IIIIIII

Chapter 1. INtrodUCHION....ciiiiiitiiiiiientttieiieneeeeeresnneseceesennsssccsssnnssssesassnnsssecsssnnnnes 1

1.1, CUSOIVEIDN: DENSE LAPACK. .. .ttt ittt ettt ettt eeeaiaaeeeeennaaaeenn 2
1.2. CUSOLVErSP: SPArse LAPACK.....ciiiiiiit ittt teeiieeeeeeeannneeeeeessnnnnessessnnnsesssssnnnes 2
1.3. cUSOIVErRF: RefaCtorization. . ..c..ueieiiiiiiit ittt et et it teeeiieeeeeeeeannaaaeaas 3
1.4, NamMiNG CONVENTIONS. .. uuttitiiiietttteeerteeeereenneteeressnnneeesessnnnnesssssnnnnessssssnnnseseenns 3
1.5, ASYNCRIroNOUS EXECULION. . .. ettt ittt et ettt et teeeieeeeeaeaaeeeeeannnns 4
Chapter 2. Using the cUSOIVEr APL.......c..ueiiiiiiiiiiiiieiieteinnteeeeteesneteennsecnnssecnnssennnes 6
P R 111 =T T BT L 1= 1 2 P PPt 6
PNt 1 Ll o L T 1 1o o S O 6
2.3. Parallelism With SEreamS.ueir it e e e et eeteeenneeaeneerannnenannnennn 6
Chapter 3. cuSolver Types ReferenCe.....ccivuiiiuiiiniernioiniienieeeioesiosstssssnsssnsssssssssssnsosns 7
3.1, CUSOLVEIDN Ty DS, ettt titeiittettteeeieeeeteeenneeeeeessnnaseeeessnnnsesessesnnnssseesennnsesseeenns 7
R T I I ol B Yo V7Y o T o] o F= Y Ve L L Pt 7
K T B o] o1 T o 11T Yo L= O 7
KT R Aol 51 b 10 01T -1t [o] 3 T S 7
3.1.4. CUSOIVEISTATUS T ettt ittt e et ettt et e eeeerenneerenneeeannananns 8
B ol U 018 =] o] N 1Y/ 1= T PP 8
3.2.1. CUSOLVErSPHANALE t. e ittt i i ettt eeennneeesrassnneeessessnnnnessaannns 8
3.2, 2. CUSPArSEMaAtDES It ittt ittt i ittt eeeiiteeeeteeaiaeeeeeeeannseeeeessnnseeeeeannn 8
0 T ol o] AT) - LU L PP 8
K I T ol U o1 AT o 2 1Y o =L T PP 9
3.3.1. CUSOLVErRIHANALE _t. ..ottt e ettt e et e e e reeaaenns 9
3.3.2. cusolverRIMatriXFOrmMat L. ...ceeeiiiiiiiii i e e et re e e e reeneenanas 10
3.3.3. cusolverRfNUMEricBOOSTREPOIt _t....ueiiiitiiiiiiiiiiii i i e eeeeeeenneeaanaes 10
3.3.4. cusolverRfResetValuesFastMode_f.....c..virniiiiiiiiiiii e e eaeens 10
T 0 TR o{ Yo AVZ=T 4 4 - T] o - L [o JE PP PN 10
3.3.6. cusOLVErRITrianguULarSOLVE_f....ueiiiiiiiitiiiiiiii i eeiiieeeeeenineeeerennnnneeesaannnnes 10
3.3.7. cusolverRfUNItDIagonal_f....ooueirieiiiiitiiiiiiii i riieeeieeeeneeeeaneerenneenanaens 11
T I T o o] T] - AU PP 11
Chapter 4. cuSolver Formats ReferenCe.......cciiiiiiiiieiiiiiniiiitieienieeieniensnstosnsessnssonnnns 12
4.1, Index Base FOrmMat......couiiiiiiiiiii i ettt e e eeeeenaes 12
4.2, VeCtor (DeNSE) FOIMat...ueeiieiiietetiiiiiieeteeeiieeeeeeeaieeeeeeeensseeeeesesnseeeeesennneeees 12
4.3, Matrix (Dense) FOrmMat.....ceeiriiiittiiiiiiiitteteeiniteeeeeennaneeessensnaneeeseesnnneeessennnnnnes 12
4.4, MatrixX (CSR) FOrmat. . iiietiiiiiiiiiitt ettt teeeieeeeeeeennseeeesesnnseseesesannaneeeesnnnnes 13
4.5, MatriX (CSC) FOrmat. . coiiiiiiiiiiiiiiii ittt e teeteeeeeeeeeeeeeeaeeaeaeeasasnnnnnnnnnnnnanes 14
Chapter 5. cuSolverDN: dense LAPACK Function Reference........c.cccivieeiiiineiiiinnioinsennnnnes 15
5.1. cuSolverDN Helper FUuNction ReferenCe........ccooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieneens 15
5.1, 1. CUSOIVEIDNCIEALE() et eeeenneetteeeieeeeeeeenneeeeeeeernaeeeeeessnneeeeesssnnnsesesssnnnsseeesanns 15
5.1.2. CUSOLVEIDNDESTIOY()u vt enneerennteenneeeeanterenneeeeneeeesneeeenneeesnsesssnneesnnsessnsesssnneees 16
5.1.3. CUSOLVEIDNS Ot I AM() .ttt ttieeii et ieeeieeeereerneeeereeannaneeeeesnnnnsessessnnnneess 16
www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | ii

5.1.4. CUSOLVEIDNGEESIIAM() .ttt ettt iiiiii ittt et ettt teeeaiseeeeeeeannaeeeeeeennnnaenns 16

5.2. Dense Linear SOIVEr REfEreNCe. ...c.uiuiietiiiiiiii ittt eer et et eeaeeeaenaens 17
o I oV o1 AT DT IS e o To] d o) TS PP PPP 17
5.2.2. CUSOLVEIDN St POLIS() e ennnterennteeetetennteeenteeeeeeeeanteeenneeesneeeesneeeenseeesnseeesnneenns 20
5.2.3. CUSOIVEIDN <> GO ()t teiitet ittt ittt eeeaieeeeeeeeraeeeeeesenaseeeeessnnseseesannn 22
5.2.4. CUSOLVEIDNSE>GOEIS()eu et reneteeinetieieterereeteeneerenaeeeaeeeenneerenaeeesneeesnneesonneeenneens 25
5.2.5. CUSOIVEIDN<E>GOAM () rreteeeeriiueeeteeeiieeeeeeeenrneeeeeeesnaseeeesssnnsecessssnnssssessnnnns 27
5.2.6. CUSOLVEIDN<E>OIMIQI() et ttnnnteenneerenneereneeeeaneerenaeeeaneeeesneesenneessneeeesnessenneesnnees 30
o I A ol § (o1 AVZ=T D] 0 IS Y o 1) T PP 33

5.3. Dense Eigenvalue Solver RefEreNCe......ccvuuiviiitiiiiiiii i eiieeieeenneeeaneeeannnenns 35
5.3.1. CUSOLVErDN<t>GEDIA()..uueeeiieiiiitieiiiieeiiieeeeeeineeeeresanaeessessnnnneessennnnes 36
5.3.2. CUSOIVEIDNSE>GESVA() e et tteiittttttteiiiit et teeiiteeeeeeaaaeeeeeeeaaeeeeesesnnseseesenanseneens 38

Chapter 6. cuSolverSP: sparse LAPACK Function Reference........c.cccveiieiiiiieiineiennnenennnns 43

6.1. Helper FUNCLION REfEIENCE.ueiiii it ettt et et eeeeiaeeeeeaaanaaes 43
6.1.1. CUSOLVEISPCIEALE (). st eennreteinteeenteeetteeaterenueeeeneeeesneeeenseeesnseeesnsesennseesnsesans 43
6.1.2. CUSOLVEISPDESTIOY ().t etenueteeteiineteeteeeiueeeeeeesnnseeeeeesensesessessnnssessssssnsessssenns 43
6.1.3. CUSOLVEISPSEES I AM() e uurteeenttieinteeeitteeeteeeateeeiaeeeaneeeesneeeeneeeesnaeeesneeesnneens 44
6.1.4. CUSOLVEISPXCSIISSYIMI()uvtteeeennnneeeeeeenrnueeeeeeesnaseeeeeesnnseseeessnnssssessssnnsneeessnnnnes 44

6.2. High Level FUNCEION RefereNCe. . .c..uiiit it e e e e e i eeeneeeannees 45
6.2.1. CUSOLVEISPE>CSIISVIU() e uureeeeteeiieeeeteeeieeeeeeeenneeeeeesenneneeesssnnnseeesssnnnnseseenns 46
6.2.2. CUSOLVEISP<E>CSIISVAN() e uttnntintieiii ettt ettt et et eettettaneenaeaneeanees 50
6.2.3. cUSOLVErSP<t>CSIISVCNOL().uunreettieiitttieieiieeeeeeiieeeereeannneeeeeesnnnesessessnnnneess 53
6.2.4. CUSOLVErSP<t>CSIISQVAI()envteennneeenneerenneeeenueeesneeeesneeeeneeeeeneeessneesssnnessnnesennees 56
6.2.5. CUSOLVEISP<E>CSIOIGVST()ennnueterrennneeeeeeenrnneeeesesnnneeessessnnneeessesnnseessessnnnneess 60
6.2.6. CUSOLVEISPD <> CSIIGS () uurrretreeiinueeeereeiineeeeresesseseeeesasnseeeesesenseseeeesesssseseesnnns 64

6.3. Low Level FUNCEION RefEreNCe. . ..uiieuiiiiiiiii i et ene e eeeeaens 66
6.3.1. CUSOLVEISPXCSISYMICIMI() et teetteenueeeeteeaieeeeeeeesnseseeeesenssseseesssnssseseesssnsssseeennns 66
6.3.2. cUSOLVErSPXCSISYMIMAQG (). rveeenneerenneerenueeeeneerenueeeenueeesneeeesneeessseeesnaseesnseeennes 68
6.3.3. CUSOLVErSPXCSISYMAMIA().eeeeeeeenneeeeeeenneeeeeesenneeeeeeeesnseeeeessnnaseseessnnnseseeeanns 69
6.3.4. CUSOLVEISPXCSIPEIMN()erettnnnttenettenneereneeeeaneeeenaeeeeeeeesneeeenneessneeessneessnneeennes 71
6.3.5. cusolverSpXcsrarBatched (). . eeeee e iiiiiiiii it et e e et eeeineeeeaaans 73

6.4, CUAA 7.5 ProViEW. ettt ittt ettt et e et teteeeeaneeranaeeeaneeeanneeeenneeenneens 81
6.4.1. CUSOLVEISPXCSIIU() . uureeeeeeeenneeeeeeenrnneeeeeeesnnneeeesesnnseeessssnnsesesssssnnnsessssnnnnes 81

6.4.1.1. cusolverSpCreateCsrluINfO()...eeeeeeeereterereeeeetereneeeeneeeeaeerenneeeeneeeeaneeens 82
6.4.1.2. CUSOLVErSPXCSIIUANALYSTIS().uuueeeeerenrnneeeererrueeeeeeesrnneeeesessnneeeeresonnnnessacnnns 82
6.4.1.3. cusolverSpXcsrluBUTferINfO() . ueee et iii it it e e i e e aaaaas 84
6.4.1.4. CUSOLVErSPXCSIIUFACTON().uuereerreeinnetteeeniueeeeeeennaeeeeeeesnneeessesonnneessaennnnes 86
6.4.1.5. cUSOLVErSPXCSIIUZEIOPIVOL().eeeeeitetttieiiiieeeeieeiiieeeeeeeaiiaeeeeeeeissaeeesesannnnes 88
6.4.1.6. CUSOLVEISPXCSIIUSOLVE().uuvttenntteeitteeeitteeeeteeneeeeneeeeeneeeeaeeeesaeeesnaeeeaneens 89
6.4.1.7. cuSOLVErSPXCSIIUEXEIACE().ueeeeeereinneeeeeeiiteeeeeeaiieeeeeeennnseeeeeesenseeeeeesannnes 90
6.4.2. CUSOLVEISPXCSIOI() et tnnterannterennteenneerenneeeeneeeesneeeesneeeenseeesneesesneeesnsesesneesanns 94
6.4.2.1. cusolverSpCreatelsrgrinfo()...ueeeeeeerreeeeieriiieeeeeeiirneeeeeesnrnereseesennnseseeenns 94
6.4.2.2. cusOlVErSPXCSrgrANGLYSIS().eeeeueeeeeneeeenueeeeneeeeseeeesneeesnaeeesneeessneeesnneeesnnens 95
www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | iii

6.4.2.3. cusolverSpXcsrqrBUufferinfo()..cieeeereeeiiiiiiiiii ittt e e e eaaaaaes 96

6.4.2.4. CUSOLVErSPXCSIGrSEIUP()uueetennteteueeeeiteteaeeeeieeeeaieeeeaeeearneeessaeeeeneeeennens 98
6.4.2.5. CUSOLVErSPXCSIAIFACTON().uuueteerreiireeeeeeiiieteeteeairseeeeeeessseseseesennasassenanns 100
6.4.2.6. cusOlverSpXcSrqrZeroPiVOt()....eeueeeeeeerieeeeieeeiieeeenieeenneeesneeeesneeeenneens 102
6.4.2.7. CUSOLVEIrSPXCSIArSOIVE() et ieinueteeeeeiiteeeeeeireeeeeeeeraeseeeesssnsseeesesnnseneenns 104
6.4.3. CUSOLVEISPXCSICROL() e uuttteintteeittei et e e et ee et eeneeeaaneeeanneeeaneeeaaneeenns 105
6.4.3.1. cusolverSpCreateCsrcholNfO()...eeeeeeerieetieriiiietireeiiieeeeeeeinnneeeeeennnneeeens 106
6.4.3.2. cusolverSpXcsrcholANAlYSIS()..euveeueerneerneeinteiitiiiiiiitiiiiiiiitiieiieerneenneens 106
6.4.3.3. cusolverSpXcsrcholBUfferInfo()..eeereeeeireiiiiiiiiiiiieeiiiieeeeeeeineneeeaannns 108
6.4.3.4. cusolverSpXcSrChOIFACEOr().e.ueeeeutereeeereeeeeieeeaieeeeaneerenneeeanaeeeeneeeennens 110
6.4.3.5. cusolverSpXcSrchOlZEeroPiVOT() ..o ueeeeieeeiieeeeeeenieeeeeesssaeeeeesennnneeessannnns 112
6.4.3.6. cUSOLVErSPXCSIChOLSOIVE() .ttt iiiiii e ettt e e e i eeenaaaees 113
Chapter 7. cuSolverRF: Refactorization Reference.......c.cccveiieiiiiiiiieiiiieeeinneeennneennnns 115
7.1. cusolverRfACCESSBUNALEAFACTONS().ceeuuuetetieiiiiteeeeieiieeeeeeeiieeeeeeeenineeeeeeennnneaeenns 115
7.2, CUSOLVEIRIANALYZE() et tenrttteintteittieit ettt teeieeeeeeeeeraeeeeneeeeaneeeasneeesnneeesneeesnneens 116
7.3, CUSOLVEIRTSETUPDEVICE() ettt teiietttteiiieteeeiiieeeeteteraeteeeeearaseeeeeessnsesessesnnnaneens 117
7.4, CUSOLVEIRISEEUPHOSE() .t urttieetieiit it iei e it e ittt et e et e eeneeeaaneeeanaeeranneeanneas 119
7.5, CUSOLVEIRICIEATE() e urreteereiiinteeteeeeieteereeeaeeeeeessnneeeeeessnnnseseessnnnssessesennnneees 121
7.6. cusolverRfExtractBundledFactorSHOSE().o.uueeeuuteeeeeientieeiteeiieeeneeeaneeeeaieeeanneennn 122
7.7. cusolverRfEXtractSplItFACtOrSHOSE().eeeeeernreeetieiiitetieeiiieeeeeeaineeeeresennnneeeeennnnns 123
7.8. CUSOLVETRIDESTIOY() et enneteennterennteeeneeeeaneeeenneeesneeeeaneeeesneeesnaeessneesssnesesnnsssennes 124
7.9. cusOlVErRfGEtMatriXFOrMAT()...ueeeererriieeeeieeriineeeereenrneeeeeessnnneeeessnnnneeesssnnnnseeens 124
7.10. cusolverRfGetNUMEICPrOPEITIES()..eeeuutereretireeererteraeerenneerenneeeeneeresneerenneeenes 125
7.11. cusolverRfGetNUMEricBOOSTREPOIT()..veeeierrineretieeiiieeerreeiieeeereeennneeeesesnnnneesenns 125
7.12. cusolverRfGetResetValueSFastMOdE (). ..uueeeiiieiinieieiiiiiiieeeiiiiieeeeeeiiieeeeeeenannenns 126
7.13. CUSOLVEIRIGEE_ALGS()u vt eenntttenntetentteteittieeteeeneteeaeeeenneeearseeesnsesesnseeensesesnaeeans 126
7.14. CUSOLVEIRIRETACTON () uuutttetieiiitttteeiiiiteeeeeiiieeeeeeeaineeeeeeessnseseesessssseeeesnnnnes 126
7.15. CUSOLVEIRIRESEEVAIUES (). et teennttetiteiitt et eeiiieeetteeaieeeeeeeaniaseeeeeennnneeeseensnnsseenns 127
7.16. cusOlVerRfSEtMatriXFOrMAt().eeeeeerrereeeereiiieeeeeeeiieeeeeeernnneeeeseseneeeeeesesnneeseeanns 128
7.17. cusolverRfSEtNUMErICPrOPErTIES()..eeeu et eeettieittriiteeeittieieereneeeeneerenneeeaneeeannes 129
7.18. cusolverRfSetResetValueSFastMOAE()....uueeiieriieeeeieiiiineeereeiineeeeeeseneeeeeesennnneees 129
7.19. CUSOLVEIRISEEALGS() e uurteenttteintteeittteetteeanteeenueeeaneerenneeeanneeeeneesennnesensseesnneens 130
7.20. CUSOLVEIRISOIVE() e e v etteeeineettteeeieteeteeenrneeeeeeessnaeeeeeeennnnesessessnnsneessssnnnsesssenns 130
7.21. cusOlVErRIBatChSETUPHOST()..uverennetrenttieetererteeeeereeneerenneeeaeerenneerenneeeannesennes 132
7.22. cusOIVErRIBatChANGLYZE().eeureetiteeeiitteeiieteeeeeiaeeeeeeennaneeeesennnneeessennnnneens 134
7.23. cusOlVerRfBatChRESETVAlUES (). e eeuuuretiiiiiiii ettt it eeeiieeeeeeeaiaeeeeaannns 135
7.24. cusOlVerRfBatChRETACTON()..uueetrreritetieiiiitteeeiieeereernneeereeannnneessessnnnnessenns 136
7.25. CUSOLVEIRIBAtCNSOIVE ()t ettt iiiiiii ittt it e e et e e eeeeaaeeeeeaennnaeaenns 137
7.26. cUSOLVErRIBatChZErOPIVOL() . uueeeeetieit i iii e e et e et eeeeeenaeeeneeeannaeeanns 138
Appendix A. CUSOIVErRF EXampPles....ccciiiinueiiiiiianneeeieieannneeeecessnnesecccsssnnssseccsnnssscces 140
A.1. cuSolverRF IN-Memory EXampPle. . ..coouuierieiiiitiriieieiieeeieeeeieeeeaneeeenneeessaeesannens 140
A.2. cUSOLVErRF-batCh EXamPle. .. .ueiiiiiiiiiiiiiiiiiiii ettt eeeeiineeeeeeeainaneeeeesnnnaeeeens 144
Appendix B. CSR QR Batch EXamples.....cccciiiieiiiiiiiieiiiieieieeeeenneeeieneccnnncscansscnnnaans 148
www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | iv

B.1. Batched Sparse QR eXample ..ottt ettt e e ettt eeeinaaeeeannn 148

B.2. Batched Sparse QR eXamPLle 2. ..ciiuiiiiitiiiiitiieieteiteeetetetteeanaeeeaneeranneeeanaeeenns 152
Appendix C. QR Factorization Dense Linear SOIVer......cccciiieeetieiiiinneeieeerenneerecesnnnaeeeces 158
Appendix D. ACKNOWIEdgemeNntS.ciiireiiiiiiiiiiiiiteiieteianeeeaneeeeaneseanseennnsesnnasannnes 163
Appendix E. Bibliography...cccieeeeeeiiiiiieneeieieirnneeieeeresnaeeeecsessnsesecesssnssseccsssnnsssccsnnns 165

www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | v

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | vi

Chapter 1.
INTRODUCTION

The cuSolver library is a high-level package based on the cuBLAS and cuSPARSE
libraries. It combines three separate libraries under a single umbrella, each of which can
be used independently or in concert with other toolkit libraries.

The intent of cuSolver is to provide useful LAPACK-like features, such as common
matrix factorization and triangular solve routines for dense matrices, a sparse
least-squares solver and an eigenvalue solver. In addition cuSolver provides a new
refactorization library useful for solving sequences of matrices with a shared sparsity
pattern.

The first part of cuSolver is called cuSolverDN, and deals with dense matrix
factorization and solve routines such as LU, QR, SVD and LDLT, as well as useful
utilities such as matrix and vector permutations.

Next, cuSolverSP provides a new set of sparse routines based on a sparse QR
factorization. Not all matrices have a good sparsity pattern for parallelism in
factorization, so the cuSolverSP library also provides a CPU path to handle those
sequential-like matrices. For those matrices with abundant parallelism, the GPU path
will deliver higher performance. The library is designed to be called from C and C++.

The final part is cuSolverRF, a sparse re-factorization package that can provide very
good performance when solving a sequence of matrices where only the coefficients are
changed but the sparsity pattern remains the same.

The GPU path of the cuSolver library assumes data is already in the device memory.
It is the responsibility of the developer to allocate memory and to copy data between
GPU memory and CPU memory using standard CUDA runtime API routines, such as
cudaMalloc (), cudaFree (), cudaMemcpy (), and cudaMemcpyAsync ().

The cuSolver library requires hardware with a CUDA compute capability (CC) of at
least 2.0 or higher. Please see the NVIDIA CUDA C Programming Guide, Appendix A for
a list of the compute capabilities corresponding to all NVIDIA GPUs.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 1

Introduction

1.1. cuSolverDN: Dense LAPACK

The cuSolverDN library was designed to solve dense linear systems of the form
Ax=b

nxn

where the coefficient matrix AER™" , right-hand-side vector /ER" and solution vector

xER"

The cuSolverDN library provides QR factorization and LU with partial pivoting to
handle a general matrix A, which may be non-symmetric. Cholesky factorization is also
provided for symmetric/Hermitian matrices. For symmetric indefinite matrices, we
provide Bunch-Kaufman (LDL) factorization.

The cuSolverDN library also provides a helpful bidiagonalization routine and singular
value decomposition (SVD).

The cuSolverDN library targets computationally-intensive and popular routines in
LAPACK, and provides an API compatible with LAPACK. The user can accelerate these
time-consuming routines with cuSolverDN and keep others in LAPACK without a major
change to existing code.

1.2. cuSolverSP: Sparse LAPACK

The cuSolverSP library was mainly designed to a solve sparse linear system

Ax=b

and the least-squares problem

x=argmin| |A*z-b| |

where sparse matrix AER™", right-hand-side vector bER" and solution vector xER" . For
a linear system, we require m=n.

The core algorithm is based on sparse QR factorization. The matrix A is accepted in CSR
format. If matrix A is symmetric/Hermitian, the user has to provide a full matrix, ie fill
missing lower or upper part.

If matrix A is symmetric positive definite and the user only needs to solve Ax=5,
Cholesky factorization can work and the user only needs to provide the lower triangular
part of A.

On top of the linear and least-squares solvers, the cuSolversP library provides a simple
eigenvalue solver based on shift-inverse power method, and a function to count the
number of eigenvalues contained in a box in the complex plane.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 2

Introduction

1.3. cuSolverRF: Refactorization

The cuSolverRF library was designed to accelerate solution of sets of linear systems by
fast re-factorization when given new coefficients in the same sparsity pattern

Aixi= i

nxn

where a sequence of coefficient matrices A €R ™, right-hand-sides f ZER" and solutions

x€R" are given for i=1, ... k.

The cuSolverRF library is applicable when the sparsity pattern of the coefficient matrices
A; as well as the reordering to minimize fill-in and the pivoting used during the LU
factorization remain the same across these linear systems. In that case, the first linear
system (i=1) requires a full LU factorization, while the subsequent linear systems

(i=2, ... ,k) require only the LU re-factorization. The later can be performed using the
cuSolverRF library.

Notice that because the sparsity pattern of the coefficient matrices, the reordering and
pivoting remain the same, the sparsity pattern of the resulting triangular factors L; and
U, also remains the same. Therefore, the real difference between the full LU factorization
and LU re-factorization is that the required memory is known ahead of time.

1.4. Naming Conventions

The cuSolverDN library functions are available for data types £loat, double,
cuComplex, and cuDoubleComplex. The naming convention is as follows:

cusolverDn<t><operation>

where <t>canbe S, D, C, 2, or X, corresponding to the data types float, double,
cuComplex, cuDoubleComplex, and the generic type, respectively. <operation> can
be Cholesky factorization (potr£), LU with partial pivoting (getr£f), OR factorization
(geqrf) and Bunch-Kaufman factorization (sytrf£).

The cuSolverSP library functions are available for data types £1loat, double,
cuComplex, and cuDoubleComplex. The naming convention is as follows:

cusolverSp[Host] <t>[<matrix data
format>]<operation>[<output matrix data format>]<based on>

where cuSolverSp is the GPU path and cusolverSpHost is the corresponding
CPU path. <t>can be s, D, C, Z, or X, corresponding to the data types £loat, double,
cuComplex, cuDoubleComplex, and the generic type, respectively.

The <matrix data format>is csr, compressed sparse row format.

The <operation> can be 1s, 1sq, eig, eigs, corresponding to linear solver, least-square
solver, eigenvalue solver and number of eigenvalues in a box, respectively.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 3

Introduction

The <output matrix data format>can be v orm, corresponding to a vector or a

matrix.

<based on> describes which algorithm is used. For example, qr (sparse QR

factorization) is used in linear solver and least-square solver.

All of the functions have the return type cusolverStatus_t and are explained in more
detail in the chapters that follow.

pn

pn

pn

cuSolverSP API
routine data operation output based on
format format

csrlsvlu csr linear solver (ls) vector (v) | LU (lu)
with
partial
pivoting

csrlsvqr csr linear solver (ls) vector (v) | QR
factorizati
(qr)

csrlsvchol csr linear solver (1ls) vector (v) [Cholesky
factorizati
(chol)

csrlsqvgr csr least-square solver (1lsq) vector (v) | QR
factorizati
(ar)

csreigvsi csr eigenvalue solver (eigq) vector (v) | shift-
inverse

csreigs csr number of eigenvalues in a

box (eigs)
csrsymrcm csr Symmetric Reverse Cuthill-
McKee (symrcm)

The cuSolverRF library routines are available for data type double. Most of the routines
follow the naming convention:

cusolverRf_<operation>_[[Host]](...)

where the trailing optional Host qualifier indicates the data is accessed on the
host versus on the device, which is the default. The <operation> can be Setup,

Analyze, Refactor, Solve, ResetValues, AccessBundledFactors and

ExtractSplitFactors.

Finally, the return type of the cuSolverRF library routines is cusolverStatus_t.

1.5. Asynchronous Execution

The cuSolver library functions prefer to keep asynchronous execution as much as

possible. Developers can always use the cudaDeviceSynchronize () function to ensure

that the execution of a particular cuSolver library routine has completed.

www.nvidia.com

cuSOLVER Library

DU-06709-001_v7.5 | 4

Introduction

A developer can also use the cudaMemcpy () routine to copy data from the

device to the host and vice versa, using the cudaMemcpyDeviceToHost and
cudaMemcpyHos tToDevice parameters, respectively. In this case there is no need to add
a call to cudaDeviceSynchronize () because the call to cudaMemcpy () with the above
parameters is blocking and completes only when the results are ready on the host.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 5

Chapter 2.
USING THE CUSOLVER API

This chapter describes how to use the cuSolver library API. It is not a reference for the
cuSolver API data types and functions; that is provided in subsequent chapters.

2.1. Thread Safety

The library is thread safe and its functions can be called from multiple host threads.

2.2. Scalar Parameters

In the cuSolver API, the scalar parameters can be passed by reference on the host.

2.3. Parallelism with Streams

If the application performs several small independent computations, or if it makes data
transfers in parallel with the computation, CUDA streams can be used to overlap these
tasks.

The application can conceptually associate a stream with each task. To achieve the
overlap of computation between the tasks, the developer should create CUDA streams
using the function cudaStreamCreate () and set the stream to be used by each
individual cuSolver library routine by calling for example cusolverDnSetStream /()
just before calling the actual cuSolverDN routine. Then, computations performed in
separate streams would be overlapped automatically on the GPU, when possible. This
approach is especially useful when the computation performed by a single task is
relatively small and is not enough to fill the GPU with work, or when there is a data
transfer that can be performed in parallel with the computation.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 6

Chapter 3.
CUSOLVER TYPES REFERENCE

3.1. cuSolverDN Types

The £loat, double, cuComplex, and cuDoubleComplex data types are supported. The
first two are standard C data types, while the last two are exported from cuComplex.h.
In addition, cuSolverDN uses some familiar types from cuBlas.

3.1.1. cusolverDnHandle_t

This is a pointer type to an opaque cuSolverDN context, which the user must initialize
by calling cusolverDnCreate () prior to calling any other library function. An
un-initialized Handle object will lead to unexpected behavior, including crashes of
cuSolverDN. The handle created and returned by cusolverDnCreate () must be
passed to every cuSolverDN function.

