
CUSPARSE LIBRARY

DU-06709-001_v7.5 | September 2015

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
1.1. Naming Conventions..1
1.2. Asynchronous Execution... 2
1.3. Static Library support..2

Chapter 2. Using the cuSPARSE API.. 4
2.1. Thread Safety... 4
2.2. Scalar Parameters.. 4
2.3. Parallelism with Streams.. 4

Chapter 3. cuSPARSE Indexing and Data Formats... 6
3.1. Index Base Format..6
3.2. Vector Formats.. 6

3.2.1. Dense Format.. 6
3.2.2. Sparse Format..6

3.3. Matrix Formats.. 7
3.3.1. Dense Format.. 7
3.3.2. Coordinate Format (COO)..8
3.3.3. Compressed Sparse Row Format (CSR)...8
3.3.4. Compressed Sparse Column Format (CSC).. 9
3.3.5. Ellpack-Itpack Format (ELL)..10
3.3.6. Hybrid Format (HYB).. 11
3.3.7. Block Compressed Sparse Row Format (BSR).. 11
3.3.8. Extended BSR Format (BSRX).. 13

Chapter 4. cuSPARSE Types Reference...15
4.1. Data types.. 15
4.2. cusparseAction_t...15
4.3. cusparseDirection_t... 15
4.4. cusparseHandle_t..16
4.5. cusparseHybMat_t... 16

4.5.1. cusparseHybPartition_t..16
4.6. cusparseMatDescr_t... 16

4.6.1. cusparseDiagType_t.. 17
4.6.2. cusparseFillMode_t...17
4.6.3. cusparseIndexBase_t...17
4.6.4. cusparseMatrixType_t..17

4.7. cusparseOperation_t.. 18
4.8. cusparsePointerMode_t... 18
4.9. cusparseSolvePolicy_t...18
4.10. cusparseSolveAnalysisInfo_t.. 19
4.11. cusparseSolveAnalysisInfo_t.. 19
4.12. csrsv2Info_t... 19

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | iii

4.13. csric02Info_t.. 19
4.14. csrilu02Info_t... 19
4.15. bsrsv2Info_t... 19
4.16. bsrsm2Info_t.. 19
4.17. bsric02Info_t.. 20
4.18. bsrilu02Info_t... 20
4.19. csrgemm2Info_t.. 20
4.20. cusparseStatus_t... 20

Chapter 5. cuSPARSE Helper Function Reference... 22
5.1. cusparseCreate()...22
5.2. cusparseCreateSolveAnalysisInfo().. 22
5.3. cusparseCreateHybMat()..23
5.4. cusparseCreateMatDescr()..23
5.5. cusparseCreateSolveAnalysisInfo().. 23
5.6. cusparseDestroy()..24
5.7. cusparseDestroySolveAnalysisInfo()... 24
5.8. cusparseDestroyHybMat()...24
5.9. cusparseDestroyMatDescr()...25
5.10. cusparseDestroySolveAnalysisInfo()..25
5.11. cusparseGetLevelInfo()..25
5.12. cusparseGetMatDiagType()..26
5.13. cusparseGetMatFillMode().. 26
5.14. cusparseGetMatIndexBase().. 26
5.15. cusparseGetMatType()... 27
5.16. cusparseGetPointerMode().. 27
5.17. cusparseGetVersion().. 27
5.18. cusparseSetMatDiagType().. 28
5.19. cusparseSetMatFillMode()... 28
5.20. cusparseSetMatIndexBase()... 29
5.21. cusparseSetMatType()... 29
5.22. cusparseSetPointerMode().. 29
5.23. cusparseSetStream()... 30
5.24. cusparseCreateCsrsv2Info()... 30
5.25. cusparseDestroyCsrsv2Info().. 30
5.26. cusparseCreateCsric02Info()..31
5.27. cusparseDestroyCsric02Info()...31
5.28. cusparseCreateCsrilu02Info()...31
5.29. cusparseDestroyCsrilu02Info()..32
5.30. cusparseCreateBsrsv2Info()... 32
5.31. cusparseDestroyBsrsv2Info().. 33
5.32. cusparseCreateBsrsm2Info().. 33
5.33. cusparseDestroyBsrsm2Info()... 33
5.34. cusparseCreateBsric02Info().. 34

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | iv

5.35. cusparseDestroyBsric02Info()...34
5.36. cusparseCreateBsrilu02Info()... 34
5.37. cusparseDestroyBsrilu02Info().. 35
5.38. cusparseCreateCsrgemm2Info().. 35
5.39. cusparseDestroyCsrgemm2Info()... 35

Chapter 6. cuSPARSE Level 1 Function Reference.. 37
6.1. cusparse<t>axpyi().. 37
6.2. cusparse<t>doti().. 38
6.3. cusparse<t>dotci()...40
6.4. cusparse<t>gthr().. 41
6.5. cusparse<t>gthrz()...42
6.6. cusparse<t>roti().. 43
6.7. cusparse<t>sctr().. 44

