floats from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed float4 where each element is from a distribution with mean
mean and standard deviation stddev

Description

Return four log-normally distributed floats derived from a normal distribution with
mean mean and standard deviation stddev from the Philox4_32_10 generator in state,
increment position of generator by four.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 80

__device__ double curand_log_normal_double
(curandStateScrambledSobol64_t *state, double mean,
double stddev)
Return a log-normally distributed double from a scrambled Sobol64 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed double with mean mean and standard deviation stddev

Description

Return a single normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol64 generator in
state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

__device__ double curand_log_normal_double
(curandStateSobol64_t *state, double mean, double
stddev)
Return a log-normally distributed double from a Sobol64 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 81

Returns

Log-normally distributed double with mean mean and standard deviation stddev

Description

Return a single normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol64 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

__device__ double curand_log_normal_double
(curandStateScrambledSobol32_t *state, double mean,
double stddev)
Return a log-normally distributed double from a scrambled Sobol32 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed double with mean mean and standard deviation stddev

Description

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol32 generator in
state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results, and transforms them into log-normal distribution.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 82

__device__ double curand_log_normal_double
(curandStateSobol32_t *state, double mean, double
stddev)
Return a log-normally distributed double from a Sobol32 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed double with mean mean and standard deviation stddev

Description

Return a single log-normally distributed double derived from a normal distribution
with mean mean and standard deviation stddev from the Sobol32 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results, and transforms them into log-normal distribution.

__device__ double curand_log_normal_double
(curandStateMtgp32_t *state, double mean, double
stddev)
Return a log-normally distributed double from an MTGP32 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 83

Returns

Log-normally distributed double with mean mean and standard deviation stddev

Description

Return a single log-normally distributed double derived from a normal distribution
with mean mean and standard deviation stddev from the MTGP32 generator in state,
increment position of generator.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results, and transforms them into log-normal distribution.

__device__ double curand_log_normal_double
(curandStateMRG32k3a_t *state, double mean, double
stddev)
Return a log-normally distributed double from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed double with mean mean and standard deviation stddev

Description

Return a single normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the MRG32k3a generator in state,
increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2_double() for a more efficient version that returns both results at
once.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 84

__device__ double curand_log_normal_double
(curandStatePhilox4_32_10_t *state, double mean,
double stddev)
Return a log-normally distributed double from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Returns

Log-normally distributed double with mean mean and standard deviation stddev

Description

Return a single normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the Philox4_32_10 generator in state,
increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2_double() for a more efficient version that returns both results at
once.

__device__ double curand_log_normal_double
(curandStateXORWOW_t *state, double mean, double
stddev)
Return a log-normally distributed double from an XORWOW generator.

Parameters

state
- Pointer to state to update

mean
- Mean of the related normal distribution

stddev
- Standard deviation of the related normal distribution

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 85

Returns

Log-normally distributed double with mean mean and standard deviation stddev

Description

Return a single normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the XORWOW generator in state,
increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2_double() for a more efficient version that returns both results at
once.

QUALIFIERS_MTGP32 float curand_mtgp32_single
(curandStateMtgp32_t *state)
Return a uniformly distributed float from a mtgp32 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0f and 1.0f

Description

Return a uniformly distributed float between 0.0f and 1.0f from the mtgp32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

Note: This alternate derivation of a uniform float is provided for completeness with the
original source

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 86

QUALIFIERS_MTGP32 float
curand_mtgp32_single_specific (curandStateMtgp32_t
*state, unsigned char index, unsigned char n)
Return a uniformly distributed float from a specific position in a mtgp32 generator.

Parameters

state
- Pointer to state to update

index
- Index (0..255) of the position within the state to draw from and update

n
- The total number of postions in this state that are being updated by this invocation

Returns

uniformly distributed float between 0.0f and 1.0f

Description

Return a uniformly distributed float between 0.0f and 1.0f from position index of
the mtgp32 generator in state, and increment position of generator by n positions,
which must be the total number of positions upddated in the state by the thread block,
for this invocation. Output range excludes 0.0f but includes 1.0f. Denormalized
floating point outputs are never returned.

Note 1: Thread indices must range from 0...n - 1. The number of positions updated may
not exceed 256. A thread block may update more than one state, but a given state may
not be updated by more than one thread block.

Note 2: This alternate derivation of a uniform float is provided for completeness with the
original source

QUALIFIERS_MTGP32 unsigned int
curand_mtgp32_specific (curandStateMtgp32_t *state,
unsigned char index, unsigned char n)
Return 32-bits of pseudorandomness from a specific position in a mtgp32 generator.

Parameters

state
- Pointer to state to update

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 87

index
- Index (0..255) of the position within the state to draw from and update

n
- The total number of postions in this state that are being updated by this invocation

Returns

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

Description

Return 32-bits of pseudorandomness from position index of the mtgp32 generator in
state, increment position of generator by n positions, which must be the total number
of positions upddated in the state by the thread block, for this invocation.

Note : Thread indices must range from 0... n - 1. The number of positions updated may
not exceed 256. A thread block may update more than one state, but a given state may
not be updated by more than one thread block.