3.1.2. cublasFillMode _t

The type indicates which part (lower or upper) of the dense matrix was filled and
consequently should be used by the function. Its values correspond to Fortran characters
‘L’ or ‘1’ (lower) and ‘U’ or ‘u’ (upper) that are often used as parameters to legacy
BLAS implementations.

Value Meaning
CUBLAS_FILL MODE_LOWER the lower part of the matrix is filled
CUBLAS_FILL MODE_UPPER the upper part of the matrix is filled

3.1.3. cublasOperation_t

The cublasOperation_t type indicates which operation needs to be performed

with the dense matrix. Its values correspond to Fortran characters ‘N’ or ‘n’ (non-
transpose), “T’ or ‘t’ (transpose) and ‘C’ or ‘c’ (conjugate transpose) that are often
used as parameters to legacy BLAS implementations.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 7

cuSolver Types Reference

Value Meaning

CUBLAS_OP_N the non-transpose operation is selected
CUBLAS_OP_T the transpose operation is selected
CUBLAS_OP C the conjugate transpose operation is selected

3.1.4. cusolverStatus_t

This is the same as cusolverStatus_t in the sparse LAPACK section.

3.2. cuSolverSP Types

The float, double, cuComplex, and cuDoubleComplex data types are supported. The
first two are standard C data types, while the last two are exported from cuComplex.h.

3.2.1. cusolverSpHandle_t

This is a pointer type to an opaque cuSolverSP context, which the user must initialize
by calling cusolverSpCreate () prior to calling any other library function. An
un-initialized Handle object will lead to unexpected behavior, including crashes of
cuSolverSP. The handle created and returned by cusolverSpCreate () must be passed
to every cuSolverSP function.

3.2.2. cusparseMatDescr_t

We have chosen to keep the same structure as exists in cuSparse to describe the shape
and properties of a matrix. This enables calls to either cuSparse or cuSolver using the
same matrix description.

typedef struct {
cusparseMatrixType t MatrixType;
cusparseFillMode t FillMode;
cusparseDiagType t DiagType;
cusparselIndexBase t IndexBase;

} cusparseMatDescr t;

Please read documenation of CUSPARSE Library to understand each field of
cusparseMatDescr_t.

3.2.3. cusolverStatus_t

This is a status type returned by the library functions and it can have the following
values.

CUSOLVER STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS NOT INITIALIZED

The cuSolver library was not initialized. This is usually caused by the
lack of a prior call, an error in the CUDA Runtime API called by the
cuSolver routine, or an error in the hardware setup.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 8

cuSolver Types Reference

To correct: call cusolverCreate () prior to the function call; and
check that the hardware, an appropriate version of the driver, and the
cuSolver library are correctly installed.

CUSOLVER _STATUS ALLOC_FAILED
Resource allocation failed inside the cuSolver library. This is usually
caused by a cudaMalloc () failure.

To correct: prior to the function call, deallocate previously allocated
memory as much as possible.

CUSOLVER_STATUS_INVALID VALUE
An unsupported value or parameter was passed to the function (a
negative vector size, for example).

To correct: ensure that all the parameters being passed have valid
values.

CUSOLVER_STATUS_ARCH MISMATCH
The function requires a feature absent from the device architecture;
usually caused by the lack of support for atomic operations or double
precision.

To correct: compile and run the application on a device with compute
capability 2.0 or above.

CUSOLVER_STATUS_ EXECUTION_ FAILED

The GPU program failed to execute. This is often caused by a launch
failure of the kernel on the GPU, which can be caused by multiple
reasons.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSolver library are correctly installed.

CUSOLVER_STATUS_INTERNAL ERROR

An internal cuSolver operation failed. This error is usually caused by a
cudaMemcpyAsync () failure.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSolver library are correctly installed. Also, check
that the memory passed as a parameter to the routine is not being
deallocated prior to the routine’s completion.

CUSOLVER_STATUS_MATRIX TYPE NOT SUPPORTED

The matrix type is not supported by this function. This is usually caused
by passing an invalid matrix descriptor to the function.

To correct: check that the fields in descra were set correctly.

3.3. cuSolverRF Types

cuSolverRF only supports double.

3.3.1. cusolverRfHandle t

The cusolverRfHandle_t is a pointer to an opaque data structure that contains

the cuSolverRF library handle. The user must initialize the handle by calling
cusolverRfCreate () prior to any other cuSolverRF library calls. The handle is passed
to all other cuSolverRF library calls.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 9

cuSolver Types Reference

3.3.2. cusolverRfMatrixFormat_t

The cusolverRfMatrixFormat_t is an enum that indicates the input/output matrix
format assumed by the cusolverRfSetupDevice (), cusolverRfSetupHost (),
cusolverRfResetValues (), cusolveRfExtractBundledFactorsHost () and
cusolverRfExtractSplitFactorsHost () routines.

Value Meaning
CUSOLVER MATRIX FORMAT CSR matrix format CSR is assumed. (default)
CUSOLVER MATRIX FORMAT CSC matrix format CSC is assumed.

3.3.3. cusolverRfNumericBoostReport_t

The cusolverRfNumericBoostReport_t is an enum that indicates whether
numeric boosting (of the pivot) was used during the cusolverRfRefactor () and
cusolverRfSolve () routines. The numeric boosting is disabled by default.

Value Meaning
CUSOLVER_NUMERIC_BOOST NOT USED numeric boosting not used. (default)
CUSOLVER_NUMERIC_ BOOST_ USED numeric boosting used.

3.3.4. cusolverRfResetValuesFastMode_t

The cusolverRfResetValuesFastMode_t is an enum that indicates the mode used for
the cusolverRfResetValues () routine. The fast mode requires extra memory and is
recommended only if very fast calls to cusolverRfResetValues () are needed.

Value Meaning
CUSOLVER_RESET VALUES_FAST MODE_OFF fast mode disabled. (default)
CUSOLVER _RESET VALUES_FAST MODE_ON fast mode enabled.

3.3.5. cusolverRfFactorization_t

The cusolverRfFactorization_t is an enum that indicates which (internal)
algorithm is used for refactorization in the cusolverRfRefactor () routine.

Value Meaning
CUSOLVER_FACTORIZATION ALGO algorithm 0. (default)
CUSOLVER_FACTORIZATION ALGl algorithm 1.

CUSOLVER _FACTORIZATION ALG2 algorithm 2. Domino-based scheme.

3.3.6. cusolverRfTriangularSolve_t

The cusolverRfTriangularSolve_t is an enum that indicates which (internal)
algorithm is used for triangular solve in the cusolverRfSolve () routine.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 10

cuSolver Types Reference

Value Meaning

CUSOLVER_TRIANGULAR SOLVE_ALGO algorithm 0.
CUSOLVER_TRIANGULAR SOLVE_ALGl algorithm 1. (default)

CUSOLVER TRIANGULAR SOLVE_ALG2 algorithm 2. Domino-based scheme.
CUSOLVER TRIANGULAR SOLVE_ALG3 algorithm 3. Domino-based scheme.

3.3.7. cusolverRfUnitDiagonal_t

The cusolverRfUnitDiagonal_t is an enum that indicates whether and
where the unit diagonal is stored in the input/output triangular factors

in the cusolverRfSetupDevice (), cusolverRfSetupHost () and
cusolverRfExtractSplitFactorsHost () routines.

Value Meaning

CUSOLVER _UNIT DIAGONAL STORED L unit diagonal is stored in lower triangular factor.
(default)

CUSOLVER _UNIT DIAGONAL STORED U unit diagonal is stored in upper triangular factor.

CUSOLVER UNIT DIAGONAL ASSUMED L unit diagonal is assumed in lower triangular factor.

CUSOLVER_UNIT DIAGONAL ASSUMED U unit diagonal is assumed in upper triangular factor.

3.3.8. cusolverStatus_t

The cusolverStatus_t is an enum that indicates success or failure of the cuSolverRF
library call. It is returned by all the cuSolver library routines, and it uses the same
enumerated values as the sparse and dense Lapack routines.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 11

Chapter 4.
CUSOLVER FORMATS REFERENCE

4.1. Index Base Format

The CSR or CSC format requires either zero-based or one-based index for a sparse
matrix A. The GLU library supports only zero-based indexing. Otherwise, both one-
based and zero-based indexing are supported in cuSolver.

4.2. Vector (Dense) Format

The vectors are assumed to be stored linearly in memory. For example, the vector

X1
X
L
Xn
is represented as
(X1 X e Xn)

4.3. Matrix (Dense) Format

The dense matrices are assumed to be stored in column-major order in memory. The
sub-matrix can be accessed using the leading dimension of the original matrix. For
examle, the m*n (sub-)matrix

a1 .. Qqp
a1 - Q2n
am,'] « amyn

is represented as

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 12

with its elements arranged linearly in memory as

(911 02,1

a1
az,1

am1

dida,1

dm,21 - Qdida,1

where 1da > m is the leading dimension of A.

4.4, Matrix (CSR) Format

In CSR format the matrix is represented by the following parameters

cuSolver Formats Reference

aqn
an

am,n

dida,n

a1,n az’n o ampn - alda’n)

parameter

type

size

Meaning

n

(int)

the number of rows (and columns) in the
matrix.

nnz

(int)

the number of non-zero elements in the
matrix.

csrRowPtr

(int *)

n+1l

the array of offsets corresponding to the start
of each row in the arrays esrColInd and
csrval. This array has also an extra entry at
the end that stores the number of non-zero
elements in the matrix.

csrColInd

(int *)

nnz

the array of column indices corresponding to
the non-zero elements in the matrix. Itis
assumed that this array is sorted by row and
by column within each row.

csrVal

(s|pi|C|Z)*

nnz

the array of values corresponding to the non-
zero elements in the matrix. It is assumed
that this array is sorted by row and by
column within each row.

Note that in our CSR format sparse matrices are assumed to be stored in row-major
order, in other words, the index arrays are first sorted by row indices and then within
each row by column indices. Also it is assumed that each pair of row and column indices
appears only once.

For example, the 4x4 matrix

is represented as

www.nvidia.com
cuSOLVER Library

1.0 3.0
0.0 4.0
“12.0 5.0
0.0 0.0

csrRowPtr= (0

0.0 0.0
6.0 0.0
7.0 8.0
0.0 9.0

2 48 9)

DU-06709-001_v7.5 | 13

4.5. Matrix (CSC) Format

cuSolver Formats Reference

csrColind=(0 112 0 12 3 3)

csrval=(1.0 3.0 4.0 6.0 2.0 5.0 7.0 8.0 9.0)

In CSC format the matrix is represented by the following parameters

parameter

type

size

Meaning

n

(int)

the number of rows (and columns) in the
matrix.

nnz

(int)

the number of non-zero elements in the
matrix.

cscColPtr

(int *)

n+l

the array of offsets corresponding to the start
of each column in the arrays cscRowInd and
cscVval. This array has also an extra entry at
the end that stores the number of non-zero
elements in the matrix.

cscRowInd

(int *)

nnz

the array of row indices corresponding to
the non-zero elements in the matrix. Itis
assumed that this array is sorted by column
and by row within each column.

cscVal

(s|pjciz)*

nnz

the array of values corresponding to the non-
zero elements in the matrix. It is assumed
that this array is sorted by column and by
row within each column.

Note that in our CSC format sparse matrices are assumed to be stored in column-major
order, in other words, the index arrays are first sorted by column indices and then
within each column by row indices. Also it is assumed that each pair of row and column
indices appears only once.

For example, the 4x4 matrix

is represented as

www.nvidia.com
cuSOLVER Library

1.0 3.0 0.0 0.0
A= 0.0 4.0 6.0 0.0
“12.0 5.0 7.0 8.0

0.0 0.0 0.0 9.0

cscColPtr=(0 2 5 7 9)

cscRowlnd=(0 2 0 12 12 2 3)

cscVal= (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0)

DU-06709-001_v7.5 | 14

Chapter 5.

CUSOLVERDN: DENSE LAPACK FUNCTION

REFERENCE

This chapter describes the API of cuSolverDN, which provides a subset of dense

LAPACK functions.

5.1. cuSolverDN Helper Function Reference

The cuSolverDN helper functions are described in this section.

5.1.1. cusolverDnCreate()

cusolverStatus_t

cusolverDnCreate (cusolverDnHandle t *handle);

This function initializes the cuSolverDN library and creates a handle on the cuSolverDN
context. It must be called before any other cuSolverDN API function is invoked. It
allocates hardware resources necessary for accessing the GPU.

parameter Memory

In/out

Meaning

handle host

output

the pointer to the handle to the
cuSolverDN context.

Status Returned

CUSOLVER_STATUS_SUCCESS

the initialization succeeded.

CUSOLVER_STATUS_NOT INITIALIZED

the CUDA Runtime initialization failed.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 15

5.1.2. cusolverDnDestroy()

cusolverStatus_ t

cuSolverDN: dense LAPACK Function Reference

cusolverDnDestroy (cusolverDnHandle t handle);

This function releases CPU-side resources used by the cuSolverDN library.

parameter

Memory

In/out

Meaning

handle

host

input

handle to the cuSolverDN library context.

Status Returned

CUSOLVER_STATUS_SUCCESS

the shutdown succeeded.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

5.1.3. cusolverDnSetStream()

cusolverStatus_ t
cusolverDnSetStream(cusolverDnHandle t handle,

cudaStream t streamId)

This function sets the stream to be used by the cuSolverDN library to execute its

routines.
parameter Memory In/out Meaning
handle host input handle to the cuSolverDN library context.
streamId host input the stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS

the stream was set successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

5.1.4. cusolverDnGetStream()

cusolverStatus t
cusolverDnGetStream(cusolverDnHandle t handle,

cudaStream t *streamId)

This function sets the stream to be used by the cuSolverDN library to execute its

routines.
parameter Memory In/out Meaning
handle host input handle to the cuSolverDN library context.
streamId host output the stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS

the stream was set successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 16

5.2. Dense

cuSolverDN: dense LAPACK Function Reference

Linear Solver Reference

This chapter describes linear solver API of cuSolverDN, including Cholesky
factorization, LU with partial pivoting, QR factorization and Bunch-Kaufman (LDLT)

factorization.

5.2.1. cusolverDn<t>potrf()

These helper functions calculate the necessary size of work buffers.

cusolverStatus_ t
cusolverDnSpotrf

cusolverStatus_ t
cusolverDnDpotrf

cusolverStatus t
cusolverDnCpotrf

cusolverStatus t
cusolverDnZpotrf

www.nvidia.com
cuSOLVER Library

_bufferSize (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
float *A,
int 1lda,
int *Lwork);

_bufferSize (cusolveDnHandle t handle,
cublasFillMode t uplo,
int n,
double *A,
int 1lda,
int *Lwork);

_bufferSize (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
cuComplex *A,
int 1lda,
int *Lwork);

_bufferSize (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
cubDoubleComplex *A,
int 1lda,
int *Lwork) ;

DU-06709-001_v7.5 | 17

cuSolverDN: dense LAPACK Function Reference

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSpotrf (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
float *A,
int 1lda,
float *Workspace,
int Lwork,
int *devInfo);

cusolverStatus t
cusolverDnDpotrf (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
double *A,
int lda,
double *Workspace,
int Lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_ t
cusolverDnCpotrf (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
cuComplex *A,
int 1lda,
cuComplex *Workspace,
int Lwork,
int *devInfo);

cusolverStatus t
cusolverDnZpotrf (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
cuDoubleComplex *A,
int lda,
cuDoubleComplex *Workspace,
int Lwork,
int *devInfo);

This function computes the Cholesky factorization of a Hermitian positive-definite
matrix.

Ais a nxn Hermitian matrix, only lower or upper part is meaningful. The input
parameter uplo indicates which part of the matrix is used. The function would leave
other part untouched.

If input parameter uplo is CUBLAS_FILL MODE_LOWER, only lower triangular part of A
is processed, and replaced by lower triangular Cholesky factor L.

A=L*1H

If input parameter uplo is CUSBLAS_FILL_ MODE_UPPER, only upper triangular part of A
is processed, and replaced by upper triangular Cholesky factor U.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 18

cuSolverDN: dense LAPACK Function Reference

A=u+ut

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
potrf bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite,
or equivalently some diagonal elements of L or U is not a real number. The output
parameter devInfo would indicate smallest leading minor of A which is not positive
definite.

If output parameter devIinfo = -i (less than zero), the i-th parameter is wrong.
API of potrf
parameter Memory In/out Meaning
handle host input handle to the cuSolverDN library context.
uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.
n host input number of rows and columns of matrix a.
A device in/out <type> array of dimension 1da * n with
1da is not less than max (1,n).
1lda host input leading dimension of two-dimensional
array used to store matrix A.
Workspace device in/out working space, <type> array of size
Lwork.
Lwork host input size of Workspace, returned by

potrf bufferSize.

devInfo device output if devIinfo = 0, the Cholesky
factorization is successful. if devInfo

= -i, the i-th parameter is wrong. if
devInfo = i, the leading minor of order
i is not positive definite.

Status Returned

CUSOLVER _STATUS_SUCCESS the operation completed successfully.

CUSOLVER STATUS_NOT INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (n<0 or
lda<max(1l,n)).

CUSOLVER_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 19

cuSolverDN: dense LAPACK Function Reference

5.2.2. cusolverDn<t>potrs()

cusolverStatus_ t
cusolverDnSpotrs (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
int nrhs,
const float *A,
int 1lda,
float *B,
int 1db,
int *devInfo);

cusolverStatus_ t
cusolverDnDpotrs (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
int nrhs,
const double *A,
int 1lda,
double *B,
int 1db,
int *devInfo);

cusolverStatus_ t
cusolverDnCpotrs (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
int nrhs,
const cuComplex *A,
int 1lda,
cuComplex *B,
int 1db,
int *devInfo);

cusolverStatus_ t
cusolverDnZpotrs (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
int nrhs,
const cuDoubleComplex *A,
int 1lda,
cuDoubleComplex *B,
int 1db,
int *devInfo);

This function solves a system of linear equations
A*X=B
where A is a nxn Hermitian matrix, only lower or upper part is meaningful. The input

parameter uplo indicates which part of the matrix is used. The function would leave
other part untouched.

The user has to call potrf first to factorize matrix A. If input parameter uplo is
CUBLAS_FILL MODE_LOWER, A is lower triangular Cholesky factor L correspoding

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 20

cuSolverDN: dense LAPACK Function Reference

to A=L*LH If input parameter uplo is CUSBLAS_FILL MODE_UPPER, A is upper
triangular Cholesky factor U corresponding to A= U*U" .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading

dimension 1db.

If output parameter devInfo =
API of potrs

-i (less than zero), the i-th parameter is wrong.

parameter Memory In/out Meaning

handle host input handle to the cuSolveDN library context.

uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix a.

nrhs host input number of columns of matrix x and B.

A device input <type> array of dimension 1da * n with
1da is not less than max (1,n). A is either
lower cholesky factor L or upper Cholesky
factor u.

lda host input leading dimension of two-dimensional
array used to store matrix a.

B device in/out <type> array of dimension 1db * nrhs.
1db is not less than max (1,n). As an
input, B is right hand side matrix. As an
output, B is the solution matrix.

devInfo device output if devinfo = 0, the Cholesky
factorization is successful. if devInfo =
-i, the i-th parameter is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (n<0, nrhs<0,
lda<max(1l,n) or 1db<max(1l,n)).

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 21

cuSolverDN: dense LAPACK Function Reference

5.2.3. cusolverDn<t>getrf()

These helper functions calculate the size of work buffers needed.

cusolverStatus t

cusolverDnSgetrf bufferSize (cusolverDnHandle t handle,

cusolverStatus t

cusolverDnDgetrf bufferSize (cusolverDnHandle t handle,

cusolverStatus t

cusolveanCgetEf_bufferSize(cusolveanHandle_t handle,

cusolverStatus t

cusolveandetff_bufferSize(cusolveanHandle_t handle,

int m,

int n,

float *A,

int 1lda,

int *Lwork);

int m,

int n,

double *A,
int 1lda,

int *Lwork);

int m,

int n,
cuComplex *A,
int 1lda,

int *Lwork);

int m,

int n,
cuDoubleComplex *A,
int 1lda,

int *Lwork);

The S and D data types are real single and double precision, respectively.

cusolverStatus t

cusolveanSgetEf(cusolveanHandle_t handle,

int m,
int n,

float

int 1lda,

float *Workspace,
int *devIpiv,
int *devInfo);

cusolverStatus t

cusolverDnDgetrf (cusolverDnHandle t handle,

int m,

int n,
double *A,
int lda,

double *Workspace,
int *devIpiv,
int *devInfo);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 22

cuSolverDN: dense LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgetrf (cusolverDnHandle t handle,
int m,
int n,
cuComplex *A,
int 1lda,
cuComplex *Workspace,
int *devIpiv,
int *devInfo);

cusolverStatus t
cusolverDnzgetrf (cusolverDnHandle t handle,
int m,
int n,
cuDoubleComplex *A,
int lda,
cuDoubleComplex *Workspace,
int *devIpiv,
int *devInfo);

This function computes the LU factorization of a mxn matrix

P*A=L*U
where A is a mxn matrix, P is a permutation matrix, L is a lower triangular matrix with
unit diagonal, and U is an upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
getrf bufferSize().

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter devInfo=i
indicatesU(i,i) = O.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

No matter LU factorization failed or not, the output parameter devIpiv contains
pivoting sequence, row i is interchanged with row devIpiv(i).

API of getrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix A.

n host input number of columns of matrix a.

A device in/out <type> array of dimension 1da * n with
1da is not less than max (1,m).

lda host input leading dimension of two-dimensional
array used to store matrix A.

Workspace device in/out working space, <type> array of size
Lwork.

devIpiv device output array of size at least min (m,n),
containing pivot indices.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 23

cuSolverDN: dense LAPACK Function Reference

devInfo device

output

if devInfo = 0, the LU factorization is

successful. if devinfo = -i, the i-th
parameter is wrong. if devInfo = i, the
U(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n<0 or
lda<max(1l,m)).

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 24

cuSolverDN: dense LAPACK Function Reference

5.2.4. cusolverDn<t>getrs()

cusolverStatus_ t

cusolverDnSgetrs (cusolverDnHandle t handle,
cublasOperation t trans,
int n,
int nrhs,
const float *A,
int 1lda,
const int *devIpiv,
float *B,
int 1db,
int *devInfo);

cusolverStatus t

cusolverDnDgetrs (cusolverDnHandle t handle,
cublasOperation t trans,
int n,
int nrhs,
const double *A,
int 1lda,
const int *devIpiv,
double *B,
int 1db,
int *devInfo);

cusolverStatus t

cusolverDnCgetrs (cusolverDnHandle t handle,
cublasOperation t trans,
int n,
int nrhs,
const cuComplex *A,
int 1lda,
const int *devIpiv,
cuComplex *B,
int 1db,
int *devInfo);

cusolverStatus t

cusolverDnZgetrs (cusolverDnHandle t handle,
cublasOperation t trans,
int n,
int nrhs,
const cuDoubleComplex *A,
int 1lda,
const int *devIpiv,
cuDoubleComplex *B,
int 1db,
int *devInfo);

This function solves a linear system of multiple right-hand sides

op(A)*X=B

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 25

cuSolverDN: dense LAPACK Function Reference

where A is a nxn matrix, and was LU-factored by getr£, that is, lower trianular part of
A'is L, and upper triangular part (including diagonal elements) of Ais U. Bis a nxnrhs
right-hand side matrix.

The input parameter trans is defined by
A if trans == CUBLAS_OP_N
op(A)={ AT if trans == CUBLAS_OP_T
A" if trans == CUBLAS_OP_C

The input parameter devIpiv is an output of getr£. It contains pivot indices, which are
used to permutate right-hand sides.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

trans host input operation op (a) that is non- or (conj.)
transpose.

n host input number of rows and columns of matrix a.

nrhs host input number of right-hand sides.

A device input <type> array of dimension 1da * n with
1da is not less than max (1,n).

lda host input leading dimension of two-dimensional
array used to store matrix a.

devIpiv device input array of size at least n, containing pivot
indices.

B device output <type> array of dimension 1db * nrhs
with 1db is not less than max (1,n).

1db host input leading dimension of two-dimensional
array used to store matrix B.

devInfo device output if devInfo = 0, the operation is
successful. if devinfo = -i, the i-th

parameter is wrong.

Status Returned

CUSOLVER _STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (n<0 or
lda<max (1,n) or 1ldb<max(1l,n)).

CUSOLVER_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 26

cuSolverDN: dense LAPACK Function Reference

5.2.5. cusolverDn<t>geqrf()

These helper functions calculate the size of work buffers needed.

cusolverStatus t
cusolverDnSgeqrf bufferSize (cusolverDnHandle t handle,
int m,
int n,
float *A,
int 1lda,
int *Lwork);

cusolverStatus t
cusolverDnDgeqrf bufferSize (cusolverDnHandle t handle,
int m,
int n,
double *A,
int 1lda,
int *Lwork);

cusolverStatus t
cusolverDnCgeqrf bufferSize (cusolverDnHandle t handle,
int m,
int n,
cuComplex *A,
int 1lda,
int *Lwork);

cusolverStatus_ t
cusolverDnzZgeqrf bufferSize (cusolverDnHandle t handle,
int m,
int n,
cuDoubleComplex *A,
int 1lda,
int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverDnSgeqgrf (cusolverDnHandle t handle,
int m,
int n,
float *A,
int 1lda,
float *TAU,
float *Workspace,
int Lwork,
int *devInfo);

cusolverStatus t
cusolverDnDgeqgrf (cusolverDnHandle t handle,
int m,
int n,
double *A,
int 1lda,
double *TAU,
double *Workspace,
int Lwork,
int *devInfo);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 27

cuSolverDN: dense LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgeqgrf (cusolverDnHandle t handle,
int m,
int n,
cuComplex *A,
int 1lda,
cuComplex *TAU,
cuComplex *Workspace,
int Lwork,
int *devInfo);

cusolverStatus_ t
cusolverDnZgeqrf (cusolverDnHandle t handle,
int m,
int n,
cuDoubleComplex *A,
int 1lda,
cuDoubleComplex *TAU,
cuDoubleComplex *Workspace,
int Lwork,
int *devInfo);

This function computes the QR factorization of a mxn matrix

A=Q*R

where A is a mxn matrix, Q is a mxn matrix, and R is a nxn upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
geqrf bufferSize().

The matrix R is overwritten in upper triangular part of A, including diagonal elements.

The matrix Q is not formed explicitly, instead, a sequence of householder vectors are
stored in lower triangular part of A. The leading nonzero element of householder vector
is assumed to be 1 such that output parameter TAU contains the scaling factor t. If v

is original householder vector, q is the new householder vector corresponding to t,
satisying the following relation

1-2*v*vH=|-t*q*gH

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
API of geqrf
parameter Memory In/out Meaning
handle host input handle to the cuSolverDN library context.
m host input number of rows of matrix A.
n host input number of columns of matrix a.
A device in/out <type> array of dimension 1da * n with
1da is not less than max (1,m).

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 28

cuSolverDN: dense LAPACK Function Reference

lda host input leading dimension of two-dimensional
array used to store matrix A.

TAU device output <type> array of dimension at least
min(m,n).

Workspace device in/out working space, <type> array of size
Lwork.

Lwork host input size of working array Workspace.

devInfo device output if info = 0, the LU factorization is
successful. if info = -i, the i-th
parameter is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n<0 or
lda<max (1,m)).

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR

an internal operation failed.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 29

cuSolverDN: dense LAPACK Function Reference

5.2.6. cusolverDn<t>ormqr()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverDnSormgr (cusolverDnHandle t handle,
cublasSideMode t side,
cublasOperation t trans,
int m,
int n,
int k,
const float *A,
int 1lda,
const float *tau,
float *C,
int 1ldc,
float *work,
int lwork,
int *devInfo);

cusolverStatus t

cusolverDnDormgr (cusolverDnHandle t handle,
cublasSideMode t side,
cublasOperation t trans,
int m,
int n,
int k,
const double *A,
int lda,
const double *tau,
double *C,
int 1ldc,
double *work,
int lwork,
int *devInfo);

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 30

cuSolverDN: dense LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t

cusolverDnCunmgr (cusolverDnHandle t handle,
cublasSideMode t side,
cublasOperation t trans,
int m,
int n,
int k,
const cuComplex *A,
int 1lda,
const cuComplex *tau,
cuComplex *C,
int 1ldc,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus t

cusolverDnZunmgr (cusolverDnHandle t handle,
cublasSideMode t side,
cublasOperation t trans,
int m,
int n,
int k,
const cuDoubleComplex *A,
int 1lda,
const cuDoubleComplex *tau,
cuDoubleComplex *C,
int 1ldc,
cubDoubleComplex *work,
int lwork,
int *devInfo) ;

This function overwrites mxn matrix C by

- op(Q)*C if side == CUBLAS_SIDE_LEFT
" [C*op(Q) if side == CUBLAS_SIDE_RIGHT

where Q is a unitary matrix formed by a sequence of elementary reflection vectors from

OR factorization of A. Also for Q

Q if transa == CUBLAS_OP_N
opQ={Q" if transa == CUBLAS_OP_T
QH if transa == CUBLAS_OP_C

The user has to provide working space which is pointed by input parameter work.
The input parameter 1work is size of the working space, and it is returned by
geqrf bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

The user can combine geqr£, ormqgr and trsm to complete a linear solver or a least-
square solver. Please refer to appendix C.1.