Chapter 7. cuSPARSE Level 2 Function Reference.. 46
7.1. cusparse<t>bsrmv()..47
7.2. cusparse<t>bsrxmv().. 50
7.3. cusparse<t>csrmv()..54
7.4. cusparse<t>gemvi()..57
7.5. cusparse<t>gemvi_bufferSize()..59
7.6. cusparse<t>bsrsv2_bufferSize()..61
7.7. cusparse<t>bsrsv2_analysis().. 64
7.8. cusparse<t>bsrsv2_solve()..67
7.9. cusparseXbsrsv2_zeroPivot()... 71
7.10. cusparse<t>csrsv_analysis()...72
7.11. cusparse<t>csrsv_solve().. 74
7.12. cusparse<t>csrsv2_bufferSize().. 76
7.13. cusparse<t>csrsv2_analysis()... 79
7.14. cusparse<t>csrsv2_solve()...82
7.15. cusparseXcsrsv2_zeroPivot()..86
7.16. cusparse<t>hybmv()..87
7.17. cusparse<t>hybsv_analysis()..88
7.18. cusparse<t>hybsv_solve()... 90

Chapter 8. cuSPARSE Level 3 Function Reference.. 92
8.1. cusparse<t>csrmm()...93
8.2. cusparse<t>csrmm2()... 96
8.3. cusparse<t>csrsm_analysis()..100
8.4. cusparse<t>csrsm_solve()... 102
8.5. cusparse<t>bsrmm()... 105
8.6. cusparse<t>bsrsm2_bufferSize()... 109
8.7. cusparse<t>bsrsm2_analysis().. 112
8.8. cusparse<t>bsrsm2_solve()... 116
8.9. cusparseXbsrsm2_zeroPivot()...119

Chapter 9. cuSPARSE Extra Function Reference..120

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | v

9.1. cusparse<t>csrgeam()... 121
9.2. cusparse<t>csrgemm()...125
9.3. cusparse<t>csrgemm2()... 129

Chapter 10. cuSPARSE Preconditioners Reference...134
10.1. cusparse<t>csric0()... 135
10.2. cusparse<t>csric02_bufferSize()..137
10.3. cusparse<t>csric02_analysis()...139
10.4. cusparse<t>csric02()..142
10.5. cusparseXcsric02_zeroPivot()... 146
10.6. cusparse<t>csrilu0().. 147
10.7. cusparse<t>csrilu02_numericBoost()...149
10.8. cusparse<t>csrilu02_bufferSize()...150
10.9. cusparse<t>csrilu02_analysis()..152
10.10. cusparse<t>csrilu02()... 155
10.11. cusparseXcsrilu02_zeroPivot()... 159
10.12. cusparse<t>bsric02_bufferSize().. 160
10.13. cusparse<t>bsric02_analysis()... 163
10.14. cusparse<t>bsric02().. 166
10.15. cusparseXbsric02_zeroPivot()..170
10.16. cusparse<t>bsrilu02_numericBoost()... 171
10.17. cusparse<t>bsrilu02_bufferSize()... 173
10.18. cusparse<t>bsrilu02_analysis().. 176
10.19. cusparse<t>bsrilu02()... 179
10.20. cusparseXbsrilu02_zeroPivot()...183
10.21. cusparse<t>gtsv()..184
10.22. cusparse<t>gtsv_nopivot()... 186
10.23. cusparse<t>gtsvStridedBatch().. 187

Chapter 11. cuSPARSE Reorderings Reference..190
11.1. cusparse<t>csrcolor().. 190

Chapter 12. cuSPARSE Format Conversion Reference...193
12.1. cusparse<t>bsr2csr()... 194
12.2. cusparse<t>gebsr2gebsc_bufferSize()... 197
12.3. cusparse<t>gebsr2gebsc()... 199
12.4. cusparse<t>gebsr2gebsr_bufferSize()..202
12.5. cusparse<t>gebsr2gebsr()..204
12.6. cusparse<t>gebsr2csr()...208
12.7. cusparse<t>csr2gebsr_bufferSize()...211
12.8. cusparse<t>csr2gebsr()...213
12.9. cusparse<t>coo2csr()...216
12.10. cusparse<t>csc2dense().. 218
12.11. cusparse<t>csc2hyb()... 219
12.12. cusparse<t>csr2bsr().. 221
12.13. cusparse<t>csr2coo()... 223

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | vi

12.14. cusparse<t>csr2csc().. 225
12.15. cusparse<t>csr2dense()...227
12.16. cusparse<t>csr2hyb()... 229
12.17. cusparse<t>dense2csc().. 231
12.18. cusparse<t>dense2csr()...232
12.19. cusparse<t>dense2hyb()..234
12.20. cusparse<t>hyb2csc()... 235
12.21. cusparse<t>hyb2csr()... 237
12.22. cusparse<t>hyb2dense()..238
12.23. cusparse<t>nnz().. 239
12.24. cusparseCreateIdentityPermutation().. 240
12.25. cusparseXcoosort().. 241
12.26. cusparseXcsrsort()...243
12.27. cusparseXcscsort()...245
12.28. cusparseXcsru2csr()... 248