__device__ float curand_normal
(curandStateScrambledSobol64_t *state)
Return a normally distributed float from a scrambled Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float with mean 0.0f and standard deviation 1.0f

Description

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the scrambled Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 88

__device__ float curand_normal (curandStateSobol64_t
*state)
Return a normally distributed float from a Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float with mean 0.0f and standard deviation 1.0f

Description

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

__device__ float curand_normal
(curandStateScrambledSobol32_t *state)
Return a normally distributed float from a scrambled Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float with mean 0.0f and standard deviation 1.0f

Description

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the scrambled Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 89

__device__ float curand_normal (curandStateSobol32_t
*state)
Return a normally distributed float from a Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float with mean 0.0f and standard deviation 1.0f

Description

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

__device__ float curand_normal (curandStateMtgp32_t
*state)
Return a normally distributed float from a MTGP32 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float with mean 0.0f and standard deviation 1.0f

Description

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the MTGP32 generator in state, increment position of generator.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 90

__device__ float curand_normal
(curandStateMRG32k3a_t *state)
Return a normally distributed float from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float with mean 0.0f and standard deviation 1.0f

Description

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the MRG32k3a generator in state, increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2() for a more efficient
version that returns both results at once.

__device__ float curand_normal
(curandStatePhilox4_32_10_t *state)
Return a normally distributed float from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float with mean 0.0f and standard deviation 1.0f

Description

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the Philox4_32_10 generator in state, increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2() for a more efficient
version that returns both results at once.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 91

__device__ float curand_normal
(curandStateXORWOW_t *state)
Return a normally distributed float from an XORWOW generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float with mean 0.0f and standard deviation 1.0f

Description

Return a single normally distributed float with mean 0.0f and standard deviation 1.0f
from the XORWOW generator in state, increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2() for a more efficient
version that returns both results at once.

__device__ float2 curand_normal2
(curandStateMRG32k3a_t *state)
Return two normally distributed floats from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float2 where each element is from a distribution with mean 0.0f
and standard deviation 1.0f

Description

Return two normally distributed floats with mean 0.0f and standard deviation 1.0f
from the MRG32k3a generator in state, increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 92

__device__ float2 curand_normal2
(curandStatePhilox4_32_10_t *state)
Return two normally distributed floats from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float2 where each element is from a distribution with mean 0.0f
and standard deviation 1.0f

Description

Return two normally distributed floats with mean 0.0f and standard deviation 1.0f
from the Philox4_32_10 generator in state, increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

__device__ float2 curand_normal2
(curandStateXORWOW_t *state)
Return two normally distributed floats from an XORWOW generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float2 where each element is from a distribution with mean 0.0f
and standard deviation 1.0f

Description

Return two normally distributed floats with mean 0.0f and standard deviation 1.0f
from the XORWOW generator in state, increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 93

__device__ double2 curand_normal2_double
(curandStateMRG32k3a_t *state)
Return two normally distributed doubles from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double2 where each element is from a distribution with mean 0.0
and standard deviation 1.0

Description

Return two normally distributed doubles with mean 0.0 and standard deviation 1.0
from the MRG32k3a generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

__device__ double2 curand_normal2_double
(curandStatePhilox4_32_10_t *state)
Return two normally distributed doubles from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double2 where each element is from a distribution with mean 0.0
and standard deviation 1.0

Description

Return two normally distributed doubles with mean 0.0 and standard deviation 1.0
from the Philox4_32_10 generator in state, increment position of generator by 2.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 94

__device__ double2 curand_normal2_double
(curandStateXORWOW_t *state)
Return two normally distributed doubles from an XORWOW generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double2 where each element is from a distribution with mean 0.0
and standard deviation 1.0

Description

Return two normally distributed doubles with mean 0.0 and standard deviation 1.0
from the XORWOW generator in state, increment position of generator by 2.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

__device__ float4 curand_normal4
(curandStatePhilox4_32_10_t *state)
Return four normally distributed floats from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed float2 where each element is from a distribution with mean 0.0f
and standard deviation 1.0f

Description

Return four normally distributed floats with mean 0.0f and standard deviation 1.0f
from the Philox4_32_10 generator in state, increment position of generator by four.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 95

__device__ double curand_normal_double
(curandStateScrambledSobol64_t *state)
Return a normally distributed double from a scrambled Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double with mean 0.0 and standard deviation 1.0

Description

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the scrambled Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

__device__ double curand_normal_double
(curandStateSobol64_t *state)
Return a normally distributed double from a Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double with mean 0.0 and standard deviation 1.0

Description

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 96

__device__ double curand_normal_double
(curandStateScrambledSobol32_t *state)
Return a normally distributed double from a scrambled Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double with mean 0.0 and standard deviation 1.0

Description

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the scrambled Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

__device__ double curand_normal_double
(curandStateSobol32_t *state)
Return a normally distributed double from an Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double with mean 0.0 and standard deviation 1.0

Description

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 97

__device__ double curand_normal_double
(curandStateMtgp32_t *state)
Return a normally distributed double from an MTGP32 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double with mean 0.0 and standard deviation 1.0

Description

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the MTGP32 generator in state, increment position of generator.

The implementation uses the inverse cumulative distribution function to generate
normally distributed results.

__device__ double curand_normal_double
(curandStateMRG32k3a_t *state)
Return a normally distributed double from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double with mean 0.0 and standard deviation 1.0

Description

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the XORWOW generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2_double() for a more
efficient version that returns both results at once.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 98

__device__ double curand_normal_double
(curandStatePhilox4_32_10_t *state)
Return a normally distributed double from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double with mean 0.0 and standard deviation 1.0

Description

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the Philox4_32_10 generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2_double() for a more
efficient version that returns both results at once.

__device__ double curand_normal_double
(curandStateXORWOW_t *state)
Return a normally distributed double from an XORWOW generator.