API of ormqr

parameter Memory In/out Meaning

www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | 31

cuSolverDN: dense LAPACK Function Reference

handle host input handle to the cuSolverDN library context.

side host input indicates if matrix Q is on the left or right
of c.

trans host input operation op (Q) that is non- or (conj.)
transpose.

m host input number of rows of matrix a.

n host input number of columns of matrix a.

k host input number of elementary relfections.

A device in/out <type> array of dimension 1da * k
with 1da is not less than max (1,m). The
matrix A is from geqr£, so i-th column
contains elementary reflection vector.

lda host input leading dimension of two-dimensional
array used to store matrix A. if side is
CUBLAS_SIDE_LEFT, lda >= max(1,m);
if side is CUBLAS_SIDE_RIGHT, lda >=
max(1,n).

tau device output <type> array of dimension at least
min (m,n). The vector tau is from geqrf,
SO tau (i) is the scalar of i-th elementary
reflection vector.

c device in/out <type> array of size 1de * n. On exit, C
is overwritten by op (Q) *C.

ldc host input leading dimension of two-dimensional
array of matrix c. ldc >= max(1,m).

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if info = 0, the ormqr is successful.
if info = -i, the i-th parameter is
wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n<0 or wrong
1lda or 1dc).

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR

an internal operation failed.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 32

cuSolverDN: dense LAPACK Function Reference

5.2.7. cusolverDn<t>sytrf()

These helper functions calculate the size of the needed buffers.

cusolverStatus t
cusolverDnSsytrf bufferSize (cusolverDnHandle t handle,
int n,
float *A,
int 1lda,
int *Lwork);

cusolverStatus t
cusolverDnDsytrf bufferSize (cusolverDnHandle t handle,
int n,
double *A,
int 1lda,
int *Lwork);

cusolverStatus t
cusolverDnCsytrf bufferSize (cusolverDnHandle t handle,
int n, B
cuComplex *A,
int 1lda,
int *Lwork);

cusolverStatus_ t
cusolverDnZsytrf bufferSize (cusolverDnHandle t handle,
int n, B
cuDoubleComplex *A,
int lda,
int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverDnSsytrf (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n, -
float *A,
int lda,
int *ipiv,
float *work,
int lwork,
int *devInfo);

cusolverStatus t
cusolverDnDsytrf (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n, N
double *A,
int lda,
int *ipiv,
double *work,
int lwork,
int *devInfo);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 33

cuSolverDN: dense LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCsytrf (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
cuComplex *A,
int 1lda,
int *ipiv,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_ t
cusolverDnZsytrf (cusolverDnHandle t handle,
cublasFillMode t uplo,
int n,
cuDoubleComplex *A,
int 1lda,
int *ipiv,
cubDoubleComplex *work,
int lwork,
int *devInfo);

This function computes the Bunch-Kaufman factorization of a nxn symmetric indefinite
matrix

Ais a nxn symmetric matrix, only lower or upper part is meaningful. The input
parameter uplo which part of the matrix is used. The function would leave other part
untouched.

If input parameter uplo is CUBLAS_FILL MODE_LOWER, only lower triangular part of
Ais processed, and replaced by lower triangular factor L and block diagonal matrix D.
Each block of D is either 1x1 or 2x2 block, depending on pivoting.

P*A*PT=L*D*LT

If input parameter uplo is CUBLAS_FILL MODE_UPPER, only upper triangular part of A
is processed, and replaced by upper triangular factor U and block diagonal matrix D.

P*A*PT=U*D*UT

The user has to provide working space which is pointed by input parameter work.
The input parameter 1work is size of the working space, and it is returned by
sytrf bufferSize().

If Bunch-Kaufman factorization failed, i.e. & is singular. The output parameter devInfo
= i would indicate D (i,i)=0.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

The output parameter devIpiv contains pivoting sequence. If devIpiv(i) = k > 0,
D(i,i) is 1x1 block, and i-th row/column of A is interchanged with k-th row/column
of A. If uplo is CUSBLAS_FILL_MODE UPPER and devIpiv(i-1) = devIpiv(i) =
-m < 0,D(i-1:i,i-1:i) isa2x2block, and (i-1)-th row/column is interchanged
with m-th row/column. If uplo is CUSBLAS_FILL MODE_LOWER and devIpiv(i+l) =

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 34

cuSolverDN: dense LAPACK Function Reference

devIpiv(i) = -m < 0,D(i:i+1,i:i+1) isa2x2block, and (i+1) -th row/column is
interchanged with m-th row/column.

API of sytrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

uplo host input indicates if matrix a lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix A.

A device in/out <type> array of dimension 1da * n with
1lda is not less than max (1,n).

lda host input leading dimension of two-dimensional
array used to store matrix a.

ipiv device output array of size at least n, containing pivot
indices.

work device in/out working space, <type> array of size
lwork.

lwork host input size of working space work.

devInfo device output if devInfo = 0, the LU factorization is
successful. if devinfo = -i, the i-th
parameter is wrong. if devInfo = i, the
D(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (n<0 or
lda<max(1l,n)).

CUSOLVER_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER _STATUS_INTERNAL ERROR an internal operation failed.

5.3. Dense Eigenvalue Solver Reference

This chapter describes eigenvalue solver API of cuSolverDN, including
bidiagonalization and SVD.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 35

cuSolverDN: dense LAPACK Function Reference

5.3.1. cusolverDn<t>gebrd()

cusolverStatus_ t
cusolverDnSgebrd bufferSize (cusolverDnHandle t handle,
int m,
int n,
int *Lwork);

cusolverStatus t
cusolverDnDgebrd bufferSize (cusolverDnHandle t handle,
int m,
int n,
int *Lwork);

cusolverStatus t
cusolverDnCgebrd bufferSize (cusolverDnHandle t handle,
int m,
int n,
int *Lwork);

cusolverStatus t
cusolverDnZgebrd bufferSize (cusolverDnHandle t handle,
int m,
int n,
int *Lwork);

cusolverStatus t
cusolverDnSgebrd (cusolverDnHandle t handle,
int m,
int n,
float *A,
int 1lda,
float *D,
float *E,
float *TAUQ,
float *TAUP,
float *Work,
int Lwork,
int *devInfo);

cusolverStatus t
cusolverDnDgebrd (cusolverDnHandle t handle,
int m,
int n,
double *A,
int lda,
double *D,
double *E,
double *TAUQ,
double *TAUP,
double *Work,
int Lwork,
int *devInfo);

cusolverStatus t
cusolverDnCgebrd (cusolverDnHandle t handle,
int m,
int n,
cuComplex *A,
int 1lda,
float *D,
float *E,
cuComplex *TAUQ,
cuComplex *TAUP,
cuComplex *Work,
int Lwork,

cuSolverDN: dense LAPACK Function Reference

This function reduces a general real mxn matrix A to upper or lower bidiagonal form B by
an orthogonal transformation: 0" *A*P =B

If m>=n, B is upper bidiagonal; if m<n, B is lower bidiagonal.
The matrix Q and P are overwritten into matrix A in the following sense:

if m>=n, the diagonal and the first superdiagonal are overwritten with the upper
bidiagonal matrix B; the elements below the diagonal, with the array TAUQ, represent the
orthogonal matrix Q as a product of elementary reflectors, and the elements above the
tirst superdiagonal, with the array TAUP, represent the orthogonal matrix P as a product
of elementary reflectors.

if m<n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal
matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the
orthogonal matrix Q as a product of elementary reflectors, and the elements above

the diagonal, with the array TAUP, represent the orthogonal matrix P as a product of
elementary reflectors.

The user has to provide working space which is pointed by input parameter Work.
The input parameter Lwork is size of the working space, and it is returned by
gebrd bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

Remark: gebrd only supports m>=n.

API of gebrd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix a.

n host input number of columns of matrix a.

A device in/out <type> array of dimension 1da * n with
1lda is not less than max (1,n).

1lda host input leading dimension of two-dimensional
array used to store matrix A.

D device output <type> array of dimension min (m,n).

The diagonal elements of the bidiagonal
matrix B: D(i) = A(i,i).

E device output <type> array of dimension min (m,n). The
off-diagonal elements of the bidiagonal
matrix B: if m>=n, E(i) = A(i,i+1) for
i=1,2,...,n-1;ifm<n, E(i) = A(d
+1,i) fori =1,2,...,m-1.

TAUQ device output <type> array of dimension min (m,n). The
scalar factors of the elementary reflectors
which represent the orthogonal matrix Q.

TAUP device output <type> array of dimension min (m,n). The
scalar factors of the elementary reflectors
which represent the orthogonal matrix Pp.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 37

cuSolverDN: dense LAPACK Function Reference

Work device in/out

working space, <type> array of size
Lwork.

Lwork host input

size of Work, returned by
gebrd_bufferSize.

deviInfo device output

if devIinfo = 0, the operation is
successful. if devinfo = -i, the i-th
parameter is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n<0 or
lda<max(1l,n)).

CUSOLVER_STATUS_ARCH_MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR

an internal operation failed.

5.3.2. cusolverDn<t>gesvd()

The helper functions below can calculate the sizes needed for pre-allocated buffer

Lwork.

cusolverStatus t

cusolverDnSgesvd bufferSize (cusolverDnHandle t handle,

int m,
int n,
int *Lwork);

cusolverStatus t

cusolveanDgesGdibufferSize(cusolveanHandleit handle,

int m,
int n,
int *Lwork

) ;

cusolverStatus t

cusolverDnCgesvd bufferSize (cusolverDnHandle t handle,

int m,
int n,
int *Lwork);

cusolverStatus_t

cusolveandesvd_bufferSize(cusolveanHandle_t handle,

int m,
int n,
int *Lwork);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 38

cuSolverDN: dense LAPACK Function Reference

The S and D data types are real valued single and double precision, respectively. The
rwork parameter is real valued, dimension 5*min(M,N). If info >0, rwork(1:min(M,N))
contains the unconverged superdiagonal elements of an upper bidiagonal matrix.

cusolverStatus t
cusolverDnSgesvd (cusolverDnHandle t handle,
char jobu,
char jobvt,
int m,
int n,
float *A,
int 1lda,
float *S,
float *U,
int 1du,
float *VT,
int 1ldvt,
float *Work,
int Lwork,
float *rwork,
int *devInfo);

cusolverStatus t
cusolverDnDgesvd (cusolverDnHandle t handle,
char jobu,
char jobvt,
int m,
int n,
double *A,
int 1lda,
double *S,
double *U,
int 1du,
double *VT,
int 1ldvt,
double *Work,
int Lwork,
double *rwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.
The rwork parameter is complex valued, dimension 5*min(M,N). If info >0,

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 39

cuSolverDN: dense LAPACK Function Reference

rwork(1:min(M,N)) contains the unconverged superdiagonal elements of an upper
bidiagonal matrix.

cusolverStatus_ t
cusolverDnCgesvd (cusolverDnHandle t handle,
char jobu,
char jobvt,
int m,
int n,
cuComplex *A,
int 1lda,
float *S,
cuComplex *U,
int 1du,
cuComplex *VT,
int 1ldvt,
cuComplex *Work,
int Lwork,
float *rwork,
int *devInfo);

cusolverStatus t

cusolverDnZgesvd (cusolverDnHandle t handle,
char jobu,
char jobvt,
int m,
int n,
cubDoubleComplex *A,
int lda,
double *S5,
cuDoubleComplex *U,
int 1du,
cubDoubleComplex *VT,
int 1ldvt,
cubDoubleComplex *Work,
int Lwork,
double *rwork,
int *devInfo);

This function computes the singular value decomposition (SVD) of a mxn matrix A and
corresponding the left and/or right singular vectors. The SVD is written

A=U*x*vH

where = is an mxn matrix which is zero except for its min (m,n) diagonal elements, U is
an mxm unitary matrix, and v is an nxn unitary matrix. The diagonal elements of & are
the singular values of A; they are real and non-negative, and are returned in descending
order. The first min (m,n) columns of U and V are the left and right singular vectors of A.

The user has to provide working space which is pointed by input parameter Work.
The input parameter Lwork is size of the working space, and it is returned by
gesvd bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
if bdsqr did not converge, devInfo specifies how many superdiagonals of an
intermediate bidiagonal form B did not converge to zero.

Note that the routine returns V7, not v.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 40

Remark 1: gesvd only supports m>=n.

cuSolverDN: dense LAPACK Function Reference

Remark 2: gesvd only supports jobu='A" and jobvt='A' and returns matrix U and V.

API of gebrd

parameter

Memory

In/out

Meaning

handle

host

input

handle to the cuSolverDN library context.

jobu

host

input

specifies options for computing all or part
of the matrix u: = 'A": all m columns of

U are returned in array U: ='S": the first
min(m,n) columns of U (the left singular
vectors) are returned in the array U; =

'0'": the first min(m,n) columns of U (the
left singular vectors) are overwritten on
the array A; = 'N': no columns of U (no left
singular vectors) are computed.

jobvt

host

input

specifies options for computing all or
part of the matrix V**T: ="A": all N rows
of V**T are returned in the array VT; =

'S': the first min(m,n) rows of V**T (the
right singular vectors) are returned in the
array VT; ='0'": the first min(m,n) rows

of V**T (the right singular vectors) are
overwritten on the array A; = 'N': no rows
of V**T (no right singular vectors) are
computed.

host

input

number of rows of matrix A.

host

input

number of columns of matrix A.

device

in/out

<type> array of dimension 1da * n with
1lda is not less than max (1,m) . On exit,
the contents of A are destroyed.

lda

host

input

leading dimension of two-dimensional
array used to store matrix A.

device

output

<type> array of dimension min (m,n). The
singular values of A, sorted so that s (i)
>= S(i+l).

device

output

<type> array of dimension 1du * m with
1du is not less than max (1,m) . U contains
the mxm unitary matrix u.

1du

host

input

leading dimension of two-dimensional
array used to store matrix U.

VT

device

output

<type> array of dimension 1dvt * n
with 1dvt is not less than max (1,n). VT
contains the nxn unitary matrix V**T.

1ldvt

host

input

leading dimension of two-dimensional
array used to store matrix vt.

Work

device

in/out

working space, <type> array of size
Lwork.

Lwork

host

input

size of Work, returned by
gesvd_bufferSize.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 41

cuSolverDN: dense LAPACK Function Reference

rwork host input, size of Work, returned by
needed for gesvd_bufferSize.
data types
C,Z
devInfo device output if devInfo = 0, the operation is
successful. if devinfo = -i, the i-

th parameter is wrong. if devInfo
> 0, devInfo indicates how many
superdiagonals of an intermediate
bidiagonal form B did not converge to

zero.
Status Returned
CUSOLVER_STATUS_SUCCESS the operation completed successfully.
CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.
CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (m, n<0

or 1da<max (1,m) or 1du<max(1l,m) or
ldvt<max(1l,n)).

CUSOLVER _STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.
CUSOLVER_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 42

Chapter 6.
CUSOLVERSP: SPARSE LAPACK FUNCTION

REFERENCE

This chapter describes the API of cuSolverSP, which provides a subset of LAPACK
funtions for sparse matrices in CSR or CSC format.

6.1. Helper Function Reference

6.1.1. cusolverSpCreate()

cusolverStatus_t
cusolverSpCreate (cusolverSpHandle t *handle)

This function initializes the cuSolverSP library and creates a handle on the cuSolver
context. It must be called before any other cuSolverSP API function is invoked. It
allocates hardware resources necessary for accessing the GPU.

Output
handle the pointer to the handle to the cuSolverSP
context.
Status Returned
CUSOLVER_STATUS_SUCCESS the initialization succeeded.
CUSOLVER_STATUS_NOT INITIALIZED the CUDA Runtime initialization failed.
CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSOLVER_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

6.1.2. cusolverSpDestroy()

cusolverStatus_ t
cusolverSpDestroy (cusolverSpHandle t handle)

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 43

cuSolverSP: sparse LAPACK Function Reference

This function releases CPU-side resources used by the cuSolverSP library.
Input

handle the handle to the cuSolverSP context.

Status Returned

CUSOLVER_STATUS_SUCCESS the shutdown succeeded.

CUSOLVER _STATUS_NOT INITIALIZED the library was not initialized.

6.1.3. cusolverSpSetStream()

cusolverStatus t
cusolverSpSetStream(cusolverSpHandle t handle, cudaStream t streamld)

This function sets the stream to be used by the cuSolverSP library to execute its routines.

Input
handle the handle to the cuSolverSP context.
streamId the stream to be used by the library.

Status Returned

CUSOLVER _STATUS_SUCCESS the stream was set successfully.

CUSOLVER _STATUS_NOT_INITIALIZED the library was not initialized.

6.1.4. cusolverSpXcsrissym()

cusolverStatus_t
cusolverSpXcsrissymHost (cusolverSpHandle t handle,
int m,
int nnzA,
const cusparseMatDescr t descrA,
const int *csrRowPtrA,
const int *csrEndPtrA,
const int *csrColIndA,
int *issym) ;

This function checks if A has symmetric pattern or not. The output parameter issym
reports 1 if A is symmetric; otherwise, it reports 0.

The matrix A is an mxm sparse matrix that is defined in CSR storage format by the four
arrays csrValA, csrRowPtrA, csrEndPtrA and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX TYPE GENERAL.

The esrlsvlu and esrlsvqr do not accept non-general matrix. the user has to extend
the matrix into its missing upper/lower part, otherwise the result is not expected. The
user can use csrissym to check if the matrix has symmetric pattern or not.

Remark 1: only CPU path is provided.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 44

cuSolverSP: sparse LAPACK Function Reference

Remark 2: the user has to check returned status to get valid information. The function
converts A to CSC format and compare CSR and CSC format. If the CSC failed because
of insufficient resources, issym is undefined, and this state can only be detected by the

return status code.

Input

parameter MemorySpace description

handle host handle to the cuSolverSP library context.

m host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix a. It is the size of
csrValAd and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrRowPtrA host integer array of m elements that contains the start
of every row.

csrEndPtrA host integer array of m elements that contains the end
of the last row plus one.

csrColIndA host integer array of nnzaAcolumn indices of the
nonzero elements of matrix A.

Output
parameter MemorySpace description
issym host 1 if A is symmetric; 0 otherwise.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,nnzA<=0), base
index isnot O or 1.

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR

an internal operation failed.

CUSOLVER_STATUS MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

6.2. High Level Function Reference

This section describes high level API of cuSolverSP, including linear solver, least-square
solver and eigenvalue solver. The high-level APl is designed for ease-of-use, so it
allocates any required memory under the hood automatically. If the host or GPU system

memory is not enough, an error is returned.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 45

cuSolverSP: sparse LAPACK Function Reference

6.2.1. cusolverSp<t>csrisvlu()

cusolverStatus t

cusolverSpScsrTsvlu[Host](cusolverSpHandle_t handle,

cusolverStatus t

int n,

int nnzA,

const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const float *b,

float tol,

int reorder,

float *x,

int *singularity);

cusolverSpDcsrlsvlu[Host] (cusolverSpHandle t handle,

cusolverStatus t

int n,

int nnzA,

const cusparseMatDescr t descrA,
const double *csrValAh,
const int *csrRowPtrA,
const int *csrColIndA,
const double *b,
double tol,

int reorder,

double *x,

int *singularity);

cusolverSpCcsrlsvlu[Host] (cusolverSpHandle t handle,

cusolverStatus t

int n,

int nnzA,

const cusparseMatDescr t descrA,
const cuComplex *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
const cuComplex *b,

float tol,

int reorder,

cuComplex *x,

int *singularity);

cusolverSpZcsrlsvlu[Host] (cusolverSpHandle t handle,

www.nvidia.com
cuSOLVER Library

int n,

int nnzA,

const cusparseMatDescr t descra,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,

const int *csrColIndA,

const cuDoubleComplex *b,
double tol,

int reorder,

cubDoubleComplex *x,

int *singularity);

DU-06709-001_v7.5 | 46

cuSolverSP: sparse LAPACK Function Reference

This function solves the linear system

A*x=b

Ais an nxn sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size n, and x
is the solution vector of size n.

The supported matrix type is CUSPARSE_MATRIX TYPE_GENERAL. If matrix A is
symmetric/Hermitian and only lower/upper part is used or meaningful, the user has
to extend the matrix into its missing upper/lower part, otherwise the result would be
wrong.

The linear system is solved by sparse LU with partial pivoting,
P*A=L*U

cusolver library provides two reordering schemes, symrem and symamd, to reduce
zero fill-in which dramactically affects the performance of LU factorization. The input
parameter reorder can enable symrcm (or symamd) if reorder is 1 (or 2), otherwise, no
reordering is performed.

If reorder is nonzero, ecsrlsvlu does
P*A* QT = L* U

where Q =symrcm(A+A”).

If A is singular under given tolerance (max (tol, 0)), then some diagonal elements of U is
Zero, i.e.

[U(,j)I<tol for some j

The output parameter singularity is the smallest index of such j. If A is non-singular,
singularity is -1. The index is base-0, independent of base index of A. For example, if
2nd column of A is the same as first column, then A is singular and singularity = 1
which means U (1,1) =0.

Remark 1: esrlsvlu performs traditional LU with partial pivoting, the pivot of k-th
column is determined dynamically based on the k-th column of intermediate matrix.
csrlsvlu follows Gilbert and Peierls's algorithm [4] which uses depth-first-search and
topological ordering to solve triangular system (Davis also describes this algorithm in
detail in his book [1]). Before performing LU factorization, ecsrlsvlu over-estimates size
of L. and U, and allocates a buffer to contain factors L and U. George and Ng [5] proves

that sparsity pattern of cholesky factor of A*A” is a superset of sparsity pattern of L and
U. Furthermore, they propose an algorithm to find sparisty pattern of QR factorization
which is a superset of LU [6]. esrlsvlu uses QR factorization to estimate size of LU in
the analysis phase. The cost of analysis phase is mainly on figuring out sparsity pattern
of householder vectors in QR factorization. The idea to avoid computing A*ATin [7]

is adopted. If system memory is insufficient to keep sparsity pattern of QR, csrlsvlu
returns CUSOLVER _STATUS_ALLOC_FAILED. If the matrix is not banded, it is better to
enable reordering to avoid CUSOLVER_STATUS_ALLOC_FAILED.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 47

cuSolverSP: sparse LAPACK Function Reference

Remark 2: approximate minimum degree ordering (symamd) is a well-known technique
to reduce zero fill-in of QR factorization. However in most cases, symrem still performs

well.

Remark 3: only CPU (Host) path is provided.

Remark 4: multithreaded esrlsvlu is not avaiable yet. If QR does not incur much zero

fill-in, esrlsvqr would be faster than esrlsvlu.

Input
parameter cusolverSp *Host description
MemSpace MemSpace

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix a.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrValA device host <type> array of nnzA (= csrRowPtrA (n)
- csrRowPtrA (0)) nonzero elements of
matrix A.

csrRowPtrA device host integer array of n +1elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzA (= csrRowPtrA (n)
- esrRowPtrA (0)) column indices of the
nonzero elements of matrix A.

b device host right hand side vector of size n.

tol host host tolerance to decide if singular or not.

reorder host host no ordering if reorder=0. Otherwise,
symrcm is used to reduce zero fill-in.

Output
parameter cusolverSp *Host description
MemSpace MemSpace
x device host solution vector of size n, x = inv(A)*b.
singularity host host -1 if a is invertible. Otherwise, first index

j such that u(j,3) =0

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 48

cuSolverSP: sparse LAPACK Function Reference

CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (n,nnza<=0), base
index isnot O or 1.

CUSOLVER_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE NOT SUPPORTED| the matrix type is not supported.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 49

cuSolverSP: sparse LAPACK Function Reference

6.2.2. cusolverSp<t>csrlsvgr()

cusolverStatus t

cusolverSpScsrTqur[Host](cusolverSpHandle_t handle,

cusolverStatus t

int m,

int nnz,

const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const float *b,

float tol,

int reorder,

float *x,

int *singularity);

cusolverSpDcsrlsvqgr [Host] (cusolverSpHandle t handle,

cusolverStatus t

int m,

int nnz,

const cusparseMatDescr t descrA,
const double *csrValAh,
const int *csrRowPtrA,
const int *csrColIndA,
const double *b,
double tol,

int reorder,

double *x,

int *singularity);

cusolverSpCcsrlsvgr [Host] (cusolverSpHandle t handle,

cusolverStatus t

int m,

int nnz,

const cusparseMatDescr t descrA,
const cuComplex *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
const cuComplex *b,

float tol,

int reorder,

cuComplex *x,

int *singularity);

cusolverSpZcsrlsvgr [Host] (cusolverSpHandle t handle,

www.nvidia.com
cuSOLVER Library

int m,

int nnz,

const cusparseMatDescr t descra,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,

const int *csrColIndA,

const cuDoubleComplex *b,
double tol,

int reorder,

cubDoubleComplex *x,

int *singularity);

DU-06709-001_v7.5 | 50

cuSolverSP: sparse LAPACK Function Reference

This function solves the linear system

A*x=b

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x
is the solution vector of size m.

The supported matrix type is CUSPARSE_MATRIX TYPE_GENERAL. If matrix A is
symmetric/Hermitian and only lower/upper part is used or meaningful, the user has
to extend the matrix into its missing upper/lower part, otherwise the result would be
wrong.

The linear system is solved by sparse QR factorization,

A=QR

If A is singular under given tolerance (max (tol, 0)), then some diagonal elements of R is
zero, i.e.

IR(,j) < tol for some j

The output parameter singularity is the smallest index of such j. If A is non-singular,
singularity is-1. The singularity is base-0, independent of base index of A.

For example, if 2nd column of A is the same as first column, then A is singular and
singularity = 1 which meansR(1,1)=0.

cusolver library provides two reordering schemes, symrem and symamd, to reduce
zero fill-in which dramactically affects the performance of LU factorization. The input
parameter reorder can enable symrcm (or symamd) if reorder is 1 (or 2), otherwise, no
reordering is performed.

Input
parameter cusolverSp *Host description
MemSpace MemSpace

handle host host handle to the cuSolverSP library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

csrVala device host <type> array of nnz (= csrRowPtrA (m)
- csrRowPtrA (0)) nonzero elements of
matrix A.

csrRowPtrA device host integer array of m +1elements that
contains the start of every row and the
end of the last row plus one.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 51

cuSolverSP: sparse LAPACK Function Reference

csrColIndA device host integer array of nnz (= csrRowPtrA (m)
- esrRowPtrA (0)) column indices of the
nonzero elements of matrix A.

b device host right hand side vector of size m.

tol host host tolerance to decide if singular or not.

reorder host host no effect.

Output
parameter cusolverSp *Host description
MemSpace MemSpace
x device host solution vector of size m, x = inv(A)*b.
singularity host host -1 if a is invertible. Otherwise, first index

j such that R(j,3) =0

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 52

cuSolverSP: sparse LAPACK Function Reference

6.2.3. cusolverSp<t>csrlsvchol()

cusolverStatus t

cusolverSpScsrTsvchol[Host](cusolverSpHandle_t handle,

cusolverStatus t

int m,

int nnz,

const cusparseMatDescr t descrA,
const float *csrVal,
const int *csrRowPtr,
const int *csrColInd,
const float *b,

float tol,

int reorder,

float *x,

int *singularity);

cusolverSpDcsrisvchol[Host](cusolverSpHandle_t handle,

cusolverStatus t

int m,

int nnz,

const cusparseMatDescr t descrA,
const double *csrVal,
const int *csrRowPtr,
const int *csrColInd,
const double *b,
double tol,

int reorder,

double *x,

int *singularity);

cusolverSpCcsrlsvchol [Host] (cusolverSpHandle t handle,

cusolverStatus t

int m,

int nnz,

const cusparseMatDescr t descrA,
const cuComplex *csrVal,
const int *csrRowPtr,
const int *csrCollInd,
const cuComplex *b,
float tol,

int reorder,

cuComplex *x,

int *singularity);

cusolverSpzcsrlsvchol [Host] (cusolverSpHandle t handle,

www.nvidia.com
cuSOLVER Library

int m,

int nnz,

const cusparseMatDescr t descra,
const cuDoubleComplex *csrVal,
const int *csrRowPtr,

const int *csrCollInd,

const cuDoubleComplex *b,
double tol,

int reorder,

cubDoubleComplex *x,

int *singularity);

DU-06709-001_v7.5 | 53

cuSolverSP: sparse LAPACK Function Reference

This function solves the linear system

A*x=b

A is an mxm symmetric postive definite sparse matrix that is defined in CSR storage
format by the three arrays csrvalA, csrRowPtra, and ecsrColIndA. b is the right-hand-
side vector of size m, and x is the solution vector of size m.

The supported matrix type is CUSPARSE_MATRIX TYPE GENERAL and upper triangular
part of A is ignored (if parameter reorder is zero). In other words, suppose input matrix
Ais decomposed as A=L+D+ U, where L is lower triangular, D is diagonal and U is
upper triangular. The function would ignore U and regard A as a symmetric matrix with
the formula A=L+D+L" . If parameter reorder is nonzero, the user has to extend A to
a full matrix, otherwise the solution would be wrong.

The linear system is solved by sparse Cholesky factorization,
A=G*G1t

where G is the Cholesky factor, a lower triangular matrix.
The output parameter singularity has two meanings:

» If Ais not postive definite, there exists some integer k such thatA(0:k, 0:k) is not
positive definite. singularity is the minimum of such k.

» If Ais postive definite but near singular under tolerance (max (tol,0)), i.e. there
exists some integer k such that G(k,k) <=tol. singularity is the minimum of such
k.

singularity is base-0. If A is positive definite and not near singular under tolerance,
singularity is -1. If the user wants to know if A is postive definite or not, to1=0 is
enough.

cusolver library provides two reordering schemes, symrem and symamd, to reduce
zero fill-in which dramactically affects the performance of LU factorization. The input
parameter reorder can enable symrcm (or symamd) if reorder is 1 (or 2), otherwise, no
reordering is performed.