Chapter 13. Appendix A: cuSPARSE Library C++ Example..252
Chapter 14. Appendix B: cuSPARSE Fortran Bindings... 254

14.1. Example B, Fortran Application..256
Chapter 15. Appendix C: Acknowledgements...257
Chapter 16. Bibliography.. 258

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 1

Chapter 1.
INTRODUCTION

The cuSPARSE library contains a set of basic linear algebra subroutines used for
handling sparse matrices. It is implemented on top of the NVIDIA® CUDA™ runtime
(which is part of the CUDA Toolkit) and is designed to be called from C and C++. The
library routines can be classified into four categories:

‣ Level 1: operations between a vector in sparse format and a vector in dense format
‣ Level 2: operations between a matrix in sparse format and a vector in dense format
‣ Level 3: operations between a matrix in sparse format and a set of vectors in dense

format (which can also usually be viewed as a dense tall matrix)
‣ Conversion: operations that allow conversion between different matrix formats

The cuSPARSE library allows developers to access the computational resources of the
NVIDIA graphics processing unit (GPU), although it does not auto-parallelize across
multiple GPUs. The cuSPARSE API assumes that input and output data reside in GPU
(device) memory, unless it is explicitly indicated otherwise by the string DevHostPtr in
a function parameter's name (for example, the parameter *resultDevHostPtr in the
function cusparse<t>doti()).

It is the responsibility of the developer to allocate memory and to copy data between
GPU memory and CPU memory using standard CUDA runtime API routines, such as
cudaMalloc(), cudaFree(), cudaMemcpy(), and cudaMemcpyAsync().

The cuSPARSE library requires hardware with compute capability (CC) of at least 2.0
or higher. Please see the NVIDIA CUDA C Programming Guide, Appendix A for a list of
the compute capabilities corresponding to all NVIDIA GPUs.

1.1. Naming Conventions
The cuSPARSE library functions are available for data types float, double,
cuComplex, and cuDoubleComplex. The sparse Level 1, Level 2, and Level 3 functions
follow this naming convention:

cusparse<t>[<matrix data format>]<operation>[<output matrix data
format>]

Introduction

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 2

where <t> can be S, D, C, Z, or X, corresponding to the data types float, double,
cuComplex, cuDoubleComplex, and the generic type, respectively.

The <matrix data format> can be dense, coo, csr, csc, or hyb, corresponding to
the dense, coordinate, compressed sparse row, compressed sparse column, and hybrid
storage formats, respectively.

Finally, the <operation> can be axpyi, doti, dotci, gthr, gthrz, roti, or sctr,
corresponding to the Level 1 functions; it also can be mv or sv, corresponding to the
Level 2 functions, as well as mm or sm, corresponding to the Level 3 functions.

All of the functions have the return type cusparseStatus_t and are explained in more
detail in the chapters that follow.

1.2. Asynchronous Execution
The cuSPARSE library functions are executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Developers can use the cudaDeviceSynchronize() function to ensure that the
execution of a particular cuSPARSE library routine has completed.

A developer can also use the cudaMemcpy() routine to copy data from the
device to the host and vice versa, using the cudaMemcpyDeviceToHost and
cudaMemcpyHostToDevice parameters, respectively. In this case there is no need to add
a call to cudaDeviceSynchronize() because the call to cudaMemcpy() with the above
parameters is blocking and completes only when the results are ready on the host.

1.3. Static Library support
Starting with release 6.5, the cuSPARSE Library is also delivered in a static form as
libcusparse_static.a on Linux and Mac OSes. The static cuSPARSE library and all others
static maths libraries depend on a common thread abstraction layer library called
libculibos.a on Linux and Mac and culibos.lib on Windows.

For example, on linux, to compile a small application using cuSPARSE against the
dynamic library, the following command can be used:

 nvcc myCusparseApp.c -lcusparse -o myCusparseApp

Whereas to compile against the static cuSPARSE library, the following command has to
be used:

 nvcc myCusparseApp.c -lcusparse_static -lculibos -o myCusparseApp

It is also possible to use the native Host C++ compiler. Depending on the Host Operating
system, some additional libraries like pthread or dl might be needed on the linking
line. The following command on Linux is suggested :

 g++ myCusparseApp.c -lcusparse_static -lculibos -lcudart_static -
lpthread -ldl -I <cuda-toolkit-path>/include -L <cuda-toolkit-path>/lib64 -o
 myCusparseApp

Introduction

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 3

Note that in the latter case, the library cuda is not needed. The CUDA Runtime will try
to open explicitly the cuda library if needed. In the case of a system which does not have
the CUDA driver installed, this allows the application to gracefully manage this issue
and potentially run if a CPU-only path is available.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 4

Chapter 2.
USING THE CUSPARSE API

This chapter describes how to use the cuSPARSE library API. It is not a reference for the
cuSPARSE API data types and functions; that is provided in subsequent chapters.