Parameters

state
- Pointer to state to update

Returns

Normally distributed double with mean 0.0 and standard deviation 1.0

Description

Return a single normally distributed double with mean 0.0 and standard deviation 1.0
from the XORWOW generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2_double() for a more
efficient version that returns both results at once.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 99

__device__ unsigned int curand_poisson
(curandStateScrambledSobol64_t *state, double lambda)
Return a Poisson-distributed unsigned int from a scrambled Sobol64 generator.

Parameters

state
- Pointer to state to update

lambda
- Lambda of the Poisson distribution

Returns

Poisson-distributed unsigned int with lambda lambda

Description

Return a single unsigned int from a Poisson distribution with lambda lambda from the
scrambled Sobol64 generator in state, increment position of generator by one.

__device__ unsigned int curand_poisson
(curandStateSobol64_t *state, double lambda)
Return a Poisson-distributed unsigned int from a Sobol64 generator.

Parameters

state
- Pointer to state to update

lambda
- Lambda of the Poisson distribution

Returns

Poisson-distributed unsigned int with lambda lambda

Description

Return a single unsigned int from a Poisson distribution with lambda lambda from the
Sobol64 generator in state, increment position of generator by one.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 100

__device__ unsigned int curand_poisson
(curandStateScrambledSobol32_t *state, double lambda)
Return a Poisson-distributed unsigned int from a scrambled Sobol32 generator.

Parameters

state
- Pointer to state to update

lambda
- Lambda of the Poisson distribution

Returns

Poisson-distributed unsigned int with lambda lambda

Description

Return a single unsigned int from a Poisson distribution with lambda lambda from the
scrambled Sobol32 generator in state, increment the position of the generator by one.

__device__ unsigned int curand_poisson
(curandStateSobol32_t *state, double lambda)
Return a Poisson-distributed unsigned int from a Sobol32 generator.

Parameters

state
- Pointer to state to update

lambda
- Lambda of the Poisson distribution

Returns

Poisson-distributed unsigned int with lambda lambda

Description

Return a single unsigned int from a Poisson distribution with lambda lambda from the
Sobol32 generator in state, increment the position of the generator by one.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 101

__device__ unsigned int curand_poisson
(curandStateMtgp32_t *state, double lambda)
Return a Poisson-distributed unsigned int from a MTGP32 generator.

Parameters

state
- Pointer to state to update

lambda
- Lambda of the Poisson distribution

Returns

Poisson-distributed unsigned int with lambda lambda

Description

Return a single int from a Poisson distribution with lambda lambda from the MTGP32
generator in state, increment the position of the generator by one.

__device__ unsigned int curand_poisson
(curandStateMRG32k3a_t *state, double lambda)
Return a Poisson-distributed unsigned int from a MRG32k3A generator.

Parameters

state
- Pointer to state to update

lambda
- Lambda of the Poisson distribution

Returns

Poisson-distributed unsigned int with lambda lambda

Description

Return a single unsigned int from a Poisson distribution with lambda lambda from the
MRG32k3a generator in state, increment the position of the generator by a variable
amount, depending on the algorithm used.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 102

__device__ unsigned int curand_poisson
(curandStatePhilox4_32_10_t *state, double lambda)
Return a Poisson-distributed unsigned int from a Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

lambda
- Lambda of the Poisson distribution

Returns

Poisson-distributed unsigned int with lambda lambda

Description

Return a single unsigned int from a Poisson distribution with lambda lambda from the
Philox4_32_10 generator in state, increment the position of the generator by a variable
amount, depending on the algorithm used.

__device__ unsigned int curand_poisson
(curandStateXORWOW_t *state, double lambda)
Return a Poisson-distributed unsigned int from a XORWOW generator.

Parameters

state
- Pointer to state to update

lambda
- Lambda of the Poisson distribution

Returns

Poisson-distributed unsigned int with lambda lambda

Description

Return a single unsigned int from a Poisson distribution with lambda lambda from the
XORWOW generator in state, increment the position of the generator by a variable
amount, depending on the algorithm used.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 103

__device__ uint4 curand_poisson4
(curandStatePhilox4_32_10_t *state, double lambda)
Return four Poisson-distributed unsigned ints from a Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

lambda
- Lambda of the Poisson distribution

Returns

Poisson-distributed unsigned int with lambda lambda

Description

Return a four unsigned ints from a Poisson distribution with lambda lambda from the
Philox4_32_10 generator in state, increment the position of the generator by a variable
amount, depending on the algorithm used.

__device__ float curand_uniform
(curandStateScrambledSobol64_t *state)
Return a uniformly distributed float from a scrambled Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0f and 1.0f

Description

Return a uniformly distributed float between 0.0f and 1.0f from the scrambled
Sobol64 generator in state, increment position of generator. Output range excludes
0.0f but includes 1.0f. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 104

__device__ float curand_uniform (curandStateSobol64_t
*state)
Return a uniformly distributed float from a Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0f and 1.0f

Description

Return a uniformly distributed float between 0.0f and 1.0f from the Sobol64
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

__device__ float curand_uniform
(curandStateScrambledSobol32_t *state)
Return a uniformly distributed float from a scrambled Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0f and 1.0f

Description

Return a uniformly distributed float between 0.0f and 1.0f from the scrambled
Sobol32 generator in state, increment position of generator. Output range excludes
0.0f but includes 1.0f. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 105

__device__ float curand_uniform (curandStateSobol32_t
*state)
Return a uniformly distributed float from a Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0f and 1.0f

Description

Return a uniformly distributed float between 0.0f and 1.0f from the Sobol32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