Remark 1: the function works for in-place (x and b point to the same memory block) and
out-of-place.

Remark 2: the function only works on 32-bit index, if matrix G has large zero fill-in such

that number of nonzeros is bigger than 2°!, then CUSOLVER STATUS_ALLOC FAILED is
returned.

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
m host host number of rows and columns of matrix A.
nnz host host number of nonzeros of matrix a.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 54

cuSolverSP: sparse LAPACK Function Reference

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrValA device host <type> array of nnz (= csrRowPtrA (m)
- csrRowPtrA (0)) nonzero elements of
matrix A.

csrRowPtrA device host integer array of m +1elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz (= csrRowPtrA (m)
- csrRowPtrA (0)) column indices of the
nonzero elements of matrix A.

b device host right hand side vector of size m.

tol host host tolerance to decide singularity.

reorder host host no effect.

Output
parameter cusolverSp *Host description
MemSpace MemSpace
x device host solution vector of size m, x = inv(A)*b.
singularity host host -1 if A is symmetric postive definite.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_ STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,nnz<=0), base
index isnot O or 1.

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR

an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE_ NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 55

cuSolverSP: sparse LAPACK Function Reference

6.2.4. cusolverSp<t>csrlsqvqr()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverSpScsrlsqgvqgr [Host] (cusolverSpHandle t handle,

int m,

int n,

int nnz,

const cusparseMatDescr t descrA,

const float *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,

const float *b,

float tol,

int *rankAa,

float *x,

int *p,

float *min norm);

cusolverStatus t
cusolverSpDcsrlsqgvgr [Host] (cusolverSpHandle t handle,

int m,

int n,

int nnz,

const cusparseMatDescr t descrA,

const double *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,

const double *b,

double tol,

int *rankAa,

double *x,

int *p,

double *min norm) ;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 56

cuSolverSP: sparse LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrlsqgvqgr [Host] (cusolverSpHandle t handle,

int m,

int n,

int nnz,

const cusparseMatDescr t descrA,

const cuComplex *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,

const cuComplex *Db,

float tol,

int *rankAa,

cuComplex *x,

int *p,

float *min norm) ;

cusolverStatus t
cusolverSpZcsrlsqvgr [Host] (cusolverSpHandle t handle,
int m,
int n,
int nnz,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuDoubleComplex *b,
double tol,
int *rankAa,
cubDoubleComplex *x,
int *p,
double *min norm) ;

This function solves the following least-square problem
x=argmin| |A*z-b| |
A is an mxn sparse matrix that is defined in CSR storage format by the three arrays

csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x
is the least-square solution vector of size n.

The supported matrix type is CUSPARSE_MATRIX TYPE GENERAL. If A is square,
symmetric/Hermitian and only lower/upper part is used or meaningful, the user has to
extend the matrix into its missing upper/lower part, otherwise the result is wrong.

This function only works if m is greater or equal to n, in other words, A is a tall matrix.

The least-square problem is solved by sparse QR factorization with column pivoting,
A* PT - Q*R

If & is of full rank (i.e. all columns of A are linear independent), then matrix P is an
identity. Suppose rank of A is k, less than n, the permutation matrix P reorders columns
of A in the following sense:
Ri Ry
A*PT= (A 4)=(Q; Q) (R)
22

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 57

cuSolverSP: sparse LAPACK Function Reference

where R, and A have the same rank, but R,, is almost zero, i.e. every column of A, is
linear combination of A; .

The input parameter tol decides numerical rank. The absolute value of every entry in
R, is less than or equal to tolerance=max (tol,0).

The output parameter rankA denotes numerical rank of A.
Suppose y = P*x and c = 0" *b , the least square problem can be reformed by
min| |[A*x-b| | =min| |[R*y-c| |
or in matrix form
(Rn R12) (y1)) (C1)
Rnl Y2l 12
The output parameter min_normis lic,ll , which is minimum value of least-square

problem.

If A is not of full rank, above equation does not have a unique solution. The least-square
problem is equivalent to

min| |y| |
subject toRy*y +Rp*y, = ¢4

Or equivalently another least-square problem

R+\R R\ cC
minll(11I 12)*y2_(110 1)||

The output parameter x is P’ *y, the solution of least-square problem.

The output parameter p is a vector of size n. It corresponds to a permutation matrix P.
p(i)=j means (P*x) (i) = x(j).If Ais of full rank, p=0:n-1.

Remark 1: p is always base 0, independent of base index of A.

Remark 2: only CPU (Host) path is provided.

Input
parameter cusolverSp *Host description
MemSpace MemSpace

handle host host handle to the cuSolver library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

nnz host host number of nonzeros of matrix a.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 58

cuSolverSP: sparse LAPACK Function Reference

csrValA device host <type> array of nnz (= csrRowPtrA (m)
- csrRowPtrA (0)) nonzero elements of
matrix A.

csrRowPtrA device host integer array of m +1elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz (= csrRowPtrA (m)
- csrRowPtrA (0)) column indices of the
nonzero elements of matrix A.

b device host right hand side vector of size m.

tol host host tolerance to decide rank of A.

Output
parameter cusolverSp *Host description
MemSpace MemSpace

rankA host host numerical rank of A.

x device host solution vector of size n, x=pinv(A)*b.

P device host a vector of size n, which represents
the permuation matrix P satisfying
A*P*"T=Q’R.

min_norm host host | |]A*x-b| |, x=pinv (A) *b.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n,nnz<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR

an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE_NOT SUPPORTED| the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 59

cuSolverSP: sparse LAPACK Function Reference

6.2.5. cusolverSp<t>csreigvsi()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverSpScsreigvsi[Host] (cusolverSpHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
const float *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
float muoO,
const float *xO0,
int maxite,
float tol,
float *mu,
float *x);

cusolverStatus t
cusolverSpDcsreigvsi [Host] (cusolverSpHandle t handle,

int m,

int nnz,

const cusparseMatDescr t descrA,

const double *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,

double muO,

const double *xO0,

int maxite,

double tol,

double *mu,

double *Xx);

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 60

cuSolverSP: sparse LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t

cusolverSpCcsreigvsi[Host] (cusolverSpHandle t handle,

int m,
int nnz,

const cusparseMatDescr t descrA,
const cuComplex *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,

cuComplex mu0,

const cuComplex *x0,

int maxite,
float tol,
cuComplex *mu,
cuComplex *x);

cusolverStatus_t

cusolverSpzcsreigvsi (cusolverSpHandle t handle,

int m,
int nnz,

const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,

cuDoubleComplex mul,

const cuDoubleComplex *x0,

int maxite,
double tol,

cuDoubleComplex *mu,
cuDoubleComplex *x) ;

This function solves the simple eigenvalue problem A*x = A*x by shift-inverse method.

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and esrColIndA. The output paramter x is the approximated

eigenvector of size m,

The following shift-inverse method corrects eigenpair step-by-step until convergence.

It accepts several parameters:

muO is an initial guess of eigenvalue. The shift-inverse method will converge to the
eigenvalue mu nearest mu0 if mu is a singleton. Otherwise, the shift-inverse method may

not converge.

x0 is an initial eigenvector. If the user has no preference, just chose x0 randomly. x0

must be nonzero. It can be non-unit length.

tol is the tolerance to decide convergence. If tol is less than zero, it would be treated as

Zero.

maxite is maximum number of iterations. It is useful when shift-inverse method
does not converge because the tolerance is too small or the desired eigenvalue is not a

singleton.
Shift-Inverse Method

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 61

cuSolverSP: sparse LAPACK Function Reference

Given a initial guess of eigenvalue p0 and initial vector x0
x(0) = x0 of unit length
for j = 0 : maxite

solve (A - po
normalize x(k*1) to unit length
compute approx. eigenvalue p = xH *
if | | A * x(k+1)

endfor

The supported matrix type is CUSPARSE_MATRIX TYPE_GENERAL. If A is symmetric/
Hermitian and only lower/upper part is used or meaningful, the user has to extend the
matrix into its missing upper/lower part, otherwise the result is wrong.

Remark 1: [cu|h]solver[S|D]csreigvsi only allows mu0 as a real number. This
works if A is symmetric. Otherwise, the non-real eigenvalue has a conjugate counterpart
on the complex plan, and shift-inverse method would not converge to such eigevalue
even the eigenvalue is a singleton. The user has to extend A to complex numbre and call
[cu|h]lsolver[C|Z]csreigvsi with mu0 not on real axis.

Remark 2: the tolerance tol should not be smaller than |mu0|*eps, where eps is
machine zero. Otherwise, shift-inverse may not converge because of small tolerance.

Input
parameter cusolverSp *Host description
MemSpace MemSpace

handle host host handle to the cuSolver library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix a.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrVala device host <type> array of nnz (= csrRowPtrA (m)
- csrRowPtrA (0)) nonzero elements of
matrix A.

csrRowPtrA device host integer array of m +1elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz (= csrRowPtrA (m)
- csrRowPtrA (0)) column indices of the
nonzero elements of matrix A.

mu0 host host initial guess of eigenvalue.

x0 device host initial guess of eigenvector, a vecotr of
size m.

maxite host host maximum iterations in shift-inverse
method.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 62

cuSolverSP: sparse LAPACK Function Reference

tol host host tolerance for convergence.
Output
parameter cusolverSp *Host description
MemSpace MemSpace
mu host host approximated eigenvalue nearest mu0
under tolerance.
x device host approximated eigenvector of size m.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,nnz<=0), base
index is not O or 1.

CUSOLVER_STATUS_ARCH_MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 63

cuSolverSP: sparse LAPACK Function Reference

6.2.6. cusolverSp<t>csreigs()

cusolverStatus_ t
solverspScsreigs [Host] (cusolverSpHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
const float *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
cuComplex left bottom corner,
cuComplex right upper corner,
int *num eigs);

cusolverStatus t

cusolverSpDcsreigs[Host] (cusolverSpHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuDoubleComplex left bottom corner,
cuDoubleComplex right upper corner,
int *num eigs);

cusolverStatus t
cusolverSpCcsreigs [Host] (cusolverSpHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrAh,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuComplex left bottom corner,
cuComplex right upper corner,
int *num eigs);

cusolverStatus t

cusolverSpZcsreigs[Host] (cusolverSpHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cubDoubleComplex left bottom corner,
cuDoubleComplex right upper corner,
int *num eigs);

This function computes number of algebraic eigenvalues in a given box B by contour
integral

P
number of algebraic eigenvalues in box B=—1 _pg)) dz
Z*H*JT; C

www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | 64

cuSolverSP: sparse LAPACK Function Reference

where closed line C is boundary of the box B which is a rectangle specified by two
points, one is left bottom corner (input parameter left_botoom_corner) and the other
is right upper corner (input parameter right_upper_corner). P(z)=det (A - z*I) is
the characteristic polynomial of A.

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrVall, csrRowPtr3, and esrColIndA.

The output parameter num_eigs is number of algebraic eigenvalues in the box B. This
number may not be accurate due to several reasons:

1. the contour C is close to some eigenvalues or even passes through some eigenvalues.

2. the numerical integration is not accurate due to coarse grid size. The default resolution
is 1200 grids along contour C uniformly.

Even though csreigs may not be accurate, it still can give the user some idea how
many eigenvalues in a region where the resolution of disk theorem is bad. For example,
standard 3-point stencil of finite difference of Laplacian operator is a tridiagonal matrix,
and disk theorem would show "all eigenvalues are in the interval [0, 4*N”2]" where N is
number of grids. In this case, csreigs is useful for any interval inside [0, 4*N"2].

Remark 1: if A is symmetric in real or hermitian in complex, all eigenvalues are real.
The user still needs to specify a box, not an interval. The height of the box can be much
smaller than the width.

Remark 2: only CPU (Host) path is provided.

Input
parameter cusolverSp *Host description
MemSpace MemSpace

handle host host handle to the cuSolverSP library context.

m host host number of rows and columns of matrix a.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix a.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ ZERO and
CUSPARSE_INDEX BASE ONE.

csrValA device host <type> array of nnz (= csrRowPtrA (m)
- csrRowPtrA (0)) nonzero elements of
matrix A.

csrRowPtrA device host integer array of m +1elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz (= csrRowPtrA (m)
- csrRowPtrA (0)) column indices of the
nonzero elements of matrix A.

left _bottom corner |host host left bottom corner of the box.

right upper_corner [host host right upper corner of the box.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 65

cuSolverSP: sparse LAPACK Function Reference

Output
parameter cusolverSp *Host description
MemSpace MemSpace
num_eigs host host number of algebraic eigenvalues in a box.
Status Returned
CUSOLVER_STATUS_SUCCESS the operation completed successfully.
CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.
CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (m,nnz<=0), base
index isnot 0 or 1.
CUSOLVER_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.
CUSOLVER_STATUS_INTERNAL ERROR an internal operation failed.
CUSOLVER_STATUS_MATRIX TYPE_NOT_SUPPORTED| the matrix type is not supported.

6.3. Low Level Function Reference

This section describes low level API of cuSolverSP, including symrem and batched QR.

6.3.1. cusolverSpXcsrsymrcm()

cusolverStatus t
cusolverSpXcsrsymrcmHost (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descra,
const int *csrRowPtrA,
const int *csrColIndA,
int *p);

This function implements Symmetric Reverse Cuthill-McKee permutation. It returns a
permutation vector p such that A (p,p) would concentrate nonzeros to diagonal. This is
equivalent to symrem in MATLAB, however the result may not be the same because of
different heuristics in the pseudoperipheral finder. The cuSolversSP library implements
symrcm based on the following two papers:

E. Chuthill and J. McKee, reducing the bandwidth of sparse symmetric matrices, ACM
'69 Proceedings of the 1969 24th national conference, Pages 157-172

Alan George, Joseph W. H. Liu, An Implementation of a Pseudoperipheral Node Finder,
ACM Transactions on Mathematical Software (TOMS) Volume 5 Issue 3, Sept. 1979,
Pages 284-295

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 66

cuSolverSP: sparse LAPACK Function Reference

The output parameter p is an integer array of n elements. It represents a permutation
array and it indexed using the base-0 convention. The permutation array p corresponds
to a permutation matrix P, and satisfies the following relation:

A(p,p)=P*A*PT
Ais an nxn sparse matrix that is defined in CSR storage format by the three arrays
csrValh, csrRowPtrA, and esrColIndA.

The supported matrix type is CUSPARSE_MATRIX TYPE GENERAL. Internally rem works
on A+ AT, the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.

Input
parameter *Host MemSpace | description
handle host handle to the cuSolverSP library context.
n host number of rows and columns of matrix A.
nnzA host number of nonzeros of matrix A. It is the size of
csrVala and csrColIndA.
descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.
csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.
csrColIndA host integer array of nnzacolumn indices of the
nonzero elements of matrix A.
Output
parameter hsolver description
P host permutation vector of size n.
Status Returned
CUSOLVER_STATUS_SUCCESS the operation completed successfully.
CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.
CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (n,nnzA<=0), base
index isnot O or 1.
CUSOLVER _STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.
CUSOLVER STATUS_INTERNAL ERROR an internal operation failed.
CUSOLVER_STATUS_MATRIX TYPE_NOT_SUPPORTED| the matrix type is not supported.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 67

cuSolverSP: sparse LAPACK Function Reference

6.3.2. cusolverSpXcsrsymmdq()

cusolverStatus_ t
cusolverSpXcsrsymmdgHost (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
int *p);

This function implements Symmetric Minimum Degree Algorithm based on Quotient
Graph. It returns a permutation vector p such that A (p,p) would have less zero fill-in
during Cholesky factorization. The cuSolversP library implements symmdq based on
the following two papers:

Patrick R. Amestoy, Timothy A. Davis, lain S. Duff, An Approximate Minimum Degree
Ordering Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec.
1996.

Alan George, Joseph W. Liu, A Fast Implementation of the Minimum Degree Algorithm
Using Quotient Graphs, ACM Transactions on Mathematical Software, Vol 6, No. 3,
September 1980, page 337-358.

The output parameter p is an integer array of n elements. It represents a permutation
array with base-0 index. The permutation array p corresponds to a permutation matrix
P, and satisfies the following relation:

A(p,p)=P*A*PT
A is an nxn sparse matrix that is defined in CSR storage format by the three arrays
csrValh, csrRowPtrA, and esrColIndA.

The supported matrix type is CUSPARSE_MATRIX TYPE GENERAL. Internally mdq works
on A+ AT, the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.

Input

parameter *Host MemSpace | description

handle host handle to the cuSolverSP library context.

n host number of rows and columns of matrix a.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 68

cuSolverSP: sparse LAPACK Function Reference

csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host integer array of nnzAcolumn indices of the

nonzero elements of matrix A.

Output
parameter hsolver description
P host permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_ TYPE_NOT SUPPORTED| the matrix type is not supported.

6.3.3. cusolverSpXcsrsymamd()

cusolverStatus_ t
cusolverSpXcsrsymamdHost (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
int *p);

This function implements Symmetric Approximate Minimum Degree Algorithm based
on Quotient Graph. It returns a permutation vector p such that A (p,p) would have less
zero fill-in during Cholesky factorization. The cuSolversSP library implements symamd
based on the following paper:

Patrick R. Amestoy, Timothy A. Davis, lain S. Duff, An Approximate Minimum Degree
Ordering Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec.
1996.

The output parameter p is an integer array of n elements. It represents a permutation
array with base-0 index. The permutation array p corresponds to a permutation matrix
P, and satisfies the following relation:

A(p,p)=P*A*PT

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 69

cuSolverSP: sparse LAPACK Function Reference

A is an nxn sparse matrix that is defined in CSR storage format by the three arrays

csrVall, csrRowPtra, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX TYPE GENERAL. Internally amd works
on A+ AT, the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.

Input
parameter *Host MemSpace description
handle host handle to the cuSolverSP library context.
n host number of rows and columns of matrix A.
nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.
descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.
csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.
csrColIndA host integer array of nnzacolumn indices of the
nonzero elements of matrix A.
Output
parameter hsolver description
P host permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 70

cuSolverSP: sparse LAPACK Function Reference

6.3.4. cusolverSpXcsrperm()

cusolverStatus_ t
cusolverSpXcsrperm bufferSizeHost (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
const cusparseMatDescr t descrA,
int *csrRowPtrA,
int *csrColIndA,
const int *p,
const int *q,
size t *bufferSizelInBytes);

cusolverStatus t
cusolverSpXcsrpermHost (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
const cusparseMatDescr t descrAi,
int *csrRowPtrA,
int *csrColIndA,
const int *p,
const int *q,
int *map,
void *pBuffer);

Given a left permutation vector p which corresponds to permutation matrix P and a
right permutation vector g which corresponds to permutation matrix Q, this function
computes permutation of matrix A by

B=P*A* QT
Ais an mxn sparse matrix that is defined in CSR storage format by the three arrays
csrValh, csrRowPtrA and csrColIndA.
The operation is in-place, i.e. the matrix A is overwritten by B.

The permutation vector p and q are base 0. p performs row permutation while q
performs column permutation. One can also use MATLAB command B = A(p.q) to
permutate matrix A.

This function only computes sparsity pattern of B. The user can use parameter map to
get csrvalB as well. The parameter map is an input/output. If the user sets map=0:1:
(nnzA-1) before calling csrperm, csrValB=csrValA (map).

The supported matrix type is CUSPARSE_MATRIX TYPE GENERAL. If A is symmetric and
only lower/upper part is provided, the user has to pass A+ A’ into this function.

This function requires a buffer size returned by csrperm bufferSize().
The address of pBuf fer must be a multiple of 128 bytes. If it is not,
CUSOLVER STATUS INVALID VALUE is returned.

For example, if matrix A is

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 71

A=

1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0

cuSolverSP: sparse LAPACK Function Reference

and left permutation vector p=(0,2,1), right permutation vector g=(2,1,0), then

P*A*QT is

Remark 1: only CPU (Host) path is provided.

P*A*QT=

3.0 2.0 1.0
9.0 8.0 7.0
6.0 5.0 4.0

Remark 2: the user can combine esrsymrcm and esrperm to get P*A* P which has less
zero fill-in during QR factorization.

Input
parameter cusolverSp description
MemSpace

handle host handle to the cuSolver library context.

m host number of rows of matrix A.

n host number of columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValAd and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrRowPtrA host integer array of m+1 elements that contains the
start of every row and end of last row plus one of
matrix A.

csrColIndA host integer array of nnzaAcolumn indices of the
nonzero elements of matrix A.

P host left permutation vector of size m.

q host right permutation vector of size n.

map host integer array of nnzaA indices. If the user wants to
get relationship between A and B, map must be set
0:1: (nnzA-1).

pBuffer host buffer allocated by the user, the size is returned
by csrperm bufferSize().

Output
parameter hsolver description
csrRowPtrA host integer array of m+1 elements that contains the

start of every row and end of last row plus one of
matrix B.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 72

cuSolverSP: sparse LAPACK Function Reference

csrColIndA host integer array of nnzacolumn indices of the
nonzero elements of matrix B.

map host integer array of nnza indices that maps matrix a
to matrix B.

pBufferSizeInBytes host number of bytes of the buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH

the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

6.3.5. cusolverSpXcsrqrBatched()

The create and destroy methods start and end the lifetime of a csrqrInfo object.

cusolverStatus t

cusolverSpCreaEeCsrqunfo (csrgrInfo_t *info);

cusolverStatus t

cusolverSpDestEostrqunfo (csrgrInfo

www.nvidia.com
cuSOLVER Library

t info);

DU-06709-001_v7.5 | 73

cuSolverSP: sparse LAPACK Function Reference

Analysis is the same for all data types, but each data type has a unique buffer size.

cusolverStatus_t

cusolverSpXcsrgrAnalysisBatched (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
csrgrInfo t info);

cusolverStatus t
cusolverSpScsrqrBufferInfoBatched (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int batchSize,
csrgrInfo t info,
size t *internalDatalInBytes,
size t *workspacelInBytes);

cusolverStatus t
cusolverSpDesrgrBufferInfoBatched (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int batchSize,
csrgrInfo t info,
size t *internalDatalInBytes,
size t *workspacelInBytes);

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 74

cuSolverSP: sparse LAPACK Function Reference

Calculate buffer sizes for complex valued data types.

cusolverStatus_t
cusolverSpCcsrqrBufferInfoBatched (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int batchSize,
csrgrInfo t info,
size t *internalDatalInBytes,
size t *workspacelnBytes) ;

cusolverStatus t

cusolverSpZcsrqrBufferInfoBatched (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int batchSize,
csrgrInfo t info,
size t *internalDataInBytes,
size t *workspacelnBytes) ;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 75

cuSolverSP: sparse LAPACK Function Reference

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t

cusolverSpScsrqrsvBatched (cusolverSpHandle t handle,

cusolverStatus t

int m,

int n,

int nnzA,

const cusparseMatDescr t descrA,
const float *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
const float *b,

float *x,

int batchSize,
csrgrInfo t info,

void *pBuffer);

cusolverSpDcsr&rszatched(cusolverSpHandle_t handle,

www.nvidia.com
cuSOLVER Library

int m,

int n,

int nnz,

const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const double *b,
double *x,

int batchSize,
csrgrInfo t info,

void *pBuffer);

DU-06709-001_v7.5 | 76

cuSolverSP: sparse LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t

cusolverSpCcsrqgrsvBatched (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuComplex *b,
cuComplex *x,
int batchSize,
csrgrInfo t info,
void *pBuffer);

cusolverStatus_t

cusolverSpZcsrqrsvBatched (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuDoubleComplex *b,
cuDoubleComplex *x,
int batchSize,
csrgrInfo t info,
void *pBuffer);

The batched sparse QR factorization is used to solve either a set of least-squares
problems

xj=argmin| |A;j*z-bj| |, j = 1,2,..., batchSize

or a set of linear systems

Aij=bj, j=1,2,..., batchSize

where each A; is a mxn sparse matrix that is defined in CSR storage format by the four
mtaysceralA,csrRothrAeuulcsrColIndA.

The supported matrix type is CUSPARSE_MATRIX TYPE GENERAL. If A is symmetric and
only lower/upper part is prvided, the user has to pass A+ A" into this function.

The prerequisite to use batched sparse QR has two-folds. First all matrices A; must have
the same sparsity pattern. Second, no column pivoting is used in least-square problem,
so the solution is valid only if A;is of full rank forall j = 1,2,..., batchSize

. All matrices have the same sparity pattern, so only one copy of csrRowPtrA and
csrColIndA is used. But the array csrvala stores coefficients of A; one after another. In
other words, csrValA[k*nnzA : (k+1)*nnzA] is the value of 4, .

The batched QR uses opaque data structure esrqrInfo to keep intermediate data, for
example, matrix Q and matrix R of QR factorization. The user needs to create csrqrInfo
tirst by cusolverSpCreateCsrqrInfo before any function in batched QR operation.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 77

cuSolverSP: sparse LAPACK Function Reference

The esrgrInfo would not release internal data until cusolverSpDestroyCsrqrInfo
is called.

There are three routines in batched sparse QR, cusolverSpXcsrqrAnalysisBatched,
cusolverSp[S|D|C|Z]csrqrBufferInfoBatched and cusolverSp[S|D|C|
Z]csrgrsvBatched.

First, cusolverSpXcsrqrAnalysisBatched is the analysis phase, used to analyze
sparsity pattern of matrix @ and matrix R of QR factorization. Also parallelism is
extracted during analysis phase. Once analysis phase is done, the size of working space
to perform QR is known. However cusolverSpXcsrqrAnalysisBatched uses CPU
to analyze the structure of matrix &, and this may consume a lot of memory. If host
memory is not sufficient to finish the analysis, CUSOLVER_STATUS ALLOC_FAILED

is returned. The required memory for analysis is proportional to zero fill-in in QR
factorization. The user may need to perform some kind of reordering to minimize zero
fill-in, for example, colamd or symrcm in MATLAB. cuSolverSP library provides
symrcm (cusolverSpXcsrsymrcm).

Second, the user needs to choose proper batchSize and to prepare working space

for sparse QR. There are two memory blocks used in batched sparse QR. One is
internal memory block used to store matrix Q and matrix R. The other is working space
used to perform numerical factorization. The size of the former is proportional to
batchSize, and the size is specified by returned parameter internalDataInBytes
of cusolverSp[S|D|C|2Z]csrqrBufferInfoBatched. while the size of the latter is
almost independent of batchSize, and the size is specified by returned parameter
workspacelInBytes of cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. The
internal memory block is allocated implicitly during first call of cusolverSp[S|D|C|
Z] csrqrsvBatched. The user only needs to allocate working space for cusolverSpI[S|
D|C|Z] csrgrsvBatched.

Instead of trying all batched matrices, the user can find maximum batchsSize
by querying cusolverSp[S|D|C|z]csrqrBufferInfoBatched. For example,
the user can increase batchSize till summation of internalDataInBytes and
workspaceInBytes is greater than size of available device memory.

Suppose that the user needs to perform 253 linear solvers and available device memory
is 2GB. if cusolverSp[S|D|C|Z] csrgrsvBatched can only afford batchsize 100,

the user has to call cusolverSp[S|D|C|Z] csrqrsvBatched three times to finish all.
The user calls cusolverSp[S|D|C|2]csrqrBufferInfoBatched with batchSize
100. The opaque info would remember this batchSize and any subsequent call of
cusolverSp[S|D|C|Z]csrgrsvBatched cannot exceed this value. In this example, the
first two calls of cusolverSp[S|D|C|2]csrqrsvBatched will use batchSize 100, and
last call of cusolverSp[S|D|C|Z]csrgrsvBatched will use batchSize 53.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 78

cuSolverSP: sparse LAPACK Function Reference

Example: suppose that A0, Al, .., A9 have the same sparsity pattern, the following code
solves 10 linear systems A;x;=b;,j=0,2,..., 9 by batched sparse QR.

// Suppose that A0, Al, .., A9 are m X m sparse matrix represented by CSR
format,

// Each matrix Aj has nonzero nnzA, and shares the same csrRowPtrA and
csrColIndA.

// csrValA is aggregation of AO, Al, ..., A9.

int m ; // number of rows and columns of each Aj

int nnzA ; // number of nonzeros of each Aj

int *csrRowPtrA ; // each Aj has the same csrRowPtrA

int *csrColIndA ; // each Aj has the same csrColIndA

double *csrvValA ; // aggregation of AO0,Al,...,A9

cont int batchSize = 10; // 10 linear systems

cusolverSpHandle t handle; // handle to cusolver library
csrgrinfo t info = NULL;

cusparseMatDescr t descrA = NULL;

void *pBuffer = NULL; // working space for numerical factorization

// step 1: create a descriptor

cusparseCreateMatDescr (&descrd) ;

cusparseSetMatIndexBase (descrA, CUSPARSE INDEX BASE ONE); // A is base-1
cusparseSetMatType (descrA, CUSPARSE MATRIX TYPE GENERAL); // A is a general
matrix

// step 2: create empty info structure
cusolverSpCreateCsrqgrInfo (&info) ;

// step 3: symbolic analysis
cusolverSpXcsrgrAnalysisBatched (

handle, m, m, nnzA,

descrA, csrRowPtrA, csrColIndA, info);

// step 4: allocate working space for Aj*xj=bj
cusolverSpDcsrgrBufferInfoBatched (

handle, m, m, nnzA,

descra,

csrValA, csrRowPtrA, csrColIndA,

batchSize,

info,

&internalDatalInBytes,

&workspacelInBytes) ;

cudaMalloc (&pBuffer, workspaceInBytes);

// step 5: solve Aj*xj = bj
cusolverSpDcsrgrsvBatched (

handle, m, m, nnzA,

descrA, csrValA, csrRowPtrA, csrColIndA,

b,

Xy

batchSize,

info,

pBuffer);

// step 7: destroy info
cusolverSpDestroyCsrgrInfo (info) ;
Please refer to Appendix B for detailed examples.