2.1. Thread Safety
The library is thread safe and its functions can be called from multiple host threads.

2.2. Scalar Parameters
In the cuSPARSE API, the scalar parameters and can be passed by reference on the
host or the device.

The few functions that return a scalar result, such as doti() and nnz(), return the
resulting value by reference on the host or the device. Even though these functions
return immediately, similarly to those that return matrix and vector results, the scalar
result is not ready until execution of the routine on the GPU completes. This requires
proper synchronization be used when reading the result from the host.

This feature allows the cuSPARSE library functions to execute completely
asynchronously using streams, even when and are generated by a previous kernel.
This situation arises, for example, when the library is used to implement iterative
methods for the solution of linear systems and eigenvalue problems [3].

2.3. Parallelism with Streams
If the application performs several small independent computations, or if it makes data
transfers in parallel with the computation, CUDA streams can be used to overlap these
tasks.

The application can conceptually associate a stream with each task. To achieve the
overlap of computation between the tasks, the developer should create CUDA streams
using the function cudaStreamCreate() and set the stream to be used by each

Using the cuSPARSE API

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 5

individual cuSPARSE library routine by calling cusparseSetStream() just before
calling the actual cuSPARSE routine. Then, computations performed in separate streams
would be overlapped automatically on the GPU, when possible. This approach is
especially useful when the computation performed by a single task is relatively small
and is not enough to fill the GPU with work, or when there is a data transfer that can be
performed in parallel with the computation.

When streams are used, we recommend using the new cuSPARSE API with scalar
parameters and results passed by reference in the device memory to achieve maximum
computational overlap.

Although a developer can create many streams, in practice it is not possible to have
more than 16 concurrent kernels executing at the same time.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 6

Chapter 3.
CUSPARSE INDEXING AND DATA FORMATS

The cuSPARSE library supports dense and sparse vector, and dense and sparse matrix
formats.

3.1. Index Base Format
The library supports zero- and one-based indexing. The index base is selected through
the cusparseIndexBase_t type, which is passed as a standalone parameter or as a
field in the matrix descriptor cusparseMatDescr_t type.

3.2. Vector Formats
This section describes dense and sparse vector formats.

3.2.1. Dense Format
Dense vectors are represented with a single data array that is stored linearly in memory,
such as the following dense vector.

(This vector is referenced again in the next section.)

3.2.2. Sparse Format
Sparse vectors are represented with two arrays.

‣ The data array has the nonzero values from the equivalent array in dense format.
‣ The integer index array has the positions of the corresponding nonzero values in the

equivalent array in dense format.

For example, the dense vector in section 3.2.1 can be stored as a sparse vector with one-
based indexing.

cuSPARSE Indexing and Data Formats

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 7

It can also be stored as a sparse vector with zero-based indexing.

In each example, the top row is the data array and the bottom row is the index array,
and it is assumed that the indices are provided in increasing order and that each index
appears only once.

3.3. Matrix Formats
Dense and several sparse formats for matrices are discussed in this section.

3.3.1. Dense Format
The dense matrix X is assumed to be stored in column-major format in memory and is
represented by the following parameters.

m (integer) The number of rows in the matrix.

n (integer) The number of columns in the matrix.

ldX (integer) The leading dimension of X, which must be greater than or equal to m. If
ldX is greater than m, then X represents a sub-matrix of a larger matrix
stored in memory

X (pointer) Points to the data array containing the matrix elements. It is assumed
that enough storage is allocated for X to hold all of the matrix elements
and that cuSPARSE library functions may access values outside of the
sub-matrix, but will never overwrite them.

For example, m×n dense matrix X with leading dimension ldX can be stored with one-
based indexing as shown.

Its elements are arranged linearly in memory in the order below.

This format and notation are similar to those used in the NVIDIA CUDA cuBLAS library.

cuSPARSE Indexing and Data Formats

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 8

3.3.2. Coordinate Format (COO)
The m×n sparse matrix A is represented in COO format by the following parameters.

nnz (integer) The number of nonzero elements in the matrix.

cooValA (pointer) Points to the data array of length nnz that holds all nonzero values of A
in row-major format.

cooRowIndA (pointer) Points to the integer array of length nnz that contains the row indices
of the corresponding elements in array cooValA.

cooColIndA (pointer) Points to the integer array of length nnz that contains the column
indices of the corresponding elements in array cooValA.

A sparse matrix in COO format is assumed to be stored in row-major format: the index
arrays are first sorted by row indices and then within the same row by compressed
column indices. It is assumed that each pair of row and column indices appears only
once.

For example, consider the following matrix A.

It is stored in COO format with zero-based indexing this way.

In the COO format with one-based indexing, it is stored as shown.