__device__ float curand_uniform (curandStateMtgp32_t
*state)
Return a uniformly distributed float from a MTGP32 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0f and 1.0f

Description

Return a uniformly distributed float between 0.0f and 1.0f from the MTGP32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 106

__device__ float curand_uniform
(curandStatePhilox4_32_10_t *state)
Return a uniformly distributed float from a Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0 and 1.0

Description

Return a uniformly distributed float between 0.0f and 1.0f from the Philox4_32_10
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

__device__ float curand_uniform
(curandStateMRG32k3a_t *state)
Return a uniformly distributed float from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0f and 1.0f

Description

Return a uniformly distributed float between 0.0f and 1.0f from the MRG32k3a
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation returns up to 23 bits of mantissa, with the minimum return value
latexInlineFormula: =$ 2^{-32} $

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 107

__device__ float curand_uniform
(curandStateXORWOW_t *state)
Return a uniformly distributed float from an XORWOW generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0f and 1.0f

Description

Return a uniformly distributed float between 0.0f and 1.0f from the XORWOW
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

The implementation may use any number of calls to curand() to get enough random
bits to create the return value. The current implementation uses one call.

__device__ double2 curand_uniform2_double
(curandStatePhilox4_32_10_t *state)
Return a uniformly distributed tuple of 2 doubles from an Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

2 uniformly distributed doubles between 0.0 and 1.0

Description

Return a uniformly distributed 2 doubles (double4) between 0.0 and 1.0 from the
Philox4_32_10 generator in state, increment position of generator by 4. Output range
excludes 0.0 but includes 1.0. Denormalized floating point outputs are never returned.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 108

__device__ float4 curand_uniform4
(curandStatePhilox4_32_10_t *state)
Return a uniformly distributed tuple of 4 floats from a Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed float between 0.0 and 1.0

Description

Return a uniformly distributed 4 floats between 0.0f and 1.0f from the Philox4_32_10
generator in state, increment position of generator by 4. Output range excludes 0.0f
but includes 1.0f. Denormalized floating point outputs are never returned.

__device__ double curand_uniform_double
(curandStateScrambledSobol64_t *state)
Return a uniformly distributed double from a scrambled Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed double between 0.0 and 1.0

Description

Return a uniformly distributed double between 0.0 and 1.0 from the scrambled
Sobol64 generator in state, increment position of generator. Output range excludes
0.0 but includes 1.0. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 109

__device__ double curand_uniform_double
(curandStateSobol64_t *state)
Return a uniformly distributed double from a Sobol64 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed double between 0.0 and 1.0

Description

Return a uniformly distributed double between 0.0 and 1.0 from the Sobol64
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

__device__ double curand_uniform_double
(curandStateScrambledSobol32_t *state)
Return a uniformly distributed double from a scrambled Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed double between 0.0 and 1.0

Description

Return a uniformly distributed double between 0.0 and 1.0 from the scrambled
Sobol32 generator in state, increment position of generator. Output range excludes
0.0 but includes 1.0. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 110

__device__ double curand_uniform_double
(curandStateSobol32_t *state)
Return a uniformly distributed double from a Sobol32 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed double between 0.0 and 1.0

Description

Return a uniformly distributed double between 0.0 and 1.0 from the Sobol32
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

__device__ double curand_uniform_double
(curandStatePhilox4_32_10_t *state)
Return a uniformly distributed double from a Philox4_32_10 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed double between 0.0f and 1.0f

Description

Return a uniformly distributed double between 0.0f and 1.0f from the Philox4_32_10
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 111

__device__ double curand_uniform_double
(curandStateMtgp32_t *state)
Return a uniformly distributed double from a MTGP32 generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed double between 0.0f and 1.0f

Description

Return a uniformly distributed double between 0.0f and 1.0f from the MTGP32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized floating point outputs are never returned.

__device__ double curand_uniform_double
(curandStateMRG32k3a_t *state)
Return a uniformly distributed double from an MRG32k3a generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed double between 0.0 and 1.0

Description

Return a uniformly distributed double between 0.0 and 1.0 from the MRG32k3a
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

Note the implementation returns at most 32 random bits of mantissa as outlined in the
seminal paper by L'Ecuyer.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 112

__device__ double curand_uniform_double
(curandStateXORWOW_t *state)
Return a uniformly distributed double from an XORWOW generator.

Parameters

state
- Pointer to state to update

Returns

uniformly distributed double between 0.0 and 1.0

Description

Return a uniformly distributed double between 0.0 and 1.0 from the XORWOW
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized floating point outputs are never returned.

The implementation may use any number of calls to curand() to get enough random
bits to create the return value. The current implementation uses exactly two calls.

__host__ curandStatus_t curandMakeMTGP32Constants
(const mtgp32_params_fast_t params[],
mtgp32_kernel_params_t *p)
Set up constant parameters for the mtgp32 generator.

Parameters

params
- Pointer to an array of type mtgp32_params_fast_t in host memory

p
- pointer to a structure of type mtgp32_kernel_params_t in device memory.

Returns

‣ CURAND_STATUS_ALLOCATION_FAILED if host memory could not be allocated
‣ CURAND_STATUS_INITIALIZATION_FAILED if the copy to device memory failed
‣ CURAND_STATUS_SUCCESS otherwise

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 113

Description

This host-side helper function re-organizes CURAND_NUM_MTGP32_PARAMS sets of
generator parameters for use by kernel functions and copies the result to the specified
location in device memory.