Remark 1: only GPU (device) path is provided.
Input

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 79

cuSolverSP: sparse LAPACK Function Reference

parameter cusolverSp description
MemSpace

handle host handle to the cuSolverSP library context.

m host number of rows of each matrix aj.

n host number of columns of each matrix aj.

nnzA host number of nonzeros of each matrix aj. It is the
size csrColIndA.

descrA host the descriptor of each matrix Aj. The supported
matrix type is CUSPARSE MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

csrValA device <type> array of nnzA*batchSize nonzero
elements of matrices a0, a1, All matrices
are aggregated one after another.

csrRowPtrA device integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA device integer array of nnzAcolumn indices of the
nonzero elements of each matrix aj.

b device <type> array of m*batchsSize of right-hand-side
vectors b0, bl,All vectors are aggregated
one after another.

batchSize host number of systems to be solved.

info host opaque structure for QR factorization.

pBuffer device buffer allocated by the user, the size is returned
by cusolverSpXcsrqrBufferInfoBatched ().

Output
parameter cusolverSp description
MemSpace

x device <type> array of m*batchsSize of solution vectors
x0, x1,All vectors are aggregated one
after another.

internalDatalInBytes host number of bytes of the internal data.

workspaceInBytes host number of bytes of the buffer in numerical

factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 80

cuSolverSP: sparse LAPACK Function Reference

CUSOLVER_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.
CUSOLVER_STATUS_INTERNAL ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE_NOT SUPPORTED| the matrix type is not supported.

6.4. cuda 7.5 Preview

This section describes new low level APIs of cuSolverSP in cuda 7.5. The low level APIs
include sparse LU, sparse Cholesky and sparse QR. The user has to include header file
cusolverSp LOWLEVEL PREVIEW.h.

LU, Cholesky and QR have the same flow, including

analysis phase to find sparsity pattern of numerical factor.
query size of buffer.

numerical factorization.

report singularity of numerical factorization.

numerical solve to complete linear solver or least-square solver.

vV V. v v VY

The user has to follow the above sequence to perform either a linear solver or a least-
square solver.

6.4.1. cusolverSpXcsrlu()

The sparse LU factorization is used to factorize matrix A in the following form
P*A* QT = L* U

Ais a nxn sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA and csrColIndA. P is a left permutation matrix mainly on
pivoting and Q is a right permutation matrix from postordering of the elimination tree.
L is a lower triangular matrix with implicit diagonal one while U is a upper triangular
matrix.

If A is symmetric, the user has to extend it to a full matrix and sets the matrix type as
CUSPARSE MATRIX TYPE_ GENERAL.

The low-level API does not reorder the matrix to minimize zero fill-in. The user can use
cusolverSpXcsrsymrcm Or cusolverSpXcsrsymamd to reorder the matrix to reduce
zero fill-in.

cusolverSP LU can be first step of refactorization. Please refer SDK
samples/7_CUDALibraries/cuSolverRf.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 81

cuSolverSP: sparse LAPACK Function Reference

6.4.1.1. cusolverSpCreateCsrlulnfo()

The create and destroy methods start and end the lifetime of a csrlulnfo object.

cusolverStatus t
cusolverSpCreateCsrlulInfo[Host] (csrlulnfo[Host] t *info);

cusolverStatus t
cusolverSpDestroyCsrluInfo[Host] (csrlulnfo[Host] t info);

The function cusolverSpCreateCsrlulInfo creates and initializes the opaque
structure of LU to default values.

The function cusolverSpDestroyCsrluInfo releases any memory required by the
structure.

Remark 1: only CPU path is provided.

Output
parameter cusolverSp *Host description
MemSpace MemSpace
info host host opaque structure for LU factorization.

Status Returned

CUSOLVER _STATUS_SUCCESS the operation completed successfully.

the resources could not be allocated.

CUSOLVER_STATUS_ALLOC_FAILED

6.4.1.2. cusolverSpXcsrluAnalysis()

cusolverStatus t

cusolverSpXcsrluAnalysis[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
csrlulInfo[Host] t info);

This function analyzes sparsity pattern of matrix L and matrix U of LU factorization.
The pivoting is determined at runtime, so only superset of L and U can be found.
After analysis, the size of working space to perform LU can be retrieved from
cusolverSpXcsrluBufferInfo.

The analysis phase needs working space to estimate sparsity pattern of L and U. If host
memory is not sufficient to finish the analysis, CUSOLVER_STATUS_ALLOC_FAILED is
returned.

Remark 1: only CPU path is provided.

Input

parameter

cusolverSp
MemSpace

*Host
MemSpace

description

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 82

cuSolverSP: sparse LAPACK Function Reference

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix a.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzacolumn indices of
the nonzero elements.

Output
parameter cusolverSp *Host description
MemSpace MemSpace

info host host recording scheduling information used in

numerical factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_MATRIX TYPE_NOT SUPPORTED| the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 83

cuSolverSP: sparse LAPACK Function Reference

6.4.1.3. cusolverSpXcsrluBufferinfo()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t

cusolverSpScsrluBufferInfo[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrlulnfo[Host] t info,
size t *internalDataInBytes,
size t *workspacelnBytes) ;

cusolverStatus t

cusolverSpDcsrluBufferInfo[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrluInfo[Host] t info,
size t *internalDatalInBytes,
size t *workspacelnBytes) ;

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus t

cusolverSpCcsrluBufferInfo[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrluInfo[Host] t info,
size t *internalDatalInBytes,
size t *workspacelnBytes) ;

cusolverStatus t

cusolverSpZcsrluBufferInfo[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrlulInfo[Host] t info,
size t *internalDatalInBytes,
size t *workspacelnBytes) ;

There are two memory blocks used in sparse LU. One is internal memory used
to store matrix L and matrix U. The other is working space used to perform
numerical factorization. The size of the former is specified by returned parameter

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 84

cuSolverSP: sparse LAPACK Function Reference

internalDatalInBytes; while the size of the latter is specified by returned parameter

workspaceInBytes.

The first call of cusolverSpXcsrluFactor would allocate L and U whose

size is bounded by internalDataInBytes. Once internal memory (of size
internalDatalInBytes bytes) is allocated by cusolverSpXcsrluFactor, the life

time is the same as info. Such internal memory is different from working space of size
workspaceInBytes bytes, whose life time starts at the beginning of the calling function

and ends when the function returns.

Remark 1: only CPU path is provided.

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
n host host number of rows and columns of matrix A.
nnzA host host number of nonzeros of matrix a.
descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.
csrValA device host <type> array of nnzA nonzero elements of
matrix A.
csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.
csrColIndA device host integer array of nnzacolumn indices of
the nonzero elements.
info host host opaque structure for LU factorization.
Output
parameter cusolverSp *Host description
MemSpace MemSpace
internalDatalInBytes | host host number of bytes of the internal data.
workspaceInBytes host host number of bytes of the buffer in
numerical factorization.
info host host recording internal parameters for buffer.
Status Returned
CUSOLVER_STATUS_SUCCESS the operation completed successfully.
CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.
CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (n,nnzA<=0), base
index is not O or 1.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 85

cuSolverSP: sparse LAPACK Function Reference

CUSOLVER_STATUS_MATRIX TYPE NOT SUPPORTED

the matrix type is not supported.

6.4.1.4. cusolverSpXcsrluFactor()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t

cusolverSpScsrluFactor[Host] (cusolverSpHandle t handle,

int n,
int nnzA,

const cusparseMatDescr t descrA,
const float *csrValA,

const int
const int

csrlulInfo[Host]

*csrRowPtrA,
*csrColIndA,
t info,

float pivot threshold,
void *pBuffer);

cusolverSpDcsrluFactor [Host] (cusolverSpHandle t handle,

int n,
int nnzA,

const cusparseMatDescr t descrA,
const double *csrValA,

const int
const int

csrlulInfo[Host]

*csrRowPtrA,
*csrColIndA,
t info,

double pivot threshold,
void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus t

cusolverSpCcsrluFactor [Host] (cusolverSpHandle t handle,

int n,
int nnzA,

const cusparseMatDescr t descrA,
const cuComplex *csrValAh,

const int
const int

csrlulInfo[Host]

*csrRowPtrA,
*csrColIndA,
t info,

float pivot_thrgshold,
void *pBuffer);

cusolverStatus t

cusolverSpZcsrluFactor [Host] (cusolverSpHandle t handle,

int n,
int nnzA,

const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,

const int
const int

csrlulInfo[Host]

*csrRowPtrA,
*csrColIndA,
t info,

double pivot threshold,
void *pBuffer);

This function performs numerical factorization

P*A*QT=L*U

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 86

cuSolverSP: sparse LAPACK Function Reference

The first call to cusolverSpXesrluFactor would allocate space for L and U. If the
memory is insufficient, CUSOLVER_STATUS_ALLOC_FAILED is returned. The numerical
factor L and U are kept in structure info and can be used in cusolverSpXcsrluSolve.

The parameter pivot_threshold is for diagonal pivoting. The value is between 0
and 1. If pivot_thresholdis 0, then no pivoting is chosen; if pivot thresholdis1,
traditional pivoting is chosen. Assuming that first j-1 columns are done, A is updated,
and § = max{|A(j:end,]j) |} is the condition of traditional pivoting, the formula to
choose diagonal A (3, j) as the pivot is

pivot_threshold*§ <= |AJ~,J~|

Remark 1: only CPU path is provided.

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
n host host number of rows and columns of matrix A.
nnzA host host number of nonzeros of matrix a.
descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.
csrValA device host <type> array of nnzA nonzero elements of
matrix A.
csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.
csrColIndA device host integer array of nnzacolumn indices of
the nonzero elements.
info host host opaque structure for LU factorization.
pivot_threshold host host a threshold to enable diagonal pivoting.
pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrluBufferInfo().
Output
parameter cusolverSp *Host description
MemSpace MemSpace
info host host containing numerical factor L and Q.
Status Returned
CUSOLVER _STATUS_SUCCESS the operation completed successfully.
CUSOLVER _STATUS_NOT_INITIALIZED the library was not initialized.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 87

cuSolverSP: sparse LAPACK Function Reference

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_INTERNAL ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE NOT SUPPORTED| the matrix type is not supported.

6.4.1.5. cusolverSpXcsrluZeroPivot()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverSpScsrluZeroPivot [Host] (cusolverSpHandle t handle,
csrlulnfo[Host] t info,
float tol,
int *position);

cusolverStatus t
cusolverSpDcsrluZeroPivot [Host] (cusolverSpHandle t handle,
csrluInfo[Host] t info,
double tol,
int *position);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus t
cusolverSpCcsrluZeroPivot [Host] (cusolverSpHandle t handle,

csrlulnfo[Host] t info,

float tol,

int *position);
cusolverStatus_ t
cusolverSpzcsrluZeroPivot [Host] (cusolverSpHandle t handle,

csrlulnfo[Host] t info,

double tol,

int *position);

If A is singular under given tolerance (max (tol, 0)), then some diagonal elements of U is
Zero, 1.e.

[UG,j)I<tol for some j

The output parameter position is the smallest index of such j. If A is non-singular,
position is -1. The index is base-0, independent of base index of A. For example, if 2nd
column of A is the same as first column, then A is singular and position = 1 which
means U (1,1)=0.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER STATUS_ INVALID VALUE is returned.

Remark 1: only CPU path is provided.

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 88

cuSolverSP: sparse LAPACK Function Reference

info host host opaque structure for LU factorization.
tol host host tolerance to determine singularity.
Output
parameter cusolverSp *Host description
MemSpace MemSpace

position host host -1 if A is non-singular; otherwise, first
column that U (3, j) is zero under given
tolerance.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.
CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.
CUSOLVER_STATUS_INVALID VALUE invalid calling sequence.

6.4.1.6. cusolverSpXcsrluSolve()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverSpScsrluSolve [Host] (cusolverSpHandle t handle,
int n,
const float *b,
float *x,
csrlulnfo[Host] t info,
void *pBuffer);

cusolverStatus_ t
cusolverSpDcsrluSolve [Host] (cusolverSpHandle t handle,
int n,
const double *b,
double *x,
csrlulnfo[Host] t info,
void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus t
cusolverSpCcsrluSolve [Host] (cusolverSpHandle t handle,
int n,
const cuComplex *b,
cuComplex *x,
csrlulnfo[Host] t info,
void *pBuffer);

cusolverStatus_ t
cusolverSpZcsrluSolve [Host] (cusolverSpHandle t handle,
int n,
const cuDoubleComplex *b,
cuDoubleComplex *x,
csrlulnfo[Host] t info,
void *pBuffer);

www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | 89

cuSolverSP: sparse LAPACK Function Reference

This function solves the linear system A*x =b by forward and backward substitution.
The user has to complete numerical factorization before calling this function. If
numerical factorization is not done, CUSOLVER_STATUS_INVALID_VALUE is returned.

The numerical factorization must be done before calling this function, otherwise,

CUSOLVER_STATUS_INVALID VALUE is returned.

Remark 1: only CPU path is provided.

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
n host host number of rows and columns of matrix A.
b device host <type> array of n of right-hand-side
vectors b.
info host host opaque structure for LU factorization.
pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrluBufferInfo().
Output
parameter cusolverSp *Host description
MemSpace MemSpace
x device host <type> array of n of solution vectors x.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid calling sequence.

6.4.1.7. cusolverSpXcsrluExtract()

cusolverStatus t

cusolverSpXcsrluNnz [Host] (cusolverSpHandle t handle,
int *nnzLRef,
int *nnzURef,
csrlulnfo[Host] t info);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 90

cuSolverSP: sparse LAPACK Function Reference

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrluExtract [Host] (cusolverSpHandle t handle,
int *P,
int *Q,
const cusparseMatDescr t descrl,
float *csrVvall,
int *csrRowPtrl,
int *csrColIndL,
const cusparseMatDescr t descrU,
float *csrVvalU,
int *csrRowPtrU,
int *csrColIndU,
csrlulnfo[Host] t info,
void *pBuffer);

cusolverStatus_t
cusolverSpDcsrluExtract [Host] (cusolverSpHandle t handle,
int *P,
int *Q,
const cusparseMatDescr t descrl,
double *csrVall,
int *csrRowPtrl,
int *csrColIndL,
const cusparseMatDescr t descrU,
double *csrVvalU,
int *csrRowPtrU,
int *csrColIndU,
csrlulnfo[Host] t info,
void *pBuffer);

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 91

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrluExtract [Host

cusolverStatus t

cuSolverSP: sparse LAPACK Function Reference

] (cusolverSpHandle t handle,

int *P,

int *Q,

const cusparseMatDescr t descrl,
cuComplex *csrVall,

int *csrRowPtrl,

int *csrColIndL,

const cusparseMatDescr t descrU,
cuComplex *csrValU,

int *csrRowPtrU,

int *csrColIndU,
csrlulnfo[Host] t info,

void *pBuffer);

cusolverSpZcsrluExtract [Host] (cusolverSpHandle t handle,

The function cusolverSpXecsrluExtract extracts information of LU factorization,
including left permutation vector P, right permutation vector Q, lower triangular matrix

L and upper triangular matrix U.

P, Q, L and U satisfy the relation

int *P,

int *Q,

const cusparseMatDescr t descrl,
cuDoubleComplex *csrVall,

int *csrRowPtrl,

int *csrColIndL,

const cusparseMatDescr t descrU,
cuDoubleComplex *csrvalU,

int *csrRowPtrU,

int *csrColIndU,
csrlulnfo[Host] t info,

void *pBuffer);

P*A*QT=L*U

First, the user gathers the nonzeros of L and U from cusolverSpXcsrluNnz;
then allocates CSR of L. and CSR of U; finally retrieves matrix L and U from
cusolverSpXcsrluExtract.

The numerical factorization must be done before calling this function, otherwise,

CUSOLVER_STATUS_INVALID VALUE is returned.

Remark 1: L has diagonal one implicitly.

Remark 2: permutation vectors P and Q are base-0.

Remark 3: only CPU path is provided.

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
Yy

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 92

cuSolverSP: sparse LAPACK Function Reference

descrL

host

host

the descriptor of matrix L.

The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

descrU

host

host

the descriptor of matrix u.

The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

info

host

host

opaque structure for LU factorization.

pBuffer

device

host

buffer allocated by the
user, the size is returned by
cusolverSpXcsrluBufferInfo().

Output

parameter

cusolverSp
MemSpace

*Host
MemSpace

description

nnzLRef

host

host

number of nonzeros of matrix L.

nnzURef

host

host

number of nonzeros of matrix uU.

P

device

host

integer array of n of left permutation
vector.

device

host

integer array of n of right permutation
vector.

csrVall

device

host

<type> array of nnzL nonzero elements of
matrix L.

csrRowPtrL

device

host

integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one of matrix L.

csrColIndL

device

host

integer array of nnzLcolumn indices of
the nonzero elements of matrix L.

csrValu

device

host

<type> array of nnzU nonzero elements of
matrix U.

csrRowPtrU

device

host

integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one of matrix U.

csrColIndU

device

host

integer array of nnzucolumn indices of
the nonzero elements of matrix U.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid calling sequence or base index is not 0 or 1.

CUSOLVER_STATUS_MATRIX TYPE_NOT SUPPORTED| the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 93

cuSolverSP: sparse LAPACK Function Reference

6.4.2. cusolverSpXcsrqr()

The sparse QR factorization is used to factorize matrix A in the following form
pea*QT =H*R

A is a mxn sparse matrix that is defined in CSR storage format by the three arrays

csrVall, csrRowPtrA and esrColIndA.

The QR factorization only works if m is not less than n.

The following three applications can take advantage of sparse QR.

1. linear solver:

A*x=b

2. least-square solver:

x=argmin| |A*z-b| |

3. eigenvalue solver:
A*x=A*x
To cover above three applications within the same flow, factorization phase is separated
by two steps
Step 1: shift diagonal of A by p.

This is designed for eigenvalue solver, mainly on shift-inverse power method. For linear
solver and least-square solver, the user should set p to zero.

Step 2: numerical factorization
P*(A_u*l)*QT: H*R
If A is not of full rank, cusolverSpXcsrqrzZeroPivot would report singularity.

6.4.2.1. cusolverSpCreateCsrgrinfo()

The create and destroy methods start and end the lifetime of a csrqrInfo object.

cusolverStatus_ t
cusolverSpCreateCsrqgrInfo[Host] (csrgrInfo[Host] t *info);

cusolverStatus t
cusolverSpDestroyCsrgrInfo[Host] (csrgrInfo[Host] t info);

The function cusolverSpCreateCsrqrInfo creates and initializes the opaque
structure of QR to default values.

The function cusolverSpDestroyCsrqrInfo releases any memory required by the
structure.

Output

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 94

cuSolverSP: sparse LAPACK Function Reference

parameter cusolverSp *Host description
MemSpace MemSpace
info host host opaque structure for QR factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

6.4.2.2. cusolverSpXcsrgrAnalysis()

cusolverStatus t

cusolverSchsrc_{rAnalysis[Host] (cusolverSpHandle t handle,
int m,
int n,

int nnzA,

const cusparseMatDescr t descrA,
const int *csrRowPtrA,

const int *csrColIndA,
csrgrInfo[Host] t info);

This function analyzes sparsity pattern of matrix H and matrix R of QR factorization.
After analysis, the size of working space to perform QR can be retrieved from

cusolverSpXcsrqrBufferInfo.

The analysis phase needs working space to find sparsity pattern of H and R. If host
memory is not sufficient to finish the analysis, CUSOLVER_STATUS_ALLOC_FAILED is

returned.
Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
m host host number of rows of matrix A.
n host host number of columns of matrix A.
nnzA host host number of nonzeros of matrix Aa.
descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.
csrRowPtrA device host integer array of m+1 elements that
contains the start of every row and the
end of the last row plus one.
csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.
Output

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 95

cuSolverSP: sparse LAPACK Function Reference

parameter cusolverSp *Host description
MemSpace MemSpace
info host host recording scheduling information used in

numerical factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_MATRIX_TYPE NOT_ SUPPORTED

the matrix type is not supported.

6.4.2.3. cusolverSpXcsrgrBufferinfo()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t

cusolverSpScsr&rBufferInfo[Host](cusolverSpHandle_t handle,

int m,
int n,
int nnzA,

const cusparseMatDescr t descrA,
const float *csrValA,

const int
const int

*csrRowPtrA,
*csrColIndA,

csrgrinfo[Host] t info,
size t *internalDatalInBytes,
size t *workspacelInBytes) :;

cusolverStatus t

cusolverSpDcsr&rBufferInfo[Host](cusolverSpHandle_t handle,

int m,
int n,
int nnzA,

const cusparseMatDescr t descrA,
const double *csrValA,

const int
const int

*csrRowPtrA,
*csrColIndA,

csrgrinfo[Host] t info,
size t *internalDatalInBytes,
size t *workspacelnBytes)

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 96

cuSolverSP: sparse LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t

cusolverSpCcsrqrBufferInfo[Host] (cusolverSpHandle t handle,
int m,

int n,

int nnzA,

const cusparseMatDescr t descrA,
const cuComplex *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,
csrgrInfo[Host] t info,

size t *internalDatalInBytes,
size t *workspacelInBytes);

cusolverStatus t

cusolverSpZcsr&rBufferInfo[Host](cusolverSpHandleit handle,
int m,

int n,

int nnzA,

const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,

const int *csrColIndA,
csrgrinfo[Host] t info,

size t *internalDatalInBytes,
size t *workspacelnBytes):;

There are two memory blocks used in sparse QR. One is internal memory used

to store matrix H and matrix R. The other is working space used to perform

numerical factorization. The size of the former is specified by returned parameter
internalDatalInBytes; while the size of the latter is specified by returned parameter

workspaceInBytes.

The first call of cusolverSpXcsrqrSetup would allocate H and R whose

size is bounded by internalDataInBytes. Once internal memory (of size
internalDataInBytes bytes) is allocated by cusolverSpXcsrqrSetup, the life time
is the same as info. Such internal memory is different from working space of size
workspaceInBytes bytes, whose life time starts at the beginning of the calling function

and ends when the function returns.

Input
parameter cusolverSp *Host description
MemSpace MemSpace

handle host host handle to the cuSolverSP library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

nnzA host host number of nonzeros of matrix a.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 97

cuSolverSP: sparse LAPACK Function Reference

csrVala device host <type> array of nnzA nonzero elements of
matrix A.

csrRowPtrA device host integer array of m+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

info host host opaque structure for QR factorization.

Output
parameter cusolverSp *Host description
MemSpace MemSpace

internalDataInBytes | host host number of bytes of the internal data.

workspaceInBytes host host number of bytes of the buffer in
numerical factorization.

info host host recording internal parameters for buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_MATRIX TYPE_NOT SUPPORTED| the matrix type is not supported.

6.4.2.4. cusolverSpXcsrgrSetup()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t

cusolverSpScsrqgrSetup [Host] (cusolverSpHandle t handle,

int m,
int n,
int nnzA,

const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,

float mu,

csrgrInfo[Host] t info);

cusolverSpDcsrgrSetup [Host] (cusolverSpHandle t handle,

int m,
int n,
int nnzA,

const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,

double mu,

csrgrInfo[Host] t info);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 98

cuSolverSP: sparse LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t

cusolverSpCcsrqgrSetup [Host] (cusolverSpHandle t handle,

cusolverStatus t

int m,

int n,

int nnzA,

const cusparseMatDescr t descrA,
const cuComplex *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,

cuComplex mu,

csrgrInfo[Host] t info);

cusolverSpZcsrgrSetup [Host] (cusolverSpHandle t handle,

int m,

int n,

int nnzA,

const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,

const int *csrColIndA,
cuDoubleComplex mu,
csrgrInfo[Host] t info);

This function shifts diagonal of A by parameter mu such that we can factorize

P*(A-p*1)*QT=H*R

For linear solver, the user just sets mu to zero. For eigenvalue solver, mu can be a value of

shift in inverse-power method.

The first call to cusolverSpXesrqrSetup would allocate space for H and R. If the
memory is insufficient, CUSOLVER _STATUS ALLOC_FAILED is returned. The numerical
factor H and R are kept in structure info and can be used in cusolverSpXcsrqrSolve.

Input
parameter cusolverSp *Host description
MemSpace MemSpace

handle host host handle to the cuSolverSP library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

nnzA host host number of nonzeros of matrix a.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrVala device host <type> array of nnzA nonzero elements of
matrix A.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 99

cuSolverSP: sparse LAPACK Function Reference

csrRowPtrA device host integer array of m+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

mu host host value of shift.

info host host opaque structure for QR factorization.

Output
parameter cusolverSp *Host description
MemSpace MemSpace
info host host subtract mu from diagonal of a.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

6.4.2.5. cusolverSpXcsrgrFactor()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t

cusolverSpScsrqrFactor [Host] (cusolverSpHandle t handle,

int m,
int n,
int nnzA,
float *b,
float *x,

csrgrinfo[Host] t info,
void *pBuffer);

cusolverSpDcsrgrFactor [Host] (cusolverSpHandle t handle,

int m,
int n,
int nnzA,

double *Db,
double *x,

csrgrInfo[Host] t info,
void *pBuffer);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 100

cuSolverSP: sparse LAPACK Function Reference

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrqrFactor [Host] (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
cuComplex *b,
cuComplex *x,
csrgrinfo[Host] t info,
void *pBuffer);

cusolverStatus t
cusolverSpZcsrqrFactor [Host] (cusolverSpHandle t handle,
int m,
int n,
int nnzA,
cuDoubleComplex *b,
cuDoubleComplex *x,
csrgrInfo[Host] t info,
void *pBuffer);

This function performs numerical factorization

P*(A-p*1)*QT =H*R
cusolverSpXcsrqrSetup subtracts p from A. The numerical factor H and R are kept in
structure info and can be used in cusolverSpXcsrqgrSolve.

If either x or b is nil, only factorization is done. The user needs
cusolverSpXcsrqrSolve to find the least-square solution.

If both x and b are not nil, QR factorization and solve are combined together. b is
overwritten by ¢ and x is the solution of least-square.

c=H"*P*b
x=Q'(R\c(1:n))

In this case, the user does not need cusolverSpXcsrqrSolve.

It would be better to combine factorization and solve together for GPU because solve
phase is sequential.

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
m host host number of rows of matrix A.
n host host number of columns of matrix A.
nnzA host host number of nonzeros of matrix A.
b device host <type> array of m elements of right-hand-
side vector.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 101

cuSolverSP: sparse LAPACK Function Reference

info host host opaque structure for QR factorization.

pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrqrBufferInfo().

Output
parameter cusolverSp *Host description
MemSpace MemSpace

info host host containing numerical factor H and R.

x device host <type> array of n elements of least-
square solution if x and b are not nil.

b device host overwritten by c if x and b are not nil.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER _STATUS_NOT INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_INVALID VALUE

CUSOLVER_STATUS_INTERNAL ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE_NOT SUPPORTED| the matrix type is not supported.

6.4.2.6. cusolverSpXcsrgrZeroPivot()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrgrzeroPivot [Host] (cusolverSpHandle t handle,
csrgrInfo[Host] t info,
float tol,
int *position);

cusolverStatus t
cusolverSpDcsrqgrZeroPivot [Host] (cusolverSpHandle t handle,
csrgrInfo[Host] t info,
double tol,
int *position);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus t
cusolverSpCcsrgrZeroPivot [Host] (cusolverSpHandle t handle,

csrgrInfo[Host] t info,

float tol,

int *position);
cusolverStatus t
cusolverSpzcsrgrZzeroPivot [Host] (cusolverSpHandle t handle,

csrgrinfo[Host] t info,

double tol,

int *position);

www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | 102

cuSolverSP: sparse LAPACK Function Reference

If A is not full rank under given tolerance (max (tol,0)), then some diagonal elements of
Ris zero, i.e.

IR(j,j) < tol for some j

The output parameter position is the smallest index of such j. If A is of full rank,
position is -1. The index is base-0, independent of base index of A. For example, if 2nd
column of A is the same as first column, then A is rank deficient and position = 1
which means R(1,1) =0.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER_STATUS_INVALID_ VALUE is returned.

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
info host host opaque structure for QR factorization.
tol host host tolerance to determine singularity.
Output
parameter cusolverSp *Host description
MemSpace MemSpace
position host host -1 if A is non-singular; otherwise, first
column that R (3, j) is zero under given
tolerance.
Status Returned
CUSOLVER_STATUS_SUCCESS the operation completed successfully.
CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.
CUSOLVER_STATUS_INVALID VALUE invalid calling sequence.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 103

cuSolverSP: sparse LAPACK Function Reference

6.4.2.7. cusolverSpXcsrqgrSolve()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverSpScsrqgrSolve [Host] (cusolverSpHandle t handle,
int m,
int n,
float *b,
float *x,
csrgrInfo[Host] t info,
void *pBuffer);

cusolverStatus t
cusolverSpDcsrqrSolve [Host] (cusolverSpHandle t handle,
int m,
int n,
double *b,
double *x,
csrgrInfo[Host] t info,
void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus t
cusolverSpCcsrqrSolve [Host] (cusolverSpHandle t handle,
int m,
int n,
cuComplex *b,
cuComplex *x,
csrgrInfo[Host] t info,
void *pBuffer);

cusolverStatus t

cusolverSpZcsrgrSolve [Host] (cusolverSpHandle t handle,
int m,
int n,
cuDoubleComplex *b,
cuDoubleComplex *x,
csrgrinfo[Host] t info,
void *pBuffer);

This function solves the following least-square problem

x=argmin| |A*z-b| |
b is overwritten by ¢ and x is the solution of least-square.
c=H"*P*b
x=QT(R\c(1:n))

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER STATUS_ INVALID VALUE is returned.