3.3.3. Compressed Sparse Row Format (CSR)
The only way the CSR differs from the COO format is that the array containing the row
indices is compressed in CSR format. The m×n sparse matrix A is represented in CSR
format by the following parameters.

nnz (integer) The number of nonzero elements in the matrix.

csrValA (pointer) Points to the data array of length nnz that holds all nonzero values of A
in row-major format.

csrRowPtrA (pointer) Points to the integer array of length m+1 that holds indices into the
arrays csrColIndA and csrValA. The first m entries of this array
contain the indices of the first nonzero element in the ith row for
i=i,...,m, while the last entry contains nnz+csrRowPtrA(0). In
general, csrRowPtrA(0) is 0 or 1 for zero- and one-based indexing,
respectively.

cuSPARSE Indexing and Data Formats

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 9

csrColIndA (pointer) Points to the integer array of length nnz that contains the column
indices of the corresponding elements in array csrValA.

Sparse matrices in CSR format are assumed to be stored in row-major CSR format, in
other words, the index arrays are first sorted by row indices and then within the same
row by column indices. It is assumed that each pair of row and column indices appears
only once.

Consider again the matrixA.

It is stored in CSR format with zero-based indexing as shown.

This is how it is stored in CSR format with one-based indexing.

3.3.4. Compressed Sparse Column Format (CSC)
The CSC format is different from the COO format in two ways: the matrix is stored in
column-major format, and the array containing the column indices is compressed in CSC
format. The m×n matrix A is represented in CSC format by the following parameters.

nnz (integer) The number of nonzero elements in the matrix.

cscValA (pointer) Points to the data array of length nnz that holds all nonzero values of A
in column-major format.

cscRowIndA (pointer) Points to the integer array of length nnz that contains the row indices
of the corresponding elements in array cscValA.

cscColPtrA (pointer) Points to the integer array of length n+1 that holds indices into the
arrays cscRowIndA and cscValA. The first n entries of this array
contain the indices of the first nonzero element in the ith row for
i=i,...,n, while the last entry contains nnz+cscColPtrA(0). In
general, cscColPtrA(0) is 0 or 1 for zero- and one-based indexing,
respectively.

The matrix A in CSR format has exactly the same memory layout as its transpose in
CSC format (and vice versa).

For example, consider once again the matrix A.

cuSPARSE Indexing and Data Formats

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 10

It is stored in CSC format with zero-based indexing this way.

In CSC format with one-based indexing, this is how it is stored.

Each pair of row and column indices appears only once.

3.3.5. Ellpack-Itpack Format (ELL)
An m×n sparse matrix A with at most k nonzero elements per row is stored in the
Ellpack-Itpack (ELL) format [2] using two dense arrays of dimension m×k. The first data
array contains the values of the nonzero elements in the matrix, while the second integer
array contains the corresponding column indices.

For example, consider the matrix A.

This is how it is stored in ELL format with zero-based indexing.

It is stored this way in ELL format with one-based indexing.

cuSPARSE Indexing and Data Formats

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 11

Sparse matrices in ELL format are assumed to be stored in column-major format in
memory. Also, rows with less than k nonzero elements are padded in the data and
indices arrays with zero and , respectively.

The ELL format is not supported directly, but it is used to store the regular part of the
matrix in the HYB format that is described in the next section.

3.3.6. Hybrid Format (HYB)
The HYB sparse storage format is composed of a regular part, usually stored in ELL
format, and an irregular part, usually stored in COO format [1]. The ELL and COO
parts are always stored using zero-based indexing. HYB is implemented as an opaque
data format that requires the use of a conversion operation to store a matrix in it. The
conversion operation partitions the general matrix into the regular and irregular parts
automatically or according to developer-specified criteria.

For more information, please refer to the description of cusparseHybPartition_t
type, as well as the description of the conversion routines dense2hyb, csc2hyb and
csr2hyb.

3.3.7. Block Compressed Sparse Row Format (BSR)
The only difference between the CSR and BSR formats is the format of the storage
element. The former stores primitive data types (single, double, cuComplex, and
cuDoubleComplex) whereas the latter stores a two-dimensional square block of
primitive data types. The dimension of the square block is . The m×n sparse
matrix A is equivalent to a block sparse matrix with block rows

and block columns. If or is not multiple of , then zeros
are filled into .

A is represented in BSR format by the following parameters.

blockDim (integer) Block dimension of matrix A.

mb (integer) The number of block rows of A.

nb (integer) The number of block columns of A.

nnzb (integer) The number of nonzero blocks in the matrix.

bsrValA (pointer) Points to the data array of length that holds all
elements of nonzero blocks of A. The block elements are stored in
either column-major order or row-major order.

bsrRowPtrA (pointer) Points to the integer array of length mb+1 that holds indices into the
arrays bsrColIndA and bsrValA. The first mb entries of this array
contain the indices of the first nonzero block in the ith block row for
i=1,...,mb, while the last entry contains nnzb+bsrRowPtrA(0). In
general, bsrRowPtrA(0) is 0 or 1 for zero- and one-based indexing,
respectively.

bsrColIndA (pointer) Points to the integer array of length nnzb that contains the column
indices of the corresponding blocks in array bsrValA.

cuSPARSE Indexing and Data Formats

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 12

As with CSR format, (row, column) indices of BSR are stored in row-major order. The
index arrays are first sorted by row indices and then within the same row by column
indices.