__host__ curandStatus_t CURANDAPI
curandMakeMTGP32KernelState (curandStateMtgp32_t
*s, mtgp32_params_fast_t params[],
mtgp32_kernel_params_t *k, int n, unsigned long long
seed)
Set up initial states for the mtgp32 generator.

Parameters

s
- pointer to an array of states in device memory

params
- Pointer to an array of type mtgp32_params_fast_t in host memory

k
- pointer to a structure of type mtgp32_kernel_params_t in device memory

n
- number of parameter sets/states to initialize

seed
- seed value

Returns

‣ CURAND_STATUS_ALLOCATION_FAILED if host memory state could not be
allocated

‣ CURAND_STATUS_INITIALIZATION_FAILED if the copy to device memory failed
‣ CURAND_STATUS_SUCCESS otherwise

Description

This host-side helper function initializes a number of states (one parameter set per state)
for an mtgp32 generator. To accomplish this it allocates a state array in host memory,
initializes that array, and copies the result to device memory.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 114

template < typename T > __device__ void skipahead
(unsigned long long n, T state)
Update Sobol64 state to skip n elements.

Parameters

n
- Number of elements to skip

state
- Pointer to state to update

Description

Update the Sobol64 state in state to skip ahead n elements.

All values of n are valid.

template < typename T > __device__ void skipahead
(unsigned int n, T state)
Update Sobol32 state to skip n elements.

Parameters

n
- Number of elements to skip

state
- Pointer to state to update

Description

Update the Sobol32 state in state to skip ahead n elements.

All values of n are valid.

__device__ void skipahead (unsigned long long n,
curandStateMRG32k3a_t *state)
Update MRG32k3a state to skip n elements.

Parameters

n
- Number of elements to skip

state
- Pointer to state to update

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 115

Description

Update the MRG32k3a state in state to skip ahead n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

__device__ void skipahead (unsigned long long n,
curandStatePhilox4_32_10_t *state)
Update Philox4_32_10 state to skip n elements.

Parameters

n
- Number of elements to skip

state
- Pointer to state to update

Description

Update the Philox4_32_10 state in state to skip ahead n elements.

All values of n are valid.

__device__ void skipahead (unsigned long long n,
curandStateXORWOW_t *state)
Update XORWOW state to skip n elements.

Parameters

n
- Number of elements to skip

state
- Pointer to state to update

Description

Update the XORWOW state in state to skip ahead n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 116

__device__ void skipahead_sequence (unsigned long
long n, curandStateMRG32k3a_t *state)
Update MRG32k3a state to skip ahead n sequences.

Parameters

n
- Number of sequences to skip

state
- Pointer to state to update

Description

Update the MRG32k3a state in state to skip ahead n sequences. Each sequence is 2127
elements long, so this means the function will skip ahead 2127 * n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

__device__ void skipahead_sequence (unsigned long
long n, curandStatePhilox4_32_10_t *state)
Update Philox4_32_10 state to skip ahead n subsequences.

Parameters

n
- Number of subsequences to skip

state
- Pointer to state to update

Description

Update the Philox4_32_10 state in state to skip ahead n subsequences. Each
subsequence is 266 elements long, so this means the function will skip ahead 266 * n
elements.

All values of n are valid.

Modules

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 117

__device__ void skipahead_sequence (unsigned long
long n, curandStateXORWOW_t *state)
Update XORWOW state to skip ahead n subsequences.

Parameters

n
- Number of subsequences to skip

state
- Pointer to state to update

Description

Update the XORWOW state in state to skip ahead n subsequences. Each subsequence
is 267 elements long, so this means the function will skip ahead 267 * n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

__device__ void skipahead_subsequence (unsigned long
long n, curandStateMRG32k3a_t *state)
Update MRG32k3a state to skip ahead n subsequences.

Parameters

n
- Number of subsequences to skip

state
- Pointer to state to update

Description

Update the MRG32k3a state in state to skip ahead n subsequences. Each subsequence
is 2127

276 elements long, so this means the function will skip ahead 267 * n elements.

Valid values of n are 0 to 251 . Note n will be masked to 51 bits

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 118

Appendix A.
BIBLIOGRAPHY

[1] Mutsuo Saito. A Variant of Mersenne Twister Suitable for Graphic Processors.
arXiv:1005.4973v2 [cs.MS], Jun 2010.

[2] S. Joe and F. Y. Kuo. Remark on Algorithm 659: Implementing Sobol's quasirandom
sequence generator. ACM Transactions on Mathematical Software, 29:49-57, March 2003.

[3] Jiri Matousek. Journal of Complexity. ACM Transactions on Mathematical Software,
14(4):527-556, December 1998.

[4] Art B. Owen. Local Antithetic Sampling with Scrambled Nets. The Annals of Statistics,
36(5):2319-2343, 2008.

[5] George Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14), 2003. Available
at http://www.jstatsoft.org/v08/i14/paper.

[6] Pierre L'Ecuyer and Richard Simard. TestU01: A C library for empirical testing of
random number generators. ACM Transactions on Mathematical Software, 33(4), August
2007. Available at http://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf.

[7] Andrew Rukhin and Juan Soto and James Nechvatal and Miles Smid and Elaine
Barker and Stefan Leigh and Mark Levenson and Mark Vangel and David Banks
and Alan Heckert and James Dray and San Vo. "A Statistical Test Suite for the
Validation of Random Number Generators and Pseudorandom Number Generators for
Cryptographic Applications. Special Publication 800-22 Revision 1a, National Institute
of Standards and Technology, April 2010. http://csrc.nist.gov/groups/ST/toolkit/rng/
index.html.