Remark 1: matrix A is actually (A - u*1)

www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | 104

Remark 2: minllA*z- bl = llic(n+1:m)ll

cuSolverSP: sparse LAPACK Function Reference

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
m host host number of rows of matrix A.
n host host number of columns of matrix A.
b device host <type> array of m of right-hand-side
vectors b.
info host host opaque structure for LU factorization.
pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrqrBufferInfo().
Output
parameter cusolverSp *Host description
MemSpace MemSpace
x device host <type> array of n of solution vectors x.
b device host overwritten by c.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_ VALUE invalid calling sequence.

6.4.3. cusolverSpXcsrchol()

The sparse Cholesky factorization is used to factorize symmetric positive definite matrix
A in the following form

P*A*PT=L*LT

Ais a nxn sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA and csrColIndA. The low-level API only factors lower triangle
part of A. The upper triangular part is assumed to be symmetric of lower triangular part
implicitly.

The low-level API does not reorder the matrix to minimize zero fill-in. The user can use
cusolverSpXcsrsymrcm Or cusolverSpXcsrsymamd to reorder the matrix to reduce
zero fill-in. The permutation matrix P is the post-ordering of elimination tree.

The Choleksy factor L is a lower triangular matrix which is more denser
than A. The diagonal of L is positive if A is positive definite. Otherwise,
cusolverSpXcsrcholZeroPivot can report singularity.

www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | 105

cuSolverSP: sparse LAPACK Function Reference

To solve a linear system A*x = b, the user needs symbolic analysis

from cusolverSpXcsrcholAnalysis, numerical factorization from
cusolverSpXcsrcholFactor and forward/backward substitution from
cusolverSpXcsrcholSolve.

6.4.3.1. cusolverSpCreateCsrcholinfo()

The create and destroy methods start and end the lifetime of a csrchollnfo object.

cusolverStatus t
cusolverSpCreateCsrcholInfo[Host] (csrcholInfo[Host] t *info);

cusolverStatus t
cusolverSpDestroyCsrcholInfo[Host] (csrcholInfo[Host] t info);

The function cusolverSpCreateCsrcholInfo creates and initializes the opaque
structure of Cholesky to default values.

The function cusolverSpDestroyCsrcholInfo releases any memory required by the
structure.

Output
parameter cusolverSp *Host description
MemSpace MemSpace
info host host opaque structure for Cholesky
factorization.

Status Returned

CUSOLVER _STATUS_SUCCESS the operation completed successfully.

CUSOLVER _STATUS_ALLOC_FAILED the resources could not be allocated.

6.4.3.2. cusolverSpXcsrcholAnalysis()

cusolverStatus t

cusolverSpXcsrcholAnalysis[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
csrcholInfo[Host] t info);

This function analyzes sparsity pattern of matrix L of Cholesky factorization. After
analysis, the size of working space to perform Cholesky can be retrieved from
cusolverSpXcsrcholBufferInfo.

The analysis phase needs working space to find sparsity pattern of L. If host memory is
not sufficient to finish the analysis, CUSOLVER_STATUS_ALLOC_FAILED is returned.

Input

parameter

cusolverSp
MemSpace

*Host
MemSpace

description

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 106

cuSolverSP: sparse LAPACK Function Reference

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix a.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzacolumn indices of
the nonzero elements.

Output
parameter cusolverSp *Host description
MemSpace MemSpace

info host host recording scheduling information used in

numerical factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_MATRIX TYPE_NOT SUPPORTED| the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 107

cuSolverSP: sparse LAPACK Function Reference

6.4.3.3. cusolverSpXcsrcholBufferinfo()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t

cusolverSpScsrcholBufferInfo[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrcholInfo[Host] t info,
size t *internalDataInBytes,
size t *workspacelnBytes) ;

cusolverStatus t

cusolverSpDcsrcholBufferInfo[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrcholInfo[Host] t info,
size t *internalDatalInBytes,
size t *workspacelnBytes) ;

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus t

cusolverSpCcsrcholBufferInfo[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrcholInfo[Host] t info,
size t *internalDatalInBytes,
size t *workspacelnBytes) ;

cusolverStatus t

cusolverSpZcsrcholBufferInfo[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrcholInfo[Host] t info,
size t *internalDatalInBytes,
size t *workspacelnBytes) ;

There are two memory blocks used in sparse Cholesky. One is internal memory used to

store matrix L. The other is working space used to perform numerical factorization. The
size of the former is specified by returned parameter internalDataInBytes; while the
size of the latter is specified by returned parameter workspaceInBytes.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 108

cuSolverSP: sparse LAPACK Function Reference

The first call of cusolverSpXcsrcholFactor would allocate I whose size is bounded
by internalDataInBytes. Once internal memory (of size internalDataInBytes
bytes) is allocated by cusolverSpXcsrcholFactor, the life time is the same as info.
Such internal memory is different from working space of size workspaceInBytes
bytes, whose life time starts at the beginning of the calling function and ends when the

function returns.

Input
parameter cusolverSp *Host description
MemSpace MemSpace

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix a.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrValA device host <type> array of nnzA nonzero elements of
matrix A.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzacolumn indices of
the nonzero elements.

info host host opaque structure for Cholesky
factorization.

Output
parameter cusolverSp *Host description
MemSpace MemSpace

internalDatalInBytes | host host number of bytes of the internal data.

workspaceInBytes host host number of bytes of the buffer in
numerical factorization.

info host host recording internal parameters for buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (n,nnzA<=0), base

index is not O or 1.

CUSOLVER_STATUS MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 109

cuSolverSP: sparse LAPACK Function Reference

6.4.3.4. cusolverSpXcsrcholFactor()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverSpScsrcholFactor [Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrcholInfo[Host] t info,
void *pBuffer);

cusolverSpDcsrcholFactor[Host] (cusolverSpHandle t handle,
int n, B
int nnzA,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrcholInfo[Host] t info,
void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus t

cusolverSpCcsrcholFactor[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrcholInfo[Host] t info,
void *pBuffer);

cusolverStatus t

cusolverSpZcsrcholFactor[Host] (cusolverSpHandle t handle,
int n,
int nnzA,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrcholInfo[Host] t info,
void *pBuffer);

This function performs numerical factorization
P* A* PT = L* LT

The first call to cusolverSpXcsrcholFactor would allocate space for L. If the memory
is insufficient, CUSOLVER _STATUS_ALLOC_FAILED is returned. The numerical factor L is
kept in structure info and can be used in cusolverSpXcsrcholSolve.

Input

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 110

cuSolverSP: sparse LAPACK Function Reference

parameter cusolverSp *Host description
MemSpace MemSpace

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix a.
The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.

csrVala device host <type> array of nnzA nonzero elements of
matrix A.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

info host host opaque structure for Cholesky
factorization.

pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrcholBufferInfo ().

Output
parameter cusolverSp *Host description
MemSpace MemSpace
info host host containing numerical factor L.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSOLVER_STATUS_INVALID VALUE

invalid parameters were passed (n,nnzA<=0), base
index isnot 0 or 1.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

CUSOLVER_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 111

cuSolverSP: sparse LAPACK Function Reference

6.4.3.5. cusolverSpXcsrcholZeroPivot()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus t
cusolverSpScsrcholZeroPivot [Host] (cusolverSpHandle t handle,
csrcholInfo[Host] t info,
float tol,
int *position);

cusolverStatus_ t
cusolverSpDcsrcholZeroPivot [Host] (cusolverSpHandle t handle,
csrcholInfo[Host] t info,
double tol,
int *position);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus t
cusolverSpCcsrcholZeroPivot [Host] (cusolverSpHandle t handle,
csrcholInfo[Host] t info,
float tol,
int *position);
cusolverStatus t
cusolverSpzcsrcholZeroPivot [Host] (cusolverSpHandle t handle,
csrcholInfo[Host] t info,
double tol,
int *position);

If A is not postive definite, there exists some integer k such thatA(0:k, 0:k) isnot

positive definite. The output parameter position is the minimum of such k.

If A is postive definite but near singular under tolerance (max (tol,0)), i.e. there exists
some integer k such that L(k k) <=tol. The output parameter position is the minimum
of such k.

If A is non-singular, position is -1. The position is base-0, independent of base index
of A.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER STATUS INVALID VALUE is returned.

Input
parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
info host host opaque structure for Cholesky
factorization.
tol host host tolerance to determine singularity.
Output
parameter cusolverSp *Host description
MemSpace MemSpace

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 112

cuSolverSP: sparse LAPACK Function Reference

position host host

-1 if A is non-singular; otherwise, smallest
k that A(0:%,0:k) is not positive
definite under given tolerance.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid calling sequence.

6.4.3.6. cusolverSpXcsrcholSolve()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_ t

cusolverSpScsrcholSolve[Host] (cusolverSpHandle t handle,
int n,
const float *b,
float *x,
csrcholInfo[Host] t info,
void *pBuffer);

cusolverStatus t
cusolverSpDcsrcholSolve [Host] (cusolverSpHandle t handle,
int n,
const double *Db,
double *x,
csrcholInfo[Host] t info,
void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_ t
cusolverSpCcsrcholSolve [Host] (cusolverSpHandle t handle,
int n,
const cuComplex *Db,
cuComplex *x,
csrcholInfo[Host] t info,
void *pBuffer);

cusolverStatus_ t

cusolverSpZcsrcholSolve[Host] (cusolverSpHandle t handle,
int n,
const cuDoubleComplex *b,
cuDoubleComplex *x,
csrcholInfo[Host] t info,
void *pBuffer);

This function solves the linear system A*x =b by forward and backward substitution.
The user has to complete numerical factorization before calling this function. If
numerical factorization is not done, CUSOLVER_STATUS_INVALID_VALUE is returned.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER STATUS_ INVALID VALUE is returned.
Input

www.nvidia.com

cuSOLVER Library DU-06709-001_v7.5 | 113

cuSolverSP: sparse LAPACK Function Reference

parameter cusolverSp *Host description
MemSpace MemSpace
handle host host handle to the cuSolverSP library context.
n host host number of rows and columns of matrix A.
b device host <type> array of n of right-hand-side
vectors b.
info host host opaque structure for Cholesky
factorization.
pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrcholBufferInfo().
Output
parameter cusolverSp *Host description
MemSpace MemSpace
x device host <type> array of n of solution vectors x.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

invalid calling sequence.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 114

Chapter 7.
CUSOLVERRF: REFACTORIZATION

REFERENCE

This chapter describes API of cuSolverRF, a library for fast refactorization.

7.1. cusolverRfAccessBundledFactors()

cusolverStatus t
cusolverRfAccessBundledFactors (/* Input */
cusolverRfHandle t handle,
/* Output (in the host memory) */
int* nnzM,
/* Output (in the device memory) */
int** Mp,
int** Mi,
double** Mx) ;

This routine allows direct access to the lower L and upper U triangular factors stored in
the cuSolverRF library handle. The factors are compressed into a single matrix M= (L-
I)+U, where the unitary diagonal of L is not stored. It is assumed that a prior call to the
cusolverRfRefactor () was done in order to generate these triangular factors.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

nnzM host output the number of non-zero elements of
matrix M.

Mp device output the array of offsets corresponding to the

start of each row in the arrays Mi and Mx.
This array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix SMS. The array
size is n+1.

Mi device output the array of column indices corresponding
to the non-zero elements in the matrix M.
It is assumed that this array is sorted by

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 115

cuSolverRF: Refactorization Reference

row and by column within each row. The
array size is nnzM.

device

output

the array of values corresponding to the
non-zero elements in the matrix M. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzM.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER STATUS_ EXECUTION_FAILED

a kernel failed to launch on the GPU.

7.2. cusolverRfAnalyze()

cusolverStatus t

cusolveerAnal?ze (cusolverRfHandle t handle);

This routine performs the appropriate analysis of parallelism available in the LU re-
factorization depending upon the algorithm chosen by the user.

A=L*U

It is assumed that a prior call to the cusolverRfSetup [Host |Device] () was done in
order to create internal data structures needed for the analysis.

This routine needs to be called only once for a single linear system

Aixi = fi
parameter MemSpace In/out Meaning
handle host in/out the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED

a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ALLOC_FAILED

an allocation of memory failed.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 116

cuSolverRF: Refactorization Reference

7.3. cusolverRfSetupDevice()

cusolverStatus t

cusolverRfSetupDevice (/* Input (in the device memory) */

int n,

int nnzA,

int* csrRowPtrA,
int* csrColIndA,
double* csrValAh,
int nnzL,

int* csrRowPtrl,
int* csrColIndL,
double* csrVall,
int nnzU,

int* csrRowPtrU,
int* csrColIndU,
double* csrVvalU,
int* P,

int* Q,

/* Output */
cusolverRfHandle t handle);

This routine assembles the internal data structures of the cuSolverRF library. It is often
the first routine to be called after the call to the cusolverRfCreate () routine.

This routine accepts as input (on the device) the original matrix A, the lower (L) and
upper (U) triangular factors, as well as the left (P) and the right (Q) permutations
resulting from the full LU factorization of the first (i=1) linear system

A,X, =fi

The permutations P and Q represent the final composition of all the left and right
reorderings applied to the original matrix A, respectively. However, these permutations
are often associated with partial pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

Aixi = fl
parameter MemSpace In/out Meaning
n host input the number of rows (and columns) of
matrix A.
nnzA host input the number of non-zero elements of
matrix A.
csrRowPtrA device input the array of offsets corresponding to

the start of each row in the arrays
csrColIndA and csrVvalA. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix. The array size is n+1.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 117

cuSolverRF: Refactorization Reference

csrColIndA

device

input

the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

csrValA

device

input

the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

nnzL

host

input

the number of non-zero elements of
matrix L.

csrRowPtrL

device

input

the array of offsets corresponding to

the start of each row in the arrays
csrColIndL and csrValL. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix L. The array size is n+1.

csrColIndL

device

input

the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzL.

csrVall

device

input

the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU

host

input

the number of non-zero elements of
matrix U.

csrRowPtrU

device

input

the array of offsets corresponding to

the start of each row in the arrays
csrColIndU and csrValu. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix U. The array size is n+1.

csrColIndU

device

input

the array of column indices corresponding
to the non-zero elements in the matrix u.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzU.

csrValu

device

input

the array of values corresponding to the
non-zero elements in the matrix u. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

device

input

the left permutation (often associated
with pivoting). The array size in n.

device

input

the right permutation (often associated
with reordering). The array size in n.

handle

host

output

the handle to the GLU library.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 118

Status Returned

cuSolverRF: Refactorization Reference

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

an unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED

an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED

a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

7.4. cusolverRfSetupHost()

cusolverStatus t

cusolveerSetuEHost(/* Input (in the host memory) */

int n,
int nnzA,

int* h csrRowPtrA,
int* h csrColIndA,
double* h csrvalA,

int nnzL,

int* h csrRowPtrL,
int* h csrColIndL,
double* h csrvallL,

int nnzU,

int* h csrRowPtrU,
int* h csrColIndU,
double* h csrVvall,

int* h P,
int* h Q,

/* Output */

cusolverRfHandle t handle);

This routine assembles the internal data structures of the cuSolverRF library. It is often
the first routine to be called after the call to the cusolverRfCreate () routine.

This routine accepts as input (on the host) the original matrix A, the lower (L) and
upper (U) triangular factors, as well as the left (P) and the right (Q) permutations
resulting from the full LU factorization of the first (i=1) linear system

AiXi

=fi

The permutations P and Q represent the final composition of all the left and right
reorderings applied to the original matrix A, respectively. However, these permutations
are often associated with partial pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

AiXi

=f,

parameter MemSpace

In/out

Meaning

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 119

cuSolverRF: Refactorization Reference

host

input

the number of rows (and columns) of
matrix A.

nnzA

host

input

the number of non-zero elements of
matrix A.

h_csrRowPtrA

host

input

the array of offsets corresponding to

the start of each row in the arrays
h_csrColIndA and h_csrValA. This
array has also an extra entry at the

end that stores the number of non-zero
elements in the matrix. The array size is n
+1.

h_csrColIndA

host

input

the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

h_csrvala

host

input

the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

nnzL

host

input

the number of non-zero elements of
matrix L.

h_csrRowPtrL

host

input

the array of offsets corresponding to

the start of each row in the arrays
h_csrColIndL and h_csrvalL. This
array has also an extra entry at the

end that stores the number of non-zero
elements in the matrix L. The array size is
n+1.

h_csrColIndL

host

input

the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzL.

h_csrvVallL

host

input

the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU

host

input

the number of non-zero elements of
matrix U.

h_csrRowPtrU

host

input

the array of offsets corresponding to

the start of each row in the arrays
h_csrColIndU and h_csrValu. This
array has also an extra entry at the

end that stores the number of non-zero
elements in the matrix u. The array size is
n+l.

h_csrColIndU

www.nvidia.com
cuSOLVER Library

host

input

the array of column indices corresponding
to the non-zero elements in the matrix u.
It is assumed that this array is sorted by

DU-06709-001_v7.5 | 120

cuSolverRF: Refactorization Reference

row and by column within each row. The
array size is nnzU.

h_csrvValU host

input

the array of values corresponding to the
non-zero elements in the matrix u. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

host

input

the left permutation (often associated
with pivoting). The array size in n.

h O host

input

the right permutation (often associated
with reordering). The array size in n.

handle host

output

the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

an unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED

an allocation of memory failed.

CUSOLVER_STATUS_ EXECUTION_ FAILED

a kernel failed to launch on the GPU.

CUSOLVER_ STATUS_ INTERNAL ERROR

an internal operation failed.

7.5. cusolverRfCreate()

cusolverStatus t cusolverRfCreate (cusolverRfHandle t *handle);

This routine initializes the cuSolverRF library. It allocates required resources and must
be called prior to any other cuSolverRF library routine.

parameter MemSpace

In/out

Meaning

handle host

output

the pointer to the cuSolverRF library
handle.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

an allocation of memory failed.

CUSOLVER_STATUS_INTERNAL ERROR

an internal operation failed.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 121

cuSolverRF: Refactorization Reference

7.6. cusolverRfExtractBundledFactorsHost()

cusolverStatus t

cusolverRfExtractBundledFactorsHost (/* Input */
cusolverRfHandle t handle,

/* Output

(in the host memory) */

int* h nnzM,
int** h Mp,
int** h Mi,
double** h Mx);

This routine extracts lower (L) and upper (U) triangular factors from the cuSolverRF
library handle into the host memory. The factors are compressed into a single matrix
M= (L-I)+U, where the unitary diagonal of (L) is not stored. It is assumed that a prior
call to the cusolverRfRefactor () was done in order to generate these triangular

factors.

parameter MemSpace

In/out

Meaning

handle host

input

the handle to the cuSolverRF library.

h_nnzM host

output

the number of non-zero elements of
matrix M.

h_Mp host

output

the array of offsets corresponding to the
start of each row in the arrays h_Mi and
h_Mx. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix M. The array
size is n+1.

h Mi host

output

the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzM.

h Mx host

output

the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzM.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

an allocation of memory failed.

CUSOLVER_ STATUS_EXECUTION_FAILED

a kernel failed to launch on the GPU.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 122

cuSolverRF: Refactorization Reference

7.7. cusolverRfExtractSplitFactorsHost()

cusolverStatus t

cusolverRfExtractSplitFactorsHost (/* Input */
cusolverRfHandle t handle,
/* Output (in the host memory) */

int* h nnzL,
int** h Lp,
int** h Li,

double** h Lx,

int* h nnzU,
int** h Up,
int** h Ui,

double** h_Ux) ;

This routine extracts lower (L) and upper (U) triangular factors from the
cuSolverRF library handle into the host memory. It is assumed that a prior call to the
cusolverRfRefactor () was done in order to generate these triangular factors.

parameter

MemSpace

In/out

Meaning

handle

host

input

the handle to the cuSolverRF library.

h_nnzL

host

output

the number of non-zero elements of
matrix L.

h_1p

host

output

the array of offsets corresponding to the
start of each row in the arrays h_Li and
h_Lx. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix L. The array
size is n+1.

h Li

host

output

the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is h_nnzL.

h Lx

host

output

the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzL.

h_nnzU

host

output

the number of non-zero elements of
matrix U.

h_Up

host

output

the array of offsets corresponding to the
start of each row in the arrays h_ui and
h_ux. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix u. The array
size is n+1.

h Ui

www.nvidia.com
cuSOLVER Library

host

output

the array of column indices corresponding
to the non-zero elements in the matrix U.
It is assumed that this array is sorted by

DU-06709-001_v7.5 | 123

cuSolverRF: Refactorization Reference

row and by column within each row. The
array size is h_nnzU.

h Ux

host

output

the array of values corresponding to the
non-zero elements in the matrix u. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzU.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED

an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED

a kernel failed to launch on the GPU.

7.8. cusolverRfDestroy()

cusolverStatus t cusolverRfDestroy(cusolverRfHandle t handle);

This routine shuts down the cuSolverRF library. It releases acquired resources and must
be called after all the cuSolverRF library routines.

parameter

MemSpace

In/out

Meaning

handle

host

input

the cuSolverRF library handle.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

7.9. cusolverRfGetMatrixFormat()

cusolverStatus t

cusolverRfGetMatrixFormat (cusolverRfHandle t handle,
cusolverRfMatrixFormat t *format,
cusolverRfUnitDiagonal t *diag);

This routine gets the matrix format used in the cusolverRfSetupDevice (),
cusolverRfSetupHost (), cusolverRfResetValues (),
cusolverRfExtractBundledFactorsHost () and
cusolverRfExtractSplitFactorsHost () routines.

parameter MemSpace In/out Meaning
handle host input the handle to the cuSolverRF library.
format host output the enumerated matrix format type.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 124

cuSolverRF: Refactorization Reference

diag

host

output

the enumerated unit diagonal type.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

7.10. cusolverRfGetNumericProperties()

cusolverStatus t

cusolverRfGetNumericProperties (cusolverRfHandle t handle,

double *zero,
double *boost);

This routine gets the numeric values used for checking for "zero" pivot and for boosting
it in the cusolverRfRefactor () and cusolverRfSolve () routines. The numeric
boosting will be used only if boost > 0.0.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

zero host output the value below which zero pivot is
flagged.

boost host output the value which is substituted for zero

pivot (if the later is flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

7.11. cusolverRfGetNumericBoostReport()

cusolverStatus t

cusolveerGetNHmericBoostReport(cusolveerHandle_t handle,

cusolverRfNumericBoostReport t *report);

This routine gets the report whether numeric boosting was used in the
cusolverRfRefactor () and cusolverRfSolve () routines.

parameter MemSpace In/out Meaning
handle host input the handle to the cuSolverRF library.
report host output the enumerated boosting report type.

Status Returned

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 125

cuSolverRF: Refactorization Reference

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

7.12. cusolverRfGetResetValuesFastMode()

cusolverStatus t

cusolverRfGetResetValuesFastMode (cusolverRfHandle t handle,
rfResetValuesFastMode t *fastMode) ;

This routine gets the mode used in the cusolverRfResetValues routine.

parameter MemSpace In/out Meaning
handle host input the handle to the cuSolverRF library.
fastMode host output the enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

7.13. cusolverRfGet_Algs()

cusolverStatus t

cusolverRfGet Algs(cusolverRfHandle t handle,
cusolverRfFactorization t* fact alg,
cusolverRfTriangularSolve t* solve alg);

This routine gets the algorithm used for the refactorization in cusolverRfRefactor ()
and the triangular solve in cusolverRfSolve ().

parameter MemSpace In/out Meaning
handle host input the handle to the cuSolverRF library.
alg host output the enumerated algorithm type.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

7.14. cusolverRfRefactor()

cusolverStatus t cusolverRfRefactor (cusolverRfHandle t handle);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 126

cuSolverRF: Refactorization Reference

This routine performs the LU re-factorization

A=L*U
exploring the available parallelism on the GPU. It is assumed that a prior call to the
glu_analyze () was done in order to find the available paralellism.

This routine may be called multiple times, once for each of the linear systems

Aixi = f]

parameter Memory In/out Meaning

handle host in/out the handle to the cuSolverRF library.
Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.
CUSOLVER _STATUS_NOT INITIALIZED the library was not initialized.
CUSOLVER_STATUS_EXECUTION FAILED a kernel failed to launch on the GPU.
CUSOLVER_STATUS_ZERO_PIVOT a zero pivot was encountered during the
computation.

7.15. cusolverRfResetValues()

cusolverStatus t
cusolverRfResetValues (/* Input (in the device memory) */
int n,
int nnzA,
int* csrRowPtrA,
int* csrColIndA,
double* csrValA,
int* P,
int* Q,
/* Output */
cusolverRfHandle t handle);

This routine updates internal data structures with the values of the new coefficient
matrix. It is assumed that the arrays csrRowPtrA, csrColInda, P and Q have not
changed since the last call to the cusolverRfSetup [Host |Device] routine. This
assumption reflects the fact that the sparsity pattern of coefficient matrices as well as
reordering to minimize fill-in and pivoting remain the same in the set of linear systems

Afxi = f’
This routine may be called multiple times, once for each of the linear systems

AiXi=f.

1

parameter MemSpace In/out Meaning

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 127

cuSolverRF: Refactorization Reference

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

csrRowPtrA device input the array of offsets corresponding to

the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

csrValA device input the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.
CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.
CUSOLVER_STATUS_INVALID_ VALUE an unsupported value or parameter was passed.
CUSOLVER_STATUS_EXECUTION FAILED a kernel failed to launch on the GPU.

7.16. cusolverRfSetMatrixFormat()

cusolverStatus t

cusolverRfSetMatrixFormat (cusolverRfHandle t handle,
gluMatrixFormat t format,
gluUnitDiagonal t diag);

This routine sets the matrix format used in the cusolverRfSetupDevice (),
cusolverRfSetupHost (), cusolverRfResetValues (),
cusolverRfExtractBundledFactorsHost () and
cusolverRfExtractSplitFactorsHost () routines. It may be called once prior to
cusolverRfSetupDevice () and cusolverRfSetupHost () routines.

parameter MemSpace In/out Meaning

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 128

cuSolverRF: Refactorization Reference

handle host input the handle to the cuSolverRF library.
format host input the enumerated matrix format type.
diag host input the enumerated unit diagonal type.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

an enumerated mode parameter is wrong.

7.17. cusolverRfSetNumericProperties()

cusolverStatus t

cusolveerSetNﬁmericProperties (cusolverRfHandle t handle,
double zero,
double boost);

This routine sets the numeric values used for checking for "zero" pivot and for boosting
it in the cusolverRfRefactor () and cusolverRfSolve () routines. It may be called
multiple times prior to cusolverRfRefactor () and cusolverRfSolve () routines.
The numeric boosting will be used only if boost > 0.0.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

zero host input the value below which zero pivot is
flagged.

boost host input the value which is substituted for zero

pivot (if the later is flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

7.18. cusolverRfSetResetValuesFastMode()

cusolverStatus t

cusolverRfSetResetValuesFastMode (cusolverRfHandle t handle,

gluResetValuesFastMode t fastMode) ;

This routine sets the mode used in the cusolverRfResetValues routine. The
fast mode requires extra memory and is recommended only if very fast calls
to cusolverRfResetValues () are needed. It may be called once prior to
cusolverRfAnalyze () routine.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 129

cuSolverRF: Refactorization Reference

parameter MemSpace In/out Meaning
handle host input the handle to the cuSolverRF library.
fastMode host input the enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

an enumerated mode parameter is wrong.

7.19. cusolverRfSetAlgs()

cusolverStatus t

cusolveerSetAIgs(cusolveerHandle_t handle,
gluFactorization t fact alg,
gluTriangularSolve t algqg);

This routine sets the algorithm used for the refactorization in cusolverRfRefactor ()
and the triangular solve in cusolverRfSolve (). It may be called once prior to
cusolverRfAnalyze () routine.

parameter MemSpace In/out Meaning
handle host input the handle to the cuSolverRF library.
alg host input the enumerated algorithm type.

Status Returned

CUSOLVER _STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED the library was not initialized.

7.20. cusolverRfSolve()

cusolverStatus t
cusolverRfSolve (/* Input (in the device memory) */
cusolverRfHandle t handle,
int *P,
int *Q,
int nrhs,
double *Temp,
int 1dt,
/* Input/Output (in the device memory) */
double *XF,
/* Input */
int 1dxf);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 130

cuSolverRF: Refactorization Reference

This routine performs the forward and backward solve with the lower LER™ and upper
UER™ triangular factors resulting from the LU re-factorization

A=L*U

which is assumed to have been computed by a prior call to the cusolverRfRefactor ()

routine.

The routine can solve linear systems with multiple right-hand-sides (rhs),

AX = (LU)X =L(UX)=LY =F where UX =Y

even though currently only a single rhs is supported.

This routine may be called multiple times, once for each of the linear systems

Aixi = f]

parameter MemSpace In/out Meaning

handle host output the handle to the cuSolverRF library.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

nrhs host input the number right-hand-sides to be solved.

Temp host input the dense matrix that contains temporary
workspace (of size 1dt*nrhs).

1dt host input the leading dimension of dense matrix
Temp (1dt >= n).

XF host in/out the dense matrix that contains the right-
hand-sides F and solutions x (of size
ldxf*nrhs).

1dxf host input the leading dimension of dense matrix XF

(1dxf >= n).