For example, consider again the 4×5 matrix A.

If is equal to 2, then is 2, is 3, and matrix A is split into 2×3 block matrix
. The dimension of is 4×6, slightly bigger than matrix , so zeros are filled in the last

column of . The element-wise view of is this.

Based on zero-based indexing, the block-wise view of can be represented as follows.

The basic element of BSR is a nonzero block, one that contains at least one nonzero
element of A. Five of six blocks are nonzero in .

BSR format only stores the information of nonzero blocks, including block indices
and values . Also row indices are compressed in CSR format.

There are two ways to arrange the data element of block : row-major order and
column-major order. Under column-major order, the physical storage of bsrValA is this.

Under row-major order, the physical storage of bsrValA is this.

Similarly, in BSR format with one-based indexing and column-major order, A can be
represented by the following.

cuSPARSE Indexing and Data Formats

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 13

The general BSR format has two parameters, rowBlockDim and colBlockDim.
rowBlockDim is number of rows within a block and colBlockDim is number of
columns within a block. If rowBlockDim=colBlockDim, general BSR format is the
same as BSR format. If rowBlockDim=colBlockDim=1, general BSR format is the
same as CSR format. The conversion routine gebsr2gebsr is used to do conversion
among CSR, BSR and general BSR.

In the cuSPARSE Library, the storage format of blocks in BSR format can be column-
major or row-major, independently of the base index. However, if the developer uses
BSR format from the Math Kernel Library (MKL) and wants to directly interface with
the cuSPARSE Library, then cusparseDirection_t CUSPARSE_DIRECTION_COLUMN
should be used if the base index is one; otherwise, cusparseDirection_t
CUSPARSE_DIRECTION_ROW should be used.

3.3.8. Extended BSR Format (BSRX)
BSRX is the same as the BSR format, but the array bsrRowPtrA is separated into two
parts. The first nonzero block of each row is still specified by the array bsrRowPtrA,
which is the same as in BSR, but the position next to the last nonzero block of each row is
specified by the array bsrEndPtrA. Briefly, BSRX format is simply like a 4-vector variant
of BSR format.

Matrix A is represented in BSRX format by the following parameters.

blockDim (integer) Block dimension of matrix A.

mb (integer) The number of block rows of A.

nb (integer) The number of block columns of A.

nnzb (integer) number of nonzero blocks in the matrix A.

bsrValA (pointer) Points to the data array of length that holds all the
elements of the nonzero blocks of A. The block elements are stored in
either column-major order or row-major order.

bsrRowPtrA (pointer) Points to the integer array of length mb that holds indices into the arrays
bsrColIndA and bsrValA; bsrRowPtrA(i) is the position of the first
nonzero block of the ith block row in bsrColIndA and bsrValA.

bsrEndPtrA (pointer) Points to the integer array of length mb that holds indices into the arrays
bsrColIndA and bsrValA; bsrRowPtrA(i) is the position next to the
last nonzero block of the ith block row in bsrColIndA and bsrValA.

bsrColIndA (pointer) Points to the integer array of length nnzb that contains the column
indices of the corresponding blocks in array bsrValA.

A simple conversion between BSR and BSRX can be done as follows. Suppose the
developer has a 2×3 block sparse matrix represented as shown.

cuSPARSE Indexing and Data Formats

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 14

Assume it has this BSR format.

The bsrRowPtrA of the BSRX format is simply the first two elements of the bsrRowPtrA
BSR format. The bsrEndPtrA of BSRX format is the last two elements of the
bsrRowPtrA of BSR format.

The advantage of the BSRX format is that the developer can specify a submatrix in
the original BSR format by modifying bsrRowPtrA and bsrEndPtrA while keeping
bsrColIndA and bsrValA unchanged.

For example, to create another block matrix that is slightly different

from , the developer can keep bsrColIndA and bsrValA, but reconstruct by
properly setting of bsrRowPtrA and bsrEndPtrA. The following 4-vector characterizes

.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 15

Chapter 4.
CUSPARSE TYPES REFERENCE

4.1. Data types
The float, double, cuComplex, and cuDoubleComplex data types are supported. The
first two are standard C data types, while the last two are exported from cuComplex.h.

4.2. cusparseAction_t
This type indicates whether the operation is performed only on indices or on data and
indices.

Value Meaning

CUSPARSE_ACTION_SYMBOLIC the operation is performed only on indices.

CUSPARSE_ACTION_NUMERIC the operation is performed on data and indices.

4.3. cusparseDirection_t
This type indicates whether the elements of a dense matrix should be parsed by rows or
by columns (assuming column-major storage in memory of the dense matrix) in function
cusparse[S|D|C|Z]nnz. Besides storage format of blocks in BSR format is also controlled
by this type.

Value Meaning

CUSPARSE_DIRECTION_ROW the matrix should be parsed by rows.