[8] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3-30, January 1988.

[9] Pierre L'Ecuyer. Good Parameters and Implementations for Combined Multiple
Recursive Random Number Generators. Operations Research, 47(1), Jan-Feb 1999.

[10] Pierre L'Ecuyer and Richard Simard and E. Jack Chen and W. David Kelton. An
Object-Oriented Random-Number Package with Many Long Streams and Substreams.
Operations Research, 50(6), Nov-Dec 2002.

http://www.jstatsoft.org/v08/i14/paper
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

Bibliography

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 119

[11] Karl Pearson. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed to
have arisen from random sampling. Philosophical Magazine, 50(302):157-175, July 1900.

[12] R. L. Placket. Karl Pearson and the chi-squared test. International Statistics Review,
51:59-72, 1983.

[13] Carlos M. Jarque and Anil K. Bera. Efficient tests for normality, homoscedasticity
and serial independence of regression residuals. Economics Letters, 6(3):255-259, 1980.

[14] A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. G.
Inst. Ital. Attuari, 4(83), 1933.

[15] Frank J. Massey. The Kolmogorov-Smirnov test for goodness of fit. Journal of the
American Statistical Association, 46(253):68-78, 1951.

[16] T. W. Anderson and D. A. Darling. Asymptotic theory of certain "goodness-of-fit"
criteria based on stochastic processes. Annals of Mathematical Statistics, 23(2):193-212,
1952.

[17] John. K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel
Random Numbers: As Easy as 1, 2, 3 D.E Shaw Research, New York, NY 10036, USA, 2011.

[18] P. Trędak, C. Woolley. Efficient implementation of Mersenne Twister MT19937
Random Number Generator on the GPU GPU Technology Conference, 2013.

www.nvidia.com
cuRAND Library PG-05328-050 _v7.5 | 120

Appendix B.
ACKNOWLEDGEMENTS

NVIDIA would like to thank the following individuals and institutions for their
contributions:

‣ Portions of the MTGP32 (Mersenne Twister for GPU) library routines were written
by Mutsuo Saito and Makoto Matsumoto.

‣ Portions of the PHILOX4x32 library routines were developed by D. E. Shaw
Research.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2015 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	List of Figures
	Introduction
	Compatibility and Versioning
	Host API Overview
	2.1. Generator Types
	2.2. Generator Options
	2.2.1. Seed
	2.2.2. Offset
	2.2.3. Order

	2.3. Return Values
	2.4. Generation Functions
	2.5. Host API Example
	2.6. Static Library support
	2.7. Performance Notes

	Device API Overview
	3.1. Pseudorandom Sequences
	3.1.1. Bit Generation with XORWOW and MRG32k3a generators
	3.1.2. Bit Generation with the MTGP32 generator
	3.1.3. Bit Generation with Philox_4x32_10 generator
	3.1.4. Distributions

	3.2. Quasirandom Sequences
	3.3. Skip-Ahead
	3.4. Device API for discrete distributions
	3.5. Performance Notes
	3.6. Device API Examples
	3.7. Thrust and cuRAND Example
	3.8. Poisson API Example

	Testing
	Modules
	5.1. Host API
	
	enum curandDirectionVectorSet
	
	
	
	

	enum curandOrdering
	
	
	
	

	enum curandRngType
	
	
	
	
	
	
	
	
	
	
	
	

	enum curandStatus
	
	
	
	
	
	
	
	
	
	
	
	
	

	curandStatus_t CURANDAPI curandCreateGenerator (curandGenerator_t *generator, curandRngType_t rng_type)
	curandStatus_t CURANDAPI curandCreateGeneratorHost (curandGenerator_t *generator, curandRngType_t rng_type)
	curandStatus_t CURANDAPI curandCreatePoissonDistribution (double lambda, curandDiscreteDistribution_t *discrete_distribution)
	curandStatus_t CURANDAPI curandDestroyDistribution (curandDiscreteDistribution_t discrete_distribution)
	curandStatus_t CURANDAPI curandDestroyGenerator (curandGenerator_t generator)
	curandStatus_t CURANDAPI curandGenerate (curandGenerator_t generator, unsigned int *outputPtr, size_t num)
	curandStatus_t CURANDAPI curandGenerateLogNormal (curandGenerator_t generator, float *outputPtr, size_t n, float mean, float stddev)
	curandStatus_t CURANDAPI curandGenerateLogNormalDouble (curandGenerator_t generator, double *outputPtr, size_t n, double mean, double stddev)
	curandStatus_t CURANDAPI curandGenerateLongLong (curandGenerator_t generator, unsigned long long *outputPtr, size_t num)
	curandStatus_t CURANDAPI curandGenerateNormal (curandGenerator_t generator, float *outputPtr, size_t n, float mean, float stddev)
	curandStatus_t CURANDAPI curandGenerateNormalDouble (curandGenerator_t generator, double *outputPtr, size_t n, double mean, double stddev)
	curandStatus_t CURANDAPI curandGeneratePoisson (curandGenerator_t generator, unsigned int *outputPtr, size_t n, double lambda)
	curandStatus_t CURANDAPI curandGenerateSeeds (curandGenerator_t generator)
	curandStatus_t CURANDAPI curandGenerateUniform (curandGenerator_t generator, float *outputPtr, size_t num)
	curandStatus_t CURANDAPI curandGenerateUniformDouble (curandGenerator_t generator, double *outputPtr, size_t num)
	curandStatus_t CURANDAPI curandGetDirectionVectors32 (curandDirectionVectors32_t *vectors[], curandDirectionVectorSet_t set)
	curandStatus_t CURANDAPI curandGetDirectionVectors64 (curandDirectionVectors64_t *vectors[], curandDirectionVectorSet_t set)
	curandStatus_t CURANDAPI curandGetScrambleConstants32 (unsigned int **constants)
	curandStatus_t CURANDAPI curandGetScrambleConstants64 (unsigned long long **constants)
	curandStatus_t CURANDAPI curandGetVersion (int *version)
	curandStatus_t CURANDAPI curandSetGeneratorOffset (curandGenerator_t generator, unsigned long long offset)
	curandStatus_t CURANDAPI curandSetGeneratorOrdering (curandGenerator_t generator, curandOrdering_t order)
	curandStatus_t CURANDAPI curandSetPseudoRandomGeneratorSeed (curandGenerator_t generator, unsigned long long seed)
	curandStatus_t CURANDAPI curandSetQuasiRandomGeneratorDimensions (curandGenerator_t generator, unsigned int num_dimensions)
	curandStatus_t CURANDAPI curandSetStream (curandGenerator_t generator, cudaStream_t stream)