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED

a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL ERROR

an internal operation failed.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 131

cuSolverRF: Refactorization Reference

7.21. cusolverRfBatchSetupHost()

cusolverStatus t
cusolverRfBatchSetupHost (/* Input (in the host memory) */
int batchSize,
int n,
int nnzA,
int* h csrRowPtrA,
int* h csrColInda,
double *h csrValA arrayl[],
int nnzL,
int* h csrRowPtrL,
int* h csrColIndL,
double *h csrVvall,
int nnzU,
int* h csrRowPtrU,
int* h csrColIndU,
double *h csrvalU,
int* h P,
int* h Q,
/* Output */
cusolverRfHandle t handle);

This routine assembles the internal data structures of the cuSolverRF library for batched
operation. It is called after the call to the cusolverRfCreate () routine, and before any
other batched routines.

The batched operation assumes that the user has the following linear systems

ijj=bj, j =1,2,..., batchSize

where each matrix in the set {A;} has the same sparsity pattern, and quite similar such
that factorization can be done by the same permutation P and Q. In other words, A;, j>1is
a small perturbation of 4; .

This routine accepts as input (on the host) the original matrix A (sparsity pattern and
batched values), the lower (L) and upper (U) triangular factors, as well as the left (P)
and the right (Q) permutations resulting from the full LU factorization of the first (i=1)
linear system

The permutations P and Q represent the final composition of all the left and right
reorderings applied to the original matrix &, respectively. However, these permutations
are often associated with partial pivoting and reordering to minimize fill-in, respectively.

Remark 1: the matrices A, L and U must be CSR format and base-0.

Remark 2: to get best performance, batchSize should be multiple of 32 and greater or
equal to 32. The algorithm is memory-bound, once bandwidth limit is reached, there is
no room to improve performance by large batchSize. In practice, batchSize of 32 -

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 132

cuSolverRF: Refactorization Reference

128 is often enough to obtain good performance, but in some cases larger batchSize

might be beneficial.

This routine needs to be called only once for a single linear system

A,X, =fi

parameter

MemSpace

In/out

Meaning

batchSize

host

input

the number of matrices in the batched
mode.

host

input

the number of rows (and columns) of
matrix A.

nnzA

host

input

the number of non-zero elements of
matrix A.

h_csrRowPtrA

host

input

the array of offsets corresponding to

the start of each row in the arrays
h_csrColIndA and h_csrValA. This
array has also an extra entry at the

end that stores the number of non-zero
elements in the matrix. The array size is n
+1.

h_csrColIndA

host

input

the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

h_csrValA array

host

input

array of pointers of size batchSize,

each pointer points to the array of values
corresponding to the non-zero elements in
the matrix.

nnzL

host

input

the number of non-zero elements of
matrix L.

h_csrRowPtrL

host

input

the array of offsets corresponding to

the start of each row in the arrays
h_csrColIndL and h_csrValL. This
array has also an extra entry at the

end that stores the number of non-zero
elements in the matrix L. The array size is
n+l.

h_csrColIndL

host

input

the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzL.

h_csrvVall

host

input

the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU

host

input

the number of non-zero elements of
matrix U.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 133

cuSolverRF: Refactorization Reference

h_csrRowPtrU host

input

the array of offsets corresponding to

the start of each row in the arrays
h_csrColIndU and h_csrvalu. This
array has also an extra entry at the

end that stores the number of non-zero
elements in the matrix u. The array size is
n+1l.

h_csrColIndU host

input

the array of column indices corresponding
to the non-zero elements in the matrix u.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzU.

h_csrvaluU host

input

the array of values corresponding to the
non-zero elements in the matrix u. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

host

input

the left permutation (often associated
with pivoting). The array size in n.

h 0O host

input

the right permutation (often associated
with reordering). The array size in n.

handle host

output

the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

an unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED

an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED

a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

7.22. cusolverRfBatchAnalyze()

cusolverStatus t cusolverRfBatchAnalyze (cusolverRfHandle t handle);

This routine performs the appropriate analysis of parallelism available in the batched

LU re-factorization.

It is assumed that a prior call to the cusolverRfBatchSetup [Host] () was done in
order to create internal data structures needed for the analysis.

This routine needs to be called only once for a single linear system

Ajxj=bj, j = 1,2,..., batchSize

parameter Memory

In/out

Meaning

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 134

cuSolverRF: Refactorization Reference

handle

host

in/out

the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED

a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ALLOC_FAILED

an allocation of memory failed.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

7.23. cusolverRfBatchResetValues()

cusolverStatus t

cusolverRfBatchResetValues (/* Input
int batchSize,

int n,
int nnzA,

(in the device memory) */

int* csrRowPtrA,
int* csrColIndA,
double* csrValA arrayl],

int *P,
int *Q,

/* Output */
cusolverRfHandle t handle);

This routine updates internal data structures with the values of the new coefficient
matrix. It is assumed that the arrays csrRowPtrA, csrColInda, P and Q have not
changed since the last call to the cusolverRfbatch _setup host routine.

This assumption reflects the fact that the sparsity pattern of coefficient matrices as
well as reordering to minimize fill-in and pivoting remain the same in the set of linear

systems

bj, j =1,2,..., batchSize

The input parameter csrValA array is an array of pointers on device memory.
csrValA array (j) points to matrix A; which is also on device memory.

www.nvidia.com
cuSOLVER Library

parameter MemSpace In/out Meaning

batchSize host input the number of matrices in batched mode.

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

csrRowPtrA device input the array of offsets corresponding to

the start of each row in the arrays
csrColIndA and csrvalAa. This array has
also an extra entry at the end that stores

DU-06709-001_v7.5 | 135

cuSolverRF: Refactorization Reference

the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device

input

the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

csrValA_array device

input

array of pointers of size batchSize,

each pointer points to the array of values
corresponding to the non-zero elements in
the matrix.

P device

input

the left permutation (often associated
with pivoting). The array size in n.

Q device

input

the right permutation (often associated
with reordering). The array size in n.

handle host

output

the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

an unsupported value or parameter was passed.

CUSOLVER_STATUS_ EXECUTION_ FAILED

a kernel failed to launch on the GPU.

7.24. cusolverRfBatchRefactor()

cusolverStatus t cusolverRfBatchRefactor (cusolverRfHandle t handle) ;

This routine performs the LU re-factorization

=P*A*OT =L .U
Mj=P*A;*Q" =L;*U;

exploring the available parallelism on the GPU. It is assumed that a prior call to the
cusolverRfBatchAnalyze () was done in order to find the available paralellism.

Remark: cusolverRfBatchRefactor () would not report any failure of LU
refactorization. The user has to call cusolverRfBatchZeroPivot () to know which

matrix failed the LU refactorization.

parameter Memory

In/out

Meaning

handle host

in/out

the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED

a kernel failed to launch on the GPU.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 136

cuSolverRF: Refactorization Reference

7.25. cusolverRfBatchSolve()

cusolverStatus t
cusolverRfBatchSolve (/* Input (in the device memory) */
cusolverRfHandle t handle,
int *P,
int *Q,
int nrhs,
double *Temp,
int 1dt,
/* Input/Output (in the device memory) */
double *XF arrayl[],
/* Input */
int 1dxf);

To solve A;*x;=b;, first we reform the equation by M;*Q*x;=P*b; where M;=P*A*Q"
. Then do refactorization M j=L;*U; by cusolverRfBatch_Refactor (). Further
cusolverRfBatch_ Solve () takes over the remaining steps, including;

Mj*yj=zj
)Cj: QT*yj

The input parameter XF_array is an array of pointers on device memory. XF_array (j)
points to matrix x; which is also on device memory.

Remark 1: only a single rhs is supported.

Remark 2: no singularity is reported during backward solve. If some matrix A; failed

the refactorization and U has some zero diagonal, backward solve would compute
NAN. The user has to call cusolverRfBatch Zero_Pivot to check if refactorization is
successful or not.

parameter Memory In/out Meaning

handle host output the handle to the cuSolverRF library.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

nrhs host input the number right-hand-sides to be solved.

Temp host input the dense matrix that contains temporary

workspace (of size 1dt*nrhs).

1dt host input the leading dimension of dense matrix
Temp (1dt >= n).

XF_array host in/out array of pointers of size batchSize,
each pointer points to the dense matrix

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 137

cuSolverRF: Refactorization Reference

that contains the right-hand-sides F and
solutions X (of size 1dxf*nrhs).

1dxf host

input

the leading dimension of dense matrix XF
(1dxf >= n).

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSOLVER_STATUS_INVALID VALUE

an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED

a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ INTERNAL ERROR

an internal operation failed.

7.26. cusolverRfBatchZeroPivot()

cusolverStatus t

cusolverRfBatchZeroPivot (/* Input */
cusolverRfHandle t handle
/* Output (in the host memory) */
int *position);

Although A; is close to each other, it does not mean M ;= P*A;*Q" = L;* U exists
for every j. The user can query which matrix failed LU refactorization by checking
corresponding value in position array. The input parameter position is an integer

array of size batchSize.

The j-th component denotes the refactorization result of matrix A; . If position (j) is
-1, the LU refactorization of matrix A; is successful. If position(j) isk >= 0, matrix A;

is not LU factorizable and its matrix U (j,j) is zero.

The return value of cusolverRfBatch Zero_ Pivotis
CUSOLVER_STATUS_ZERO_PIVOT if there exists one A; which failed LU refactorization.
The user can redo LU factorization to get new permutation P and Q if error code

CUSOLVER_STATUS_ZERO_PIVOT is returned.

parameter MemSpace In/out Meaning
handle host input the handle to the cuSolverRF library.
position host output integer array of size batchSize. The

value of position (j) reports singularity
of matrix aj, -1 if no structural/
numerical zero, k >= 0 if Aj (k,k) is
either structural zero or numerical zero.

Status Returned

CUSOLVER_STATUS_SUCCESS

the operation completed successfully.

CUSOLVER_STATUS_NOT_ INITIALIZED

the library was not initialized.

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 138

cuSolverRF: Refactorization Reference

CUSOLVER_STATUS_ZERO_PIVOT a zero pivot was encountered during the
computation.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 139

Appendix A.
CUSOLVERRF EXAMPLES

A.1. cuSolverRF In-memory Example

This is an example in the C programming language of how to use the standard routines
in the cuSolverRF library. We focus on solving the set of linear systems

Aixi = fi

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 140

cuSolverRF Examples

but we change the indexing from one- to zero-based to follow the C programming
language. The example begins with the usual includes and main()

#include <stdio.h>
#include <stdlib.h>
#include <cuda runtime.h>
#include "cusolverRf.h"

#define TEST PASSED 0
#define TEST FAILED 1

int main (void) {
/* matrix A */
int n;
int nnzA;
int *Ap=NULL;
int *Ai=NULL;
double *Ax=NULL;
int *d Ap=NULL;
int *d_Ai=NULL;
double *d rAx=NULL;
/* matrices L and U */
int nnzL, nnzU;
int *Lp=NULL;
int *Li=NULL;
double* Lx=NULL;
int *Up=NULL;
int *Ui=NULL;
double* Ux=NULL;
/* reordering matrices */
int *P=NULL;
int *Q=NULL;
int * d P=NULL;
int * d Q=NULL;
/* solution and rhs */
int nrhs; //# of rhs for each system (currently only =1 is supported)
double *d X=NULL;
double *d T=NULL;
/* cuda */
cudaError t cudaStatus;
/* cuolverRf */
cusolverRfHandle t gH=NULL;
cusolverStatus t status;
/* host sparse direct solver */
[* .. x/
/* other variables */
int tnnzL, tnnzU;
int *tLp=NULL;
int *tLi=NULL;
double *tLx=NULL;
int *tUp=NULL;
int *tUi=NULL;
double *tUx=NULL;
double tl1, t2;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 141

cuSolverRF Examples

Then we initialize the library.

/* ASSUMPTION: recall that we are solving a set of linear systems
A {i} x {i} = f {i} for i=0,...,k-1
where the sparsity pattern of the coefficient matrices A {i}
as well as the reordering to minimize fill-in and the pivoting
used during the LU factorization remain the same. */

/* Step 1: solve the first linear system (i=0) on the host,
using host sparse direct solver, which involves
full LU factorization and solve. */

7% o000 ¥/

/* Step 2: interface to the library by extracting the following
information from the first solve:
a) triangular factors L and U
b) pivoting and reordering permutations P and Q
c) also, allocate all the necessary memory */

7% o000 ¥/

/* Step 3: use the library to solve subsequent (i=1,...,k-1) linear systems
a) the library setup (called only once) */
//create handle
status = cusolverRfCreate (&gH) ;
if (status != CUSOLVER STATUS SUCCESS) {
printf (" [cusolverRf status \%d]\n",status);
return TEST_FAILED;
}

//set fast mode
status = cusolverRfSetResetValuesFastMode (gH,GLU RESET VALUES FAST MODE ON) ;
if (status != CUSOLVER STATUS SUCCESS) {

printf (" [cusolverRf status \%d]\n",status);

return TEST FAILED;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 142

cuSolverRF Examples

Call refactorization and solve.

//assemble internal data structures (you should use the coeffcient matrix A
//corresponding to the second (i=1) linear system in this call)
tl = cusolver test seconds();
status = cusolverRfSetupHost (n, nnzA, Ap, Ai, Ax,
nnzL, Lp, Li, Lx, nnzU, Up, Ui, Ux, P, Q, gH);

cudaStatus = cudaDeviceSynchronize () ;
t2 = cusolver test seconds();
if ((status != CUSOLVER STATUS SUCCESS) || (cudaStatus != cudaSuccess)) {

printf (" [cusolverRf status \%d]\n",status);
return TEST FAILED;

}
printf ("cusolverRfSetupHost time = \%f (s)\n", t2-tl);

//analyze available parallelism

tl = cusolver test seconds();

status = cusolverRfAnalyze (gH) ;

cudaStatus = cudaDeviceSynchronize () ;

t2 = cusolver test seconds();

if ((status != CUSOLVER STATUS SUCCESS) || (cudaStatus != cudaSuccess)) {

printf ("[cusolverRf status \%d]\n",status);
return TEST_FAILED;

}

printf ("cusolverRfAnalyze time = \%f (s)\n", t2-tl);

/* b) The library subsequent (i=1,...,k-1) LU re-factorization
and solve (called multiple times). */
for (i=1; i<k; i++){
//LU re-factorization

tl = cusolver test seconds();

status = cusolverRfRefactor (gH) ;

cudaStatus = cudaDeviceSynchronize () ;

t2 = cusolver test seconds();

if ((status != CUSOLVER STATUS SUCCESS) || (cudaStatus != cudaSuccess))

printf (" [cusolverRF status \%d]\n",status);
return TEST FAILED;

}
printf ("cuSolverReRefactor time = \%f (s)\n", t2-tl);

//forward and backward solve

tl = cusolver test seconds();

status = cusolverRfSolve(gH, d P, d O, nrhs, d T, n, d X, n);
cudaStatus = cudaDeviceSynchronize () ;

t2 = cusolver test seconds();

if ((status != CUSOLVER STATUS SUCCESS) || (cudaStatus != cudaSuccess))

printf (" [cusolverRf status \%d]\n",status);
return TEST FAILED;

}
printf ("cusolverRfSolve time = \%f (s)\n", t2-tl);

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 143

cuSolverRF Examples

Extract the results and return.

&tlLx,

}

// extract the factors (if needed)
status = cusolverRfExtractSplitFactorsHost (gH, &tnnzL, &tLp, &tLi,

&tnnzU, &tUp, &tUi, &tUx);
if (status != CUSOLVER STATUS SUCCESS) {
printf (" [cusolverRf status \%d]\n",status);
return TEST FAILED;
}
/*
//print
int row, 7Jj;
printf ("printing L\n");
for (row=0; row<n; row++) {
for (j=tLlplrow]; j<tLlpl[row+l]; j++){
printf ("\%d, \%d, \$f\n",row, tLi[]J],tLx[]]);
}
}
printf ("printing U\n");
for (row=0; row<n; row++) {
for (j=tUpl[row]; j<tUp[row+l]; j++) {
printf ("\%d, \%d, \$f\n", row, tUi[j],tUx[F]);
}
}
w Y

/* perform any other operations based on the solution */

/¥ coo =Y

/* check if done */
/*x oL %/

/* proceed to solve the next linear system */

// update the coefficient matrix using reset values

// (assuming that the new linear system, in other words,
// new values are already on the GPU in the array d rAx)

tl = cusolver test seconds();

status = cusolverRfResetValues (n,nnzA,d Ap,d Ai,d rAx,d P,d Q,gH);
cudaStatus = cudaDeviceSynchronize () ;

t2 = cusolver test seconds();

if ((status != CUSOLVER STATUS SUCCESS) || (cudaStatus != cudaSuccess))

printf (" [cusolverRf status \%d]\n",status);
return TEST FAILED;

}
printf ("cusolverRfResetValues time = \%f (s)\n", t2-tl);

/* free memory and exit */

/*

*/

return TEST_PASSED;

A.2. cuSolverRF-batch Example

This chapter provides an example in the C programming language of how to use the
batched routines in the cuSolverRF library. We focus on solving the set of linear systems

Aixi =f’

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 144

cuSolverRF Examples

but we change the indexing from one- to zero-based to follow the C programming
language. The first part is the usual includes and main definition

#include
#include
#include
#include

#define
#define

int main

<stdio.h>
<stdlib.h>
<cuda_runtime.h>
"cusolverRf.h"

TEST PASSED O
TEST FAILED 1

(void) {

/* matrix A */

int
int
int
int
int
//ar
//ba
doub
//Fo
//th
//af
//fo
doub
int
int
//ar
//ba
doub
//Fo
contain
//th
//af
//fo
doub

batchSize;

n;

nnzh;

*Ap=NULL;

*Ai=NULL;

ray of pointers to the values of each matrix in the batch (of size
tchSize) on the host

le **Ax array=NULL;

r example, if Ax batch is the array (of size batchSize*nnzA) containing

e values of each matrix in the batch written contiguosly one matrix
ter another on the host, then Ax array[j] = &Ax batch[nnzA*j];

r j=0,...,batchSize-1.

le *Ax batch=NULL;

*d_Ap=NULL;

*d_Ai=NULL;

ray of pointers to the values of each matrix in the batch (of size

tchSize) on the device

le **d Ax array=NULL;

r example, if d Ax batch is the array (of size batchSize*nnzA)
ing

e values of each matrix in the batch written contiguosly one matrix
ter another on the device, then d Ax array[j] = &d Ax batch[nnzA*j];
r j=0,...,batchSize-1.

le *d Ax batch=NULL;

/* matrices L and U */

int
int
int
doub
int
int
doub
VAEE S
int
int
int
int

nnzL, nnzU;
*Lp=NULL;
*Li=NULL;
le* Lx=NULL;
*Up=NULL;
*Ui=NULL;
le* Ux=NULL;
eordering matrices */
*P=NULL;
*Q=NULL;
*d_P=NULL;
*d_Q=NULL;

www.nvidia.com

cuSOLVER Li

brary DU-06709-001_v7.5 | 145

cuSolverRF Examples

Next we initialize the data needed and the create library handles

/* solution and rhs */

int nrhs; //# of rhs for each system (currently only =1 is supported)
//temporary storage (of size 2*batchSize*n*nrhs)

double *d T=NULL;

//array (of size batchSize*n*nrhs) containing the values of each rhs in
//the batch written contiguously one rhs after another on the device
double **d X array=NULL;

//array (of size batchSize*n*nrhs) containing the values of each rhs in
//the batch written contiguously one rhs after another on the host
double **X array=NULL;

/* cuda */

cudaError t cudaStatus;

/* cusolverRf */

cusolverRfHandle t gH=NULL;

cusolverStatus t status;

/* host sparse direct solver */

/* other variables */
double tl, t2;

/* ASSUMPTION:
recall that we are solving a batch of linear systems
A {3} x {j} = £ {3} for j=0,...,batchSize-1
where the sparsity pattern of the coefficient matrices A {Jj}
as well as the reordering to minimize fill-in and the pivoting
used during the LU factorization remain the same. */

/* Step 1: solve the first linear system (j=0) on the host,
using host sparse direct solver, which involves
full LU factorization and solve. */

/% o0oo ¥

/* Step 2: interface to the library by extracting the following
information from the first solve:
a) triangular factors L and U
b) pivoting and reordering permutations P and Q
c) also, allocate all the necessary memory */

/% o0oo ¥

/* Step 3: use the library to solve the remaining (j=1,...,batchSize-1)
linear systems.
a) the library setup (called only once) */
//create handle
status = cusolverRfcreate (&gH) ;
if (status != CUSOLVER STATUS SUCCESS) {
printf (" [cusolverRf status %d]\n",status);
return TEST FAILED;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 146

cuSolverRF Examples

We call the batch solve method and return.

gH) ;

//assemble internal data structures

tl = cusolver test seconds();

status = cusolverRfBatchSetupHost (batchSize, n, nnzA, Ap, Ai, Ax array,
nnzL, Lp, Li, Lx, nnzU, Up, Ui, Ux, P, Q,

’

cudaStatus = cudaDeviceSynchronize () ;
t2 = cusolver test seconds();
if ((status != CUSOLVER STATUS SUCCESS) || (cudaStatus != cudaSuccess)) {

printf (" [cusolverRf status %d]\n",status):;
return TEST FATLED;

}
printf ("cusolverRfBatchSetupHost time = %f (s)\n", t2-tl);

//analyze available parallelism
tl = cusolver test seconds();
status = cusolverRfBatchAnalyze (gH) ;

cudaStatus = cudaDeviceSynchronize () ;
t2 = cusolver test seconds();
if ((status != CUSOLVER STATUS SUCCESS) || (cudaStatus != cudaSuccess)) {

printf (" [cusolverRf status %d]\n",status):;
return TEST FAILED;

}
printf ("cusolverRfBatchAnalyze time = $f (s)\n", t2-tl);

/* b) The library subsequent (j=1,...,batchSize-1) LU re-factorization
and solve (may be called multiple times). For the subsequent batches
the values can be reset using cusolverRfBatch reset values routine. */
//LU re-factorization
tl = cusolver test seconds();
status = cusolverRfBatchRefactor (gH) ;
cudaStatus = cudaDeviceSynchronize () ;
t2 = cusolver test seconds();
if ((status != CUSOLVER STATUS SUCCESS) || (cudaStatus != cudaSuccess)) {
printf (" [cusolverRf status %d]\n",status);
return TEST FAILED;
}
printf ("cusolverRfBatchRefactor time = $f (s)\n", t2-tl);

//forward and backward solve

tl = cusolver test seconds();

status = cusolverRfBatchSolve(gH, 4 P, d Q, nrhs, d T, n, d X array, n);
cudaStatus = cudaDeviceSynchronize () ;

t2 = cusolver test seconds();

if ((status != CUSOLVER STATUS SUCCESS) || (cudaStatus != cudaSuccess)) {

printf (" [cusolverRf status %d]\n",status):;
return TEST FATLED;

}
printf ("cusolverRfBatchSolve time = $f (s)\n", t2-tl);

/* free memory and exit */
/% cooa ¥/
return TEST PASSED;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 147

Appendix B.
CSR QR BATCH EXAMPLES

B.1. Batched Sparse QR example 1

This chapter provides a simple example in the C programming language of how to use
batched sparse QR to solver a set of linear systems

Ax;=b;
All matrices A; are small perturbations of

0.0 0.0 0.0
2.0 0.0 0.0
0.0 3.0 0.0
0.1 0.1 4.0

Looo

OO O -

All right-hand side vectors b; are small perturbation of the Matlab vector 'ones(4,1)'.

We assume device memory is big enough to compute all matrices in one pass.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 148

CSR QR Batch Examples

The usual includes and main definition

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include <cusolverSp.h>
#include <cuda runtime api.h>

int main(int argc, char*argv(])
{
cusolverSpHandle t cusolverH = NULL;
// GPU does batch QR
csrgrInfo t info = NULL;
cusparseMatDescr t descrA = NULL;

cusparseStatus t cusparse status
cusolverStatus t cusolver status

CUSPARSE STATUS SUCCESS;
CUSOLVER STATUS_ SUCCESS;

cudaError t cudaStatl = cudaSuccess;
cudaError t cudaStat2 = cudaSuccess;
cudaError t cudaStat3 = cudaSuccess;
cudaError t cudaStat4 = cudaSuccess;
cudaError t cudaStatb5 = cudaSuccess;

// GPU does batch QR
// d_A is CSR format, d csrValA is of size nnzA*batchSize
// d x is a matrix of size batchSize * m
// d b is a matrix of size batchSize * m
int *d csrRowPtrA = NULL;
int *d csrColIndA NULL;
double *d csrValA = NULL;
double *d b = NULL; // batchSize * m
double *d x = NULL; // batchSize * m

size t size qr = 0;
size t size internal = 0;
void *buffer gr = NULL; // working space for numerical factorization

/* |1 \
* A= | 2 \
* \ 3 \
* | 0.1 0.1 0.1 4 |
* CSR of A is based-1
*

* b=[1111]
*

/

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 149

CSR QR Batch Examples

Set up the library handle and data

const int m = 4 ;
const int nnzA = 7;

const int csrRowPtrA[m+l1l] = { 1, 2, 3, 4, 8};

const int csrColIndA[nnzA] = { 1, 2, 3, 1, 2, 3, 4};

const double csrvalA[nnzA] = { 1.0, 2.0, 3.0, 0.1, 0.1, 0.1, 4.0};
const double b[m] = {1.0, 1.0, 1.0, 1.0};

const int batchSize = 17;

double *csrValABatch = (double*)malloc (sizeof (double)*nnzA*batchSize);
double *bBatch (double*)malloc (sizeof (double) *m*batchSize) ;
double *xBatch (double*)malloc (sizeof (double) *m*batchSize) ;

assert (NULL != csrValABatch);
assert (NULL != bBatch);
assert (NULL != xBatch);

// step 1l: prepare Aj and bj on host
// Aj is a small perturbation of A
// bj is a small perturbation of b

// c¢srValABatch = [AQ, Al, A2, ...]
// DbBatch = [b0, bl, b2, ...]
for (int colidx = 0 ; colidx < nnzA ; colidx++) {

double Areg = csrValA[colidx];

for (int batchId = 0 ; batchId < batchSize ; batchId++) {
double eps = ((double) ((rand() % 100) + 1)) * l.e-4;
csrValABatch[batchId*nnzA + colidx] = Areg + eps;

}

for(int §j =0 ; jJ < m ; J++){
double breg = b[j];
for (int batchId = 0 ; batchId < batchSize ; batchId++) {
double eps = ((double) ((rand() % 100) + 1)) * l.e-4;
bBatch[batchId*m + j] = breg + eps;

}

// step 2: create cusolver handle, gr info and matrix descriptor

cusolver status = cusolverSpCreate (&cusolverH) ;
assert (cusolver status == CUSOLVER STATUS SUCCESS) ;
cusparse status = cusparseCreateMatDescr (&descrA) ;
assert (cusparse status == CUSPARSE STATUS SUCCESS) ;

cusparseSetMatType (descrA, CUSPARSE MATRIX TYPE GENERAL) ;
cusparseSetMatIndexBase (descrA, CUSPARSE INDEX BASE ONE) ; // base-1

cusolver status = cusolverSpCreateCsrgriInfo (&info);
assert (cusolver_ status == CUSOLVER_ STATUS_ SUCCESS) ;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 150

CSR QR Batch Examples

Call the solver

// step 3: copy Aj and bj to device

cudaStatl = cudaMalloc ((void**)e&d csrValA , sizeof (double) * nnzA *
batchSize) ;

cudaStat2 = cudaMalloc ((void**)e&d csrColIndA, sizeof (int) * nnzA);

cudaStat3 = cudaMalloc ((void**)&d csrRowPtrA, sizeof (int) * (m+1l));

cudaStat4 = cudaMalloc ((void**)é&d b , sizeof (double) * m *
batchSize) ;

cudaStat5 = cudaMalloc ((void**)e&d x , sizeof (double) * m *
batchSize);

assert (cudaStatl == cudaSuccess);

assert (cudaStat2 == cudaSuccess) ;

assert (cudaStat3 == cudaSuccess) ;

assert (cudaStat4 == cudaSuccess);

assert (cudaStat5 == cudaSuccess) ;

cudaStatl = cudaMemcpy (d_csrValA , csrValABatch, sizeof (double) * nnzA *
batchSize, cudaMemcpyHostToDevice) ;

cudaStat2 = cudaMemcpy (d csrColIndA, csrColIndA, sizeof (int) * nnzA,
cudaMemcpyHostToDevice) ;

cudaStat3 = cudaMemcpy (d csrRowPtrA, csrRowPtrA, sizeof (int) * (m+l),
cudaMemcpyHostToDevice) ;

cudaStat4 = cudaMemcpy(d b, bBatch, sizeof (double) * m * batchSize,
cudaMemcpyHostToDevice) ;

assert (cudaStatl == cudaSuccess) ;
assert (cudaStat?2 == cudaSuccess) ;
assert (cudaStat3 == cudaSuccess) ;
assert (cudaStat4d == cudaSuccess);

’

// step 4: symbolic analysis
cusolver status = cusolverSpXcsrqgrAnalysisBatched(
cusolverH, m, m, nnzA,
descrA, d csrRowPtrA, d csrCollIndA,
info);
assert (cusolver status == CUSOLVER STATUS SUCCESS) ;

// step 5: prepare working space

cusolver status = cusolverSpDcsrqrBufferInfoBatched (
cusolverH, m, m, nnzA3,
descrA, d csrValA, d csrRowPtrA, d csrCollIndA,
batchSize,
info,
&size internal,
&size gr);

assert (cusolver status == CUSOLVER STATUS SUCCESS) ;

printf ("numerical factorization needs internal data %11d bytes\n",
(long long)size internal);

printf ("numerical factorization needs working space %$11d bytes\n",
(long long)size Qgr);

cudaStatl = cudaMalloc ((void**)&buffer gr, size gr);
assert (cudaStatl == cudaSuccess) ;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 151