CUSPARSE_DIRECTION_COLUMN the matrix should be parsed by columns.

cuSPARSE Types Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 16

4.4. cusparseHandle_t
This is a pointer type to an opaque cuSPARSE context, which the user must initialize
by calling prior to calling cusparseCreate() any other library function. The handle
created and returned by cusparseCreate() must be passed to every cuSPARSE
function.

4.5. cusparseHybMat_t
This is a pointer type to an opaque structure holding the matrix in HYB format, which is
created by cusparseCreateHybMat and destroyed by cusparseDestroyHybMat.

4.5.1. cusparseHybPartition_t
This type indicates how to perform the partitioning of the matrix into regular (ELL) and
irregular (COO) parts of the HYB format.

The partitioning is performed during the conversion of the matrix from a dense or
sparse format into the HYB format and is governed by the following rules. When
CUSPARSE_HYB_PARTITION_AUTO is selected, the cuSPARSE library automatically
decides how much data to put into the regular and irregular parts of the HYB format.
When CUSPARSE_HYB_PARTITION_USER is selected, the width of the regular part of the
HYB format should be specified by the caller. When CUSPARSE_HYB_PARTITION_MAX
is selected, the width of the regular part of the HYB format equals to the maximum
number of non-zero elements per row, in other words, the entire matrix is stored in the
regular part of the HYB format.

The default is to let the library automatically decide how to split the data.

Value Meaning

CUSPARSE_HYB_PARTITION_AUTO the automatic partitioning is selected (default).

CUSPARSE_HYB_PARTITION_USER the user specified treshold is used.

CUSPARSE_HYB_PARTITION_MAX the data is stored in ELL format.

4.6. cusparseMatDescr_t
This structure is used to describe the shape and properties of a matrix.
typedef struct {
 cusparseMatrixType_t MatrixType;
 cusparseFillMode_t FillMode;
 cusparseDiagType_t DiagType;
 cusparseIndexBase_t IndexBase;
} cusparseMatDescr_t;

cuSPARSE Types Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 17

4.6.1. cusparseDiagType_t
This type indicates if the matrix diagonal entries are unity. The diagonal elements are
always assumed to be present, but if CUSPARSE_DIAG_TYPE_UNIT is passed to an API
routine, then the routine assumes that all diagonal entries are unity and will not read or
modify those entries. Note that in this case the routine assumes the diagonal entries are
equal to one, regardless of what those entries are actually set to in memory.

Value Meaning

CUSPARSE_DIAG_TYPE_NON_UNIT the matrix diagonal has non-unit elements.

CUSPARSE_DIAG_TYPE_UNIT the matrix diagonal has unit elements.

4.6.2. cusparseFillMode_t
This type indicates if the lower or upper part of a matrix is stored in sparse storage.

Value Meaning

CUSPARSE_FILL_MODE_LOWER the lower triangular part is stored.

CUSPARSE_FILL_MODE_UPPER the upper triangular part is stored.

4.6.3. cusparseIndexBase_t
This type indicates if the base of the matrix indices is zero or one.

Value Meaning

CUSPARSE_INDEX_BASE_ZERO the base index is zero.

CUSPARSE_INDEX_BASE_ONE the base index is one.

4.6.4. cusparseMatrixType_t
This type indicates the type of matrix stored in sparse storage. Notice that for symmetric,
Hermitian and triangular matrices only their lower or upper part is assumed to be
stored.

The whole idea of matrix type and fill mode is to keep minimum storage for symmetric/
Hermitian matrix, and also to take advantage of symmetric property on SpMV
(Sparse Matrix Vector multiplication). To compute y=A*x when A is symmetric and
only lower triangular part is stored, two steps are needed. First step is to compute
y=(L+D)*x and second step is to compute y=L^T*x + y. Given the fact that the
transpose operation y=L^T*x is 10x slower than non-transpose version y=L*x, the
symmetric property does not show up any performance gain. It is better for the user
to extend the symmetric matrix to a general matrix and apply y=A*x with matrix type
CUSPARSE_MATRIX_TYPE_GENERAL.

In general, SpMV, preconditioners (incomplete Cholesky or incomplete LU) and
triangular solver are combined together in iterative solvers, for example PCG and

cuSPARSE Types Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 18

GMRES. If the user always uses general matrix (instead of symmetric matrix), there
is no need to support other than general matrix in preconditioners. Therefore the
new routines, [bsr|csr]sv2 (triangular solver), [bsr|csr]ilu02 (incomplete
LU) and [bsr|csr]ic02 (incomplete Cholesky), only support matrix type
CUSPARSE_MATRIX_TYPE_GENERAL.

Value Meaning

CUSPARSE_MATRIX_TYPE_GENERAL the matrix is general.

CUSPARSE_MATRIX_TYPE_SYMMETRIC the matrix is symmetric.

CUSPARSE_MATRIX_TYPE_HERMITIAN the matrix is Hermitian.

CUSPARSE_MATRIX_TYPE_TRIANGULAR the matrix is triangular.