	5.2. Device API
	QUALIFIERS_MTGP32 unsigned int curand (curandStateMtgp32_t *state)
	__device__ unsigned long long curand (curandStateScrambledSobol64_t *state)
	__device__ unsigned long long curand (curandStateSobol64_t *state)
	__device__ unsigned int curand (curandStateScrambledSobol32_t *state)
	__device__ unsigned int curand (curandStateSobol32_t *state)
	__device__ unsigned int curand (curandStateMRG32k3a_t *state)
	__device__ unsigned int curand (curandStatePhilox4_32_10_t *state)
	__device__ unsigned int curand (curandStateXORWOW_t *state)
	__device__ uint4 curand4 (curandStatePhilox4_32_10_t *state)
	__device__ void curand_init (curandDirectionVectors64_t direction_vectors, unsigned long long scramble_c, unsigned long long offset, curandStateScrambledSobol64_t *state)
	__device__ void curand_init (curandDirectionVectors64_t direction_vectors, unsigned long long offset, curandStateSobol64_t *state)
	__device__ void curand_init (curandDirectionVectors32_t direction_vectors, unsigned int scramble_c, unsigned int offset, curandStateScrambledSobol32_t *state)
	__device__ void curand_init (curandDirectionVectors32_t direction_vectors, unsigned int offset, curandStateSobol32_t *state)
	__device__ void curand_init (unsigned long long seed, unsigned long long subsequence, unsigned long long offset, curandStateMRG32k3a_t *state)
	__device__ void curand_init (unsigned long long seed, unsigned long long subsequence, unsigned long long offset, curandStatePhilox4_32_10_t *state)
	__device__ void curand_init (unsigned long long seed, unsigned long long subsequence, unsigned long long offset, curandStateXORWOW_t *state)
	__device__ float curand_log_normal (curandStateScrambledSobol64_t *state, float mean, float stddev)
	__device__ float curand_log_normal (curandStateSobol64_t *state, float mean, float stddev)
	__device__ float curand_log_normal (curandStateScrambledSobol32_t *state, float mean, float stddev)
	__device__ float curand_log_normal (curandStateSobol32_t *state, float mean, float stddev)
	__device__ float curand_log_normal (curandStateMtgp32_t *state, float mean, float stddev)
	__device__ float curand_log_normal (curandStateMRG32k3a_t *state, float mean, float stddev)
	__device__ float curand_log_normal (curandStatePhilox4_32_10_t *state, float mean, float stddev)
	__device__ float curand_log_normal (curandStateXORWOW_t *state, float mean, float stddev)
	__device__ float2 curand_log_normal2 (curandStateMRG32k3a_t *state, float mean, float stddev)
	__device__ float2 curand_log_normal2 (curandStatePhilox4_32_10_t *state, float mean, float stddev)
	__device__ float2 curand_log_normal2 (curandStateXORWOW_t *state, float mean, float stddev)
	__device__ double2 curand_log_normal2_double (curandStateMRG32k3a_t *state, double mean, double stddev)
	__device__ double2 curand_log_normal2_double (curandStatePhilox4_32_10_t *state, double mean, double stddev)
	__device__ double2 curand_log_normal2_double (curandStateXORWOW_t *state, double mean, double stddev)
	__device__ float4 curand_log_normal4 (curandStatePhilox4_32_10_t *state, float mean, float stddev)
	__device__ double curand_log_normal_double (curandStateScrambledSobol64_t *state, double mean, double stddev)
	__device__ double curand_log_normal_double (curandStateSobol64_t *state, double mean, double stddev)
	__device__ double curand_log_normal_double (curandStateScrambledSobol32_t *state, double mean, double stddev)
	__device__ double curand_log_normal_double (curandStateSobol32_t *state, double mean, double stddev)
	__device__ double curand_log_normal_double (curandStateMtgp32_t *state, double mean, double stddev)
	__device__ double curand_log_normal_double (curandStateMRG32k3a_t *state, double mean, double stddev)
	__device__ double curand_log_normal_double (curandStatePhilox4_32_10_t *state, double mean, double stddev)
	__device__ double curand_log_normal_double (curandStateXORWOW_t *state, double mean, double stddev)
	QUALIFIERS_MTGP32 float curand_mtgp32_single (curandStateMtgp32_t *state)
	QUALIFIERS_MTGP32 float curand_mtgp32_single_specific (curandStateMtgp32_t *state, unsigned char index, unsigned char n)
	QUALIFIERS_MTGP32 unsigned int curand_mtgp32_specific (curandStateMtgp32_t *state, unsigned char index, unsigned char n)
	__device__ float curand_normal (curandStateScrambledSobol64_t *state)
	__device__ float curand_normal (curandStateSobol64_t *state)
	__device__ float curand_normal (curandStateScrambledSobol32_t *state)
	__device__ float curand_normal (curandStateSobol32_t *state)