CSR QR Batch Examples

Get results back

// step 6: numerical factorization
// assume device memory is big enough to compute all matrices.
cusolver status = cusolverSpDcsrgrsvBatched (
cusolverH, m, m, nnzA,
descrA, d csrValA, d csrRowPtrA, d csrColIndA,
d b, d x,
batchSize,
info,
buffer qr);
assert (cusolver status == CUSOLVER STATUS SUCCESS) ;

// step 7: check residual
// xBatch = [x0, x1, x2, ...]

cudaStatl = cudaMemcpy (xBatch, d x, sizeof (double)*m*batchSize,
cudaMemcpyDeviceToHost) ;

assert (cudaStatl == cudaSuccess);

const int baseA = (CUSPARSE INDEX BASE ONE ==

cusparseGetMatIndexBase (descrA))? 1:0 ;

for (int batchId = 0 ; batchId < batchSize; batchId++) {
// measure |bj - Aj*xj|
double *csrValAj = csrValABatch + batchId * nnzA;
double *xj = xBatch + batchId * m;
double *bj = bBatch + batchId * m;
// sup| bj - Aj*x7|

double sup res = 0;
for(int row = 0 ; row < m ; row++) {
const int start = csrRowPtrA[row] - baseldh;
const int end = csrRowPtrA[row+l] - baseA;
double Ax = 0.0; // Aj(row, :)*x]j
for (int colidx = start ; colidx < end ; colidx++) {
const int col = csrColIndA[colidx] - baseldh;

const double Areg = csrValAj[colidx];
const double xreg = xj[col];
Ax = Ax + Areg * xreg;

}

double r = bjlrow] - Ax;
sup _res = (sup_res > fabs(r))? sup res : fabs(r);
}
printf ("batchId %d: supl|bj - Aj*xj| = $E \n", batchId, sup res);

}

for (int batchId = 0 ; batchId < batchSize; batchId++) {
double *xj = xBatch + batchId * m;

for(int row = 0 ; row < m ; rowt++) {

printf ("x%d[%d] = %E\n", batchId, row, xj[row]):;
}
printf ("\n") ;

}

return 0O;

B.2. Batched Sparse QR example 2

This is the same as example 1 in appendix C except that we assume device memory is
not enough, so we need to cut 17 matrices into several chunks and compute each chunk
by batched sparse QR.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 152

The usual includes and main definitions

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include <cusolverSp.h>
#include <cuda_ runtime api.h>

#define imin(x, y) ((x)<(y))? (x) : (y)

int main(int argc, char*argv(])
{
cusolverSpHandle t cusolverH = NULL;
// GPU does batch QR
csrgrInfo t info = NULL;
cusparseMatDescr t descrA = NULL;

cusparseStatus_t cusparse status

CSR QR Batch Examples

CUSPARSE STATUS SUCCESS;

cusolverStatus t cusolver status = CUSOLVER:STATUs:SUCCESS;

cudaError t cudaStatl = cudaSuccess;
cudaError t cudaStat2 = cudaSuccess;
cudaError t cudaStat3 = cudaSuccess;
cudaError t cudaStatd4 = cudaSuccess;
cudaError t cudaStat5 = cudaSuccess;

// GPU does batch QR

// d_A is CSR format, d csrValA is of size nnzA*batchSize

// d x is a matrix of size batchSize * m
// d b is a matrix of size batchSize * m
int *d csrRowPtrA = NULL;
int *d csrColIndA = NULL;
double *d csrValA = NULL;
double *d b = NULL; // batchSize * m
double *d x = NULL; // batchSize * m

size t size qr = 0;
size t size internal = 0;

void—*buffef_qr = NULL; // working space for numerical factorization

| 1 |
A= | 2 |

\ \

| 0.1 0.1 0.1 4 |
CSR of A is based-1

b=101111]
/

B T T

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 153

CSR QR Batch Examples

Create the library handle

const int m = 4 ;
const int nnzA = 7;

const int csrRowPtrA[m+l1l] = { 1, 2, 3, 4, 8};

const int csrColIndA[nnzA] = { 1, 2, 3, 1, 2, 3, 4};

const double csrvalA[nnzA] = { 1.0, 2.0, 3.0, 0.1, 0.1, 0.1, 4.0};
const double b[m] = {1.0, 1.0, 1.0, 1.0};

const int batchSize = 17;

double *csrValABatch = (double*)malloc (sizeof (double)*nnzA*batchSize);
double *bBatch (double*)malloc (sizeof (double) *m*batchSize) ;
double *xBatch (double*)malloc (sizeof (double) *m*batchSize) ;

assert (NULL != csrValABatch);
assert (NULL != bBatch);
assert (NULL != xBatch);

// step 1l: prepare Aj and bj on host
// Aj is a small perturbation of A
// bj is a small perturbation of b

// c¢srValABatch = [AQ, Al, A2, ...]
// DbBatch = [b0, bl, b2, ...]
for (int colidx = 0 ; colidx < nnzA ; colidx++) {

double Areg = csrValA[colidx];

for (int batchId = 0 ; batchId < batchSize ; batchId++) {
double eps = ((double) ((rand() % 100) + 1)) * l.e-4;
csrValABatch[batchId*nnzA + colidx] = Areg + eps;

}

for(int §j =0 ; jJ < m ; J++){
double breg = b[j];
for (int batchId = 0 ; batchId < batchSize ; batchId++) {
double eps = ((double) ((rand() % 100) + 1)) * l.e-4;
bBatch[batchId*m + j] = breg + eps;

}

// step 2: create cusolver handle, gr info and matrix descriptor

cusolver status = cusolverSpCreate (&cusolverH) ;
assert (cusolver status == CUSOLVER STATUS SUCCESS) ;
cusparse status = cusparseCreateMatDescr (&descrA) ;
assert (cusparse status == CUSPARSE STATUS SUCCESS) ;

cusparseSetMatType (descrA, CUSPARSE MATRIX TYPE GENERAL) ;
cusparseSetMatIndexBase (descrA, CUSPARSE INDEX BASE ONE) ; // base-1

cusolver status = cusolverSpCreateCsrgriInfo (&info);
assert (cusolver_ status == CUSOLVER_ STATUS_ SUCCESS) ;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 154

Set up the data

// step 3: copy Aj and bj to device

cudaStatl = cudaMalloc ((void**)e&d csrValA ,
batchSize) ;

cudaStat2 = cudaMalloc ((void**)&d csrColIndA,

cudaStat3 = cudaMalloc ((void**)&d csrRowPtrA,

cudaStat4 = cudaMalloc ((void**)&d b
batchSize) ;

cudaStat5 = cudaMalloc ((void**)e&d x
batchSize) ;

assert (cudaStatl == cudaSuccess);

assert (cudaStat2 == cudaSuccess) ;

assert (cudaStat3 == cudaSuccess) ;

assert (cudaStat4 == cudaSuccess);

assert (cudaStat5 == cudaSuccess) ;

CSR QR Batch Examples

sizeof (int)
sizeof (int)
, sizeof (double)

sizeof (double)

* nnzA *

* nnzA) ;
* (m+l));
m

, sizeof (double) * m *

// don't copy csrValABatch and bBatch because device memory may be big enough

cudaStatl =
cudaMemcpyHostToDevice) ;
cudaStat2 =
cudaMemcpyHostToDevice) ;

cudaMemcpy (d_csrColIndA,

cudaMemcpy (d_csrRowPtrA,

assert (cudaStatl == cudaSuccess);
assert (cudaStat2 == cudaSuccess) ;

// step 4:
cusolver status =
cusolverH, m, m,

info);

symbolic analysis
cusolverSpXcsrgrAnalysisBatched (
nnzA,
descrA, d csrRowPtrA, d csrColIndA,

csrColIndA,

csrRowPtrA,

assert (cusolver status == CUSOLVER STATUS SUCCESS) ;

// step 5:
// get
size t free mem = 0;
size t total mem = 0;
cudaStatl =
assert (cudaSuccess

int batchSizeMax = 2;

find "proper" batchSize
available device memory

while (batchSizeMax < batchSize) {

printf ("batchSizeMax =

cusolver status =
cusolverH, m,

$d\n",

nnzA,

// d_csrValA is don't care
descrA, d csrValA, d csrRowPtrA, d csrColIndA,

batchSizeMax,
info,

&size internal,
&size gr);

// WARNING:

cudaMemGetInfo(&free mem, &total mem);
cudaStatl) ;

batchSizeMax) ;
cusolverSpDcsrgrBufferInfoBatched (
m,

use batchSizeMax

assert (cusolver status == CUSOLVER STATUS SUCCESS) ;

if |

(size internal + size gr)

> free mem) {

// current batchSizeMax exceeds hardware limit,

batchSizeMax /= 2;

}
batchSizeMax *= 2;

}

break;

sizeof (int)

sizeof (int) *

* nnzA,

(m+1),

so cut it by half.

// double batchSizMax and try it again.

// correct batchSizeMax such that it is not greater than batchSize.

batchSizeMax =
printf ("batchSizeMax =

// Assume device memory is not big enough,

batchSizeMax = 2;

www.nvidia.com
cuSOLVER Library

imin (batchSizeMax,
%d\n",

batchSize) ;
batchSizeMax) ;

and batchSizeMax

2

DU-06709-001_v7.5 | 155

Perform analysis and call solve

// step 6: prepare working space
// [necessary]

CSR QR Batch Examples

// Need to call cusolverDcsrqgrBufferInfoBatched again with batchSizeMax

// to fix batchSize used in numerical factorization.

cusolver status = cusolverSpDcsrqrBufferInfoBatched (
cusolverH, m, m, nnzA3,
// d_csrValA is don't care
descrA, d csrValA, d csrRowPtrA, d csrColIndA,
batchSizeMax, // WARNING: use batchSizeMax
info,
&size internal,
&size gr);

assert (cusolver status == CUSOLVER STATUS SUCCESS) ;

printf ("numerical factorization needs internal data %11d bytes\n",

(long long)size internal);

printf ("numerical factorization needs working space %$11d bytes\n",

(long long)size gr);

cudaStatl = cudaMalloc ((void**)&buffer gr, size qgr);
assert (cudaStatl == cudaSuccess);

// step 7: solve Aj*xj = bj
for(int idx = 0 ; 1dx < batchSize; idx += batchSizeMax) {

// current batchSize 'cur batchSize' is the batchSize used in numerical

factorization
const int cur batchSize = imin (batchSizeMax, batchSize - idx);
printf ("current batchSize = %d\n", cur batchSize);
// copy part of Aj and bj to device
cudaStatl cudaMemcpy (d_csrValA, csrValABatch + idx*nnzA,

sizeof (double) * nnzA * cur batchSize, cudaMemcpyHostToDevice) ;

cudaStat2 cudaMemcpy (d_b, bBatch + idx*m,
sizeof (double) * m * cur batchSize, cudaMemcpyHostToDevice) ;
assert (cudaStatl == cudaSuccess);
assert (cudaStat2 == cudaSuccess) ;
// solve part of Aj*xj = bj
cusolver status = cusolverSpDcsrqrsvBatched (

cusolverH, m, m, nnzA,
descrA, d csrValA, d csrRowPtrA, d csrColIndA,

d b, d x,
cur batchSize, // WARNING: use current batchSize
info,
buffer qgr);
assert(cusolver_status == CUSOLVER STATUS SUCCESS) ;

// copy part of xj back to host
cudaStatl = cudaMemcpy (xBatch + idx*m, d x,

sizeof (double) * m * cur batchSize, cudaMemcpyDeviceToHost) ;

assert (cudaStatl == cudaSuccess) ;

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 156

CSR QR Batch Examples

Check results

// step 7: check residual
// xBatch = [x0, x1, x2, ...]

const int baseA = (CUSPARSE INDEX BASE ONE ==
cusparseGetMatIndexBase (descrA))? 1:0 ;

for (int batchId = 0 ; batchId < batchSize; batchId++) {
// measure |bj - Aj*x]|
double *csrValAj = csrValABatch + batchId * nnzA;
double *xj = xBatch + batchId * m;
double *bj = bBatch + batchId * m;
// sup| bj - Aj*x]|

double sup res = 0;

for(int row = 0 ; row < m ; rowt+) {
const int start = csrRowPtrA[row] - baselA;
const int end = csrRowPtrA[row+l] - baseA;

double Ax = 0.0; // Aj(row, :)*x]j
for (int colidx = start ; colidx < end ; colidx++) {
const int col = csrColIndA[colidx] - baseA;
const double Areg = csrValAj[colidx];
const double xreg = xj[col];
Ax = Ax + Areg * xreg;
}
double r = bj[row] - Ax;
sup res = (sup_res > fabs(r))? sup res : fabs(r);
}
printf ("batchId %d: sup|bj - Aj*xj| = $E \n", batchId, sup res);
}

for (int batchId = 0 ; batchId < batchSize; batchId++) {
double *xj = xBatch + batchId * m;
for(int row = 0 ; row < m ; row++) {
printf ("x%d[%d] = %E\n", batchId, row, xj[row]):;
}
printf ("\n") ;
}

return 0;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 157

Appendix C.
QR FACTORIZATION DENSE LINEAR SOLVER

This chapter provides a simple example in the C programming language of how to use a
dense QR factorization to solve a linear system

Ax=b
A is a 3x3 dense matrix, nonsingular.
1.0 2.0 3.0
4.0 5.0 6.0
2.0 1.0 1.0

A:

The following code uses three steps:
Step 1: A = Q*R by gerf.

Step 2: B .= Q"T*B by ormqr.

Step 3: solve R*X = B by trsm.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 158

QR Factorization Dense Linear Solver

The usual includes and main definition

* How to compile (assume cuda is installed at /usr/local/cuda/)
o nvcc -c¢ -I/usr/local/cuda/include ormgr example.cpp
& nvcc -o a.out ormgr example.o -L/usr/local/cuda/lib64 -lcublas -lcusolver

=/
#include
#include
#include

#include

#include
#include

<stdio.h>
<stdlib.h>
<assert.h>

<cuda_runtime.h>

<cublas v2.h>
<cusolverDn.h>

void printMatrix (int m, int n, const double*A, int lda, const char* name)

{

for(int row = 0 ; row < m ; row++) {

for(int col = 0 ; col < n ; col++){

double Areg = A[row + col*ldal;
printf ("%$s (%d, %d) = %$f\n", name, row+l, col+l, Areq);

int main(int argc, char*argv(])

{

cudsHandle t cudenseH = NULL;

cublasHandle t cublasH = NULL;

cublasStatus t cublas status = CUBLAS STATUS SUCCESS;
cusolverStatus t cusolver status = CUSOLVER STATUS SUCCESS;

cudaError t cudaStatl = cudaSuccess;
cudaError t cudaStat2 = cudaSuccess;
cudaError t cudaStat3 = cudaSuccess;

cudaError t cudaStat4

cudaSuccess;

const int m = 3;
const int lda = m;
const int 1db = m;

const int nrhs = 1; // number of right hand side vectors

/= | 1 2 3 |

B3 A= | 456

* | 211

*

& x = (1 1 1)"

B3 b (6 15 4)"

*

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 159

QR Factorization Dense Linear Solver

Create the library handle and load the data

double A[lda*m] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0, 3.0, 6.0, 1.0};
// double X[ldb*nrhs] = { 1.0, 1.0, 1.0}; // exact solution

double B[ldb*nrhs] = { 6.0, 15.0, 4.0};

double XC[ldb*nrhs]; // solution matrix from GPU

double *d A = NULL; // linear memory of GPU
double *d tau = NULL; // linear memory of GPU
double *d B = NULL;

int *devInfo = NULL; // info in gpu (device copy)
double *d work = NULL;

int lwork = 0;

int info gpu = 0;

const double one = 1;
printf ("A = (matlab base-1)\n");
printMatrix(m, m, A, lda, "A");
printf ("=====\n") ;
printf ("B = (matlab base-1)\n");
printMatrix (m, nrhs, B, 1ldb, "B");
printf ("=====\n") ;
// step 1: create cudense/cublas handle
cusolver status = cudsCreate (&cudenseH) ;
assert (CUSOLVER STATUS SUCCESS == cusolver status);
cublas_ status = cublasCreate (&cublasH) ;
assert (CUBLAS STATUS SUCCESS == cublas status);

// step 2: copy A and B to device
cudaStatl = cudaMalloc ((void**
cudaStat2 = cudaMalloc ((void**
cudaStat3 cudaMalloc ((void**
cudaStat4 = cudaMalloc ((void**

&d A , sizeof (double) * lda * m);

&d tau, sizeof (double) * m);

&d B , sizeof (double) * 1ldb * nrhs);
&devInfo, sizeof (int))

’

)
)
)
)
)
)
)
)

assert (cudaSuccess == cudaStatl);
assert (cudaSuccess == cudaStat2);
assert (cudaSuccess == cudaStat3);
assert (cudaSuccess == cudaStati4);

cudaStatl = cudaMemcpy(d A, A, sizeof (double) * lda * m 0
cudaMemcpyHostToDevice) ;

cudaStat2 = cudaMemcpy(d B, B, sizeof (double) * 1ldb * nrhs,
cudaMemcpyHostToDevice) ;

assert (cudaSuccess == cudaStatl);

assert (cudaSuccess == cudaStat2);

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 160

QR Factorization Dense Linear Solver

Call the solver

// step 3: query working space of geqgrf and ormgr
cusolver status = cudsDgeqrf bufferSize (

cudenseH,

m,

m,

d A,

1lda,

&lwork) ;

assert (cusolver status == CUSOLVER STATUS SUCCESS) ;

cudaStatl = cudaMalloc ((void**)&d work, sizeof (double) *lwork):;

assert (cudaSuccess == cudaStatl);

// step 4: compute QR factorization

cusolver status = cudsDgeqrf (

cudenseH,

m,

m,

d A,

lda,

d tau,

d work,

lwork,

devInfo);
cudaStatl = cudaDeviceSynchronize () ;
assert (CUSOLVER STATUS SUCCESS == cusolver status);
assert (cudaSuccess == cudaStatl);

// check if QR is good or not

cudaStatl = cudaMemcpy (&info gpu, devInfo, sizeof (int),

cudaMemcpyDeviceToHost) ;
assert (cudaSuccess == cudaStatl);

printf ("after geqrf: info gpu = %d\n", info gpu);
assert (0 == info gpu);

// step 5: compute Q"T*B
cusolver status= cudsDormgr (
cudenseH,
CUBLAS_SIDE LEFT,
CUBLAS OP T,
m,
nrhs,
m,
d A,
1lda,
d tau,
d B,
1db,
d work,
lwork,
devInfo);
cudaStatl = cudaDeviceSynchronize () ;
assert (CUSOLVER STATUS SUCCESS == cusolver status);
assert (cudaSuccess == cudaStatl);

www.nvidia.com
cuSOLVER Library

DU-06709-001_v7.5 | 161

QR Factorization Dense Linear Solver

Check the results

// check if QR is good or not

cudaStatl = cudaMemcpy (&info gpu, devInfo, sizeof (int),
cudaMemcpyDeviceToHost) ;

assert (cudaSuccess == cudaStatl);

printf ("after ormgr: info gpu = %d\n", info gpu);
assert (0 == info gpu);

// step 6: compute x = R \ Q"T*B

cublas status = cublasDtrsm(
cublasH,
CUBLAS_SIDE LEFT,
CUBLAS FILL MODE UPPER,
CUBLAS_OP N,
CUBLAS_DIAG NON UNIT,
m,
nrhs,
&one,
d A,
lda,
dlB),
1db) ;
cudaStatl = cudaDeviceSynchronize () ;
assert (CUBLAS STATUS SUCCESS == cublas status);
assert (cudaSuccess == cudaStatl);

cudaStatl = cudaMemcpy (XC, d B, sizeof (double)*1ldb*nrhs,
cudaMemcpyDeviceToHost) ;
assert (cudaSuccess == cudaStatl);

printf ("X = (matlab base-1)\n");
printMatrix (m, nrhs, XC, 1ldb, "X");

// free resources
if (d A) cudaFree(d A);
if (d _tau) cudaFree(d tau);
if (d B) cudaFree(d B);
if (devInfo) cudaFree (devInfo) ;
if (d _work) cudaFree (d work);

if (cublasH) cublasDestroy(cublasH) ;
if (cudenseH) cudsDestroy (cudenseH) ;
cudaDeviceReset () ;

return 0O;

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 162

Appendix D.
ACKNOWLEDGEMENTS

NVIDIA would like to thank the following individuals and institutions for their
contributions:

» CPU LAPACK routines from netlib, LAPACK 3.5.0 (http://www.netlib.org/lapack/)
The following is license of LAPACK (modified BSD license).

Copyright (c) 1992-2013 The University of Tennessee and The University of Tennessee
Research Foundation. All rights reserved.

Copyright (c) 2000-2013 The University of California Berkeley. All rights reserved.
Copyright (c) 2006-2013 The University of Colorado Denver. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer listed in this license in the documentation and/
or other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

The copyright holders provide no reassurances that the source code provided does not
infringe any patent, copyright, or any other intellectual property rights of third parties.
The copyright holders disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 163

Acknowledgements

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 164

Appendix E.
BIBLIOGRAPHY

[1] Timothy A. Davis, Direct Methods for sparse Linear Systems, siam 2006.

[2] E. Chuthill and J. McKee, reducing the bandwidth of sparse symmetric matrices,
ACM '69 Proceedings of the 1969 24th national conference, Pages 157-172.

[3] Alan George, Joseph W. H. Liu, An Implementation of a Pseudoperipheral Node
Finder, ACM Transactions on Mathematical Software (TOMS) Volume 5 Issue 3, Sept.
1979 Pages 284-295.

[4]]. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM]. Sci. Statist. Comput., 9 (1988), pp. 862-874.

[5] Alan George and Esmond Ng, An Implementation of Gaussian Elimination with
Partial Pivoting for Sparse Systems, SIAM J. Sci. and Stat. Comput., 6(2), 390-409.

[6] Alan George and Esmond Ng, Symbolic Factorization for Sparse Gaussian
Elimination with Paritial Pivoting, SIAM J. Sci. and Stat. Comput., 8(6), 877-898.

[7] John R. Gilbert, Xiaoye S. Li, Esmond G. Ng, Barry W. Peyton, Computing Row
and Column Counts for Sparse QR and LU Factorization, BIT 2001, Vol. 41, No. 4, pp.
693-711.

[8] Patrick R. Amestoy, Timothy A. Davis, lain S. Duff, An Approximate Minimum
Degree Ordering Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905,
Dec. 1996.

[9] Alan George, Joseph W. Liu, A Fast Implementation of the Minimum Degree
Algorithm Using Quotient Graphs, ACM Transactions on Mathematical Software, Vol 6,
No. 3, September 1980, page 337-358.

[10] Alan George, Joseph W. Liu, Computer Solution of Large Sparse Positive Definite
Systems, Englewood Cliffs, New Jersey: Prentice-Hall, 1981.

www.nvidia.com
cuSOLVER Library DU-06709-001_v7.5 | 165

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2014-2015 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbiA®

	Table of Contents
	Introduction
	1.1. cuSolverDN: Dense LAPACK
	1.2. cuSolverSP: Sparse LAPACK
	1.3. cuSolverRF: Refactorization
	1.4. Naming Conventions
	1.5. Asynchronous Execution

	Using the cuSolver API
	2.1. Thread Safety
	2.2. Scalar Parameters
	2.3. Parallelism with Streams

	cuSolver Types Reference
	3.1. cuSolverDN Types
	3.1.1. cusolverDnHandle_t
	3.1.2. cublasFillMode_t
	3.1.3. cublasOperation_t
	3.1.4. cusolverStatus_t

	3.2. cuSolverSP Types
	3.2.1. cusolverSpHandle_t
	3.2.2. cusparseMatDescr_t
	3.2.3. cusolverStatus_t

	3.3. cuSolverRF Types
	3.3.1. cusolverRfHandle_t
	3.3.2. cusolverRfMatrixFormat_t
	3.3.3. cusolverRfNumericBoostReport_t
	3.3.4. cusolverRfResetValuesFastMode_t
	3.3.5. cusolverRfFactorization_t
	3.3.6. cusolverRfTriangularSolve_t
	3.3.7. cusolverRfUnitDiagonal_t
	3.3.8. cusolverStatus_t

	cuSolver Formats Reference
	4.1. Index Base Format
	4.2. Vector (Dense) Format
	4.3. Matrix (Dense) Format
	4.4. Matrix (CSR) Format
	4.5. Matrix (CSC) Format

	cuSolverDN: dense LAPACK Function Reference
	5.1. cuSolverDN Helper Function Reference
	5.1.1. cusolverDnCreate()
	5.1.2. cusolverDnDestroy()
	5.1.3. cusolverDnSetStream()
	5.1.4. cusolverDnGetStream()

	5.2. Dense Linear Solver Reference
	5.2.1. cusolverDn<t>potrf()
	5.2.2. cusolverDn<t>potrs()
	5.2.3. cusolverDn<t>getrf()
	5.2.4. cusolverDn<t>getrs()
	5.2.5. cusolverDn<t>geqrf()
	5.2.6. cusolverDn<t>ormqr()
	5.2.7. cusolverDn<t>sytrf()

	5.3. Dense Eigenvalue Solver Reference
	5.3.1. cusolverDn<t>gebrd()
	5.3.2. cusolverDn<t>gesvd()

	cuSolverSP: sparse LAPACK Function Reference
	6.1. Helper Function Reference
	6.1.1. cusolverSpCreate()
	6.1.2. cusolverSpDestroy()
	6.1.3. cusolverSpSetStream()
	6.1.4. cusolverSpXcsrissym()

	6.2. High Level Function Reference
	6.2.1. cusolverSp<t>csrlsvlu()
	6.2.2. cusolverSp<t>csrlsvqr()
	6.2.3. cusolverSp<t>csrlsvchol()
	6.2.4. cusolverSp<t>csrlsqvqr()
	6.2.5. cusolverSp<t>csreigvsi()
	6.2.6. cusolverSp<t>csreigs()

	6.3. Low Level Function Reference
	6.3.1. cusolverSpXcsrsymrcm()
	6.3.2. cusolverSpXcsrsymmdq()
	6.3.3. cusolverSpXcsrsymamd()
	6.3.4. cusolverSpXcsrperm()
	6.3.5. cusolverSpXcsrqrBatched()

	6.4. cuda 7.5 Preview
	6.4.1. cusolverSpXcsrlu()
	6.4.1.1. cusolverSpCreateCsrluInfo()
	6.4.1.2. cusolverSpXcsrluAnalysis()
	6.4.1.3. cusolverSpXcsrluBufferInfo()
	6.4.1.4. cusolverSpXcsrluFactor()
	6.4.1.5. cusolverSpXcsrluZeroPivot()
	6.4.1.6. cusolverSpXcsrluSolve()
	6.4.1.7. cusolverSpXcsrluExtract()

	6.4.2. cusolverSpXcsrqr()
	6.4.2.1. cusolverSpCreateCsrqrInfo()
	6.4.2.2. cusolverSpXcsrqrAnalysis()
	6.4.2.3. cusolverSpXcsrqrBufferInfo()
	6.4.2.4. cusolverSpXcsrqrSetup()
	6.4.2.5. cusolverSpXcsrqrFactor()
	6.4.2.6. cusolverSpXcsrqrZeroPivot()
	6.4.2.7. cusolverSpXcsrqrSolve()

	6.4.3. cusolverSpXcsrchol()
	6.4.3.1. cusolverSpCreateCsrcholInfo()
	6.4.3.2. cusolverSpXcsrcholAnalysis()
	6.4.3.3. cusolverSpXcsrcholBufferInfo()
	6.4.3.4. cusolverSpXcsrcholFactor()
	6.4.3.5. cusolverSpXcsrcholZeroPivot()
	6.4.3.6. cusolverSpXcsrcholSolve()

	cuSolverRF: Refactorization Reference
	7.1. cusolverRfAccessBundledFactors()
	7.2. cusolverRfAnalyze()
	7.3. cusolverRfSetupDevice()
	7.4. cusolverRfSetupHost()
	7.5. cusolverRfCreate()
	7.6. cusolverRfExtractBundledFactorsHost()
	7.7. cusolverRfExtractSplitFactorsHost()
	7.8. cusolverRfDestroy()
	7.9. cusolverRfGetMatrixFormat()
	7.10. cusolverRfGetNumericProperties()
	7.11. cusolverRfGetNumericBoostReport()
	7.12. cusolverRfGetResetValuesFastMode()
	7.13. cusolverRfGet_Algs()
	7.14. cusolverRfRefactor()
	7.15. cusolverRfResetValues()
	7.16. cusolverRfSetMatrixFormat()
	7.17. cusolverRfSetNumericProperties()
	7.18. cusolverRfSetResetValuesFastMode()
	7.19. cusolverRfSetAlgs()
	7.20. cusolverRfSolve()
	7.21. cusolverRfBatchSetupHost()
	7.22. cusolverRfBatchAnalyze()
	7.23. cusolverRfBatchResetValues()
	7.24. cusolverRfBatchRefactor()
	7.25. cusolverRfBatchSolve()
	7.26. cusolverRfBatchZeroPivot()

	cuSolverRF Examples
	A.1. cuSolverRF In-memory Example
	A.2. cuSolverRF-batch Example

	CSR QR Batch Examples
	B.1. Batched Sparse QR example 1
	B.2. Batched Sparse QR example 2

	QR Factorization Dense Linear Solver
	Acknowledgements
	Bibliography