	__device__ float curand_normal (curandStateMtgp32_t *state)
	__device__ float curand_normal (curandStateMRG32k3a_t *state)
	__device__ float curand_normal (curandStatePhilox4_32_10_t *state)
	__device__ float curand_normal (curandStateXORWOW_t *state)
	__device__ float2 curand_normal2 (curandStateMRG32k3a_t *state)
	__device__ float2 curand_normal2 (curandStatePhilox4_32_10_t *state)
	__device__ float2 curand_normal2 (curandStateXORWOW_t *state)
	__device__ double2 curand_normal2_double (curandStateMRG32k3a_t *state)
	__device__ double2 curand_normal2_double (curandStatePhilox4_32_10_t *state)
	__device__ double2 curand_normal2_double (curandStateXORWOW_t *state)
	__device__ float4 curand_normal4 (curandStatePhilox4_32_10_t *state)
	__device__ double curand_normal_double (curandStateScrambledSobol64_t *state)
	__device__ double curand_normal_double (curandStateSobol64_t *state)
	__device__ double curand_normal_double (curandStateScrambledSobol32_t *state)
	__device__ double curand_normal_double (curandStateSobol32_t *state)
	__device__ double curand_normal_double (curandStateMtgp32_t *state)
	__device__ double curand_normal_double (curandStateMRG32k3a_t *state)
	__device__ double curand_normal_double (curandStatePhilox4_32_10_t *state)
	__device__ double curand_normal_double (curandStateXORWOW_t *state)
	__device__ unsigned int curand_poisson (curandStateScrambledSobol64_t *state, double lambda)
	__device__ unsigned int curand_poisson (curandStateSobol64_t *state, double lambda)
	__device__ unsigned int curand_poisson (curandStateScrambledSobol32_t *state, double lambda)
	__device__ unsigned int curand_poisson (curandStateSobol32_t *state, double lambda)
	__device__ unsigned int curand_poisson (curandStateMtgp32_t *state, double lambda)
	__device__ unsigned int curand_poisson (curandStateMRG32k3a_t *state, double lambda)
	__device__ unsigned int curand_poisson (curandStatePhilox4_32_10_t *state, double lambda)
	__device__ unsigned int curand_poisson (curandStateXORWOW_t *state, double lambda)
	__device__ uint4 curand_poisson4 (curandStatePhilox4_32_10_t *state, double lambda)
	__device__ float curand_uniform (curandStateScrambledSobol64_t *state)
	__device__ float curand_uniform (curandStateSobol64_t *state)
	__device__ float curand_uniform (curandStateScrambledSobol32_t *state)
	__device__ float curand_uniform (curandStateSobol32_t *state)
	__device__ float curand_uniform (curandStateMtgp32_t *state)
	__device__ float curand_uniform (curandStatePhilox4_32_10_t *state)
	__device__ float curand_uniform (curandStateMRG32k3a_t *state)
	__device__ float curand_uniform (curandStateXORWOW_t *state)
	__device__ double2 curand_uniform2_double (curandStatePhilox4_32_10_t *state)
	__device__ float4 curand_uniform4 (curandStatePhilox4_32_10_t *state)
	__device__ double curand_uniform_double (curandStateScrambledSobol64_t *state)
	__device__ double curand_uniform_double (curandStateSobol64_t *state)
	__device__ double curand_uniform_double (curandStateScrambledSobol32_t *state)
	__device__ double curand_uniform_double (curandStateSobol32_t *state)
	__device__ double curand_uniform_double (curandStatePhilox4_32_10_t *state)
	__device__ double curand_uniform_double (curandStateMtgp32_t *state)
	__device__ double curand_uniform_double (curandStateMRG32k3a_t *state)
	__device__ double curand_uniform_double (curandStateXORWOW_t *state)
	__host__ curandStatus_t curandMakeMTGP32Constants (const mtgp32_params_fast_t params[], mtgp32_kernel_params_t *p)
	__host__ curandStatus_t CURANDAPI curandMakeMTGP32KernelState (curandStateMtgp32_t *s, mtgp32_params_fast_t params[], mtgp32_kernel_params_t *k, int n, unsigned long long seed)
	template < typename T > __device__ void skipahead (unsigned long long n, T state)
	template < typename T > __device__ void skipahead (unsigned int n, T state)
	__device__ void skipahead (unsigned long long n, curandStateMRG32k3a_t *state)
	__device__ void skipahead (unsigned long long n, curandStatePhilox4_32_10_t *state)
	__device__ void skipahead (unsigned long long n, curandStateXORWOW_t *state)
	__device__ void skipahead_sequence (unsigned long long n, curandStateMRG32k3a_t *state)
	__device__ void skipahead_sequence (unsigned long long n, curandStatePhilox4_32_10_t *state)
	__device__ void skipahead_sequence (unsigned long long n, curandStateXORWOW_t *state)
	__device__ void skipahead_subsequence (unsigned long long n, curandStateMRG32k3a_t *state)

	Bibliography
	Acknowledgements