4.7. cusparseOperation_t
This type indicates which operations need to be performed with the sparse matrix.

Value Meaning

CUSPARSE_OPERATION_NON_TRANSPOSE the non-transpose operation is selected.

CUSPARSE_OPERATION_TRANSPOSE the transpose operation is selected.

CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE
the conjugate transpose operation is selected.

4.8. cusparsePointerMode_t
This type indicates whether the scalar values are passed by reference on the host or
device. It is important to point out that if several scalar values are passed by reference
in the function call, all of them will conform to the same single pointer mode. The
pointer mode can be set and retrieved using cusparseSetPointerMode() and
cusparseGetPointerMode() routines, respectively.

Value Meaning

CUSPARSE_POINTER_MODE_HOST the scalars are passed by reference on the host.

CUSPARSE_POINTER_MODE_DEVICE the scalars are passed by reference on the device.

4.9. cusparseSolvePolicy_t
This type indicates whether level information is generated and used in csrsv2,
csric02, csrilu02, bsrsv2, bsric02 and bsrilu02.

Value Meaning

CUSPARSE_SOLVE_POLICY_NO_LEVEL no level information is generated and used.

cuSPARSE Types Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 19

Value Meaning

CUSPARSE_SOLVE_POLICY_USE_LEVEL generate and use level information.

4.10. cusparseSolveAnalysisInfo_t
This is a pointer type to an opaque structure holding the information collected in the
analysis phase of the solution of the sparse triangular linear system. It is expected to be
passed unchanged to the solution phase of the sparse triangular linear system.

4.11. cusparseSolveAnalysisInfo_t
This is a pointer type to an opaque structure holding the information collected in the
analysis phase of the solution of the sparse triangular linear system. It is expected to be
passed unchanged to the solution phase of the sparse triangular linear system.

4.12. csrsv2Info_t
This is a pointer type to an opaque structure holding the information used in
csrsv2_bufferSize(), csrsv2_analysis(), and csrsv2_solve().

4.13. csric02Info_t
This is a pointer type to an opaque structure holding the information used in
csric02_bufferSize(), csric02_analysis(), and csric02().

4.14. csrilu02Info_t
This is a pointer type to an opaque structure holding the information used in
csrilu02_bufferSize(), csrilu02_analysis(), and csrilu02().

4.15. bsrsv2Info_t
This is a pointer type to an opaque structure holding the information used in
bsrsv2_bufferSize(), bsrsv2_analysis(), and bsrsv2_solve().

4.16. bsrsm2Info_t
This is a pointer type to an opaque structure holding the information used in
bsrsm2_bufferSize(), bsrsm2_analysis(), and bsrsm2_solve().

cuSPARSE Types Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 20

4.17. bsric02Info_t
This is a pointer type to an opaque structure holding the information used in
bsric02_bufferSize(), bsric02_analysis(), and bsric02().

4.18. bsrilu02Info_t
This is a pointer type to an opaque structure holding the information used in
bsrilu02_bufferSize(), bsrilu02_analysis(), and bsrilu02().

4.19. csrgemm2Info_t
This is a pointer type to an opaque structure holding the information used in
csrgemm2_bufferSizeExt(), and csrgemm2().

4.20. cusparseStatus_t
This is a status type returned by the library functions and it can have the following
values.

CUSPARSE_STATUS_SUCCESS

The operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED

The cuSPARSE library was not initialized. This is usually caused by the
lack of a prior call, an error in the CUDA Runtime API called by the
cuSPARSE routine, or an error in the hardware setup.

To correct: call cusparseCreate() prior to the function call; and
check that the hardware, an appropriate version of the driver, and the
cuSPARSE library are correctly installed.

CUSPARSE_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuSPARSE library. This is usually
caused by a cudaMalloc() failure.

To correct: prior to the function call, deallocate previously allocated
memory as much as possible.

CUSPARSE_STATUS_INVALID_VALUE

An unsupported value or parameter was passed to the function (a
negative vector size, for example).

To correct: ensure that all the parameters being passed have valid
values.

CUSPARSE_STATUS_ARCH_MISMATCH

The function requires a feature absent from the device architecture;
usually caused by the lack of support for atomic operations or double
precision.

cuSPARSE Types Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 21

To correct: compile and run the application on a device with
appropriate compute capability, which is 1.1 for 32-bit atomic
operations and 1.3 for double precision.

CUSPARSE_STATUS_MAPPING_ERROR

An access to GPU memory space failed, which is usually caused by a
failure to bind a texture.

To correct: prior to the function call, unbind any previously bound
textures.

CUSPARSE_STATUS_EXECUTION_FAILED

The GPU program failed to execute. This is often caused by a launch
failure of the kernel on the GPU, which can be caused by multiple
reasons.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSPARSE library are correctly installed.

CUSPARSE_STATUS_INTERNAL_ERROR

An internal cuSPARSE operation failed. This error is usually caused by a
cudaMemcpyAsync() failure.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSPARSE library are correctly installed. Also, check
that the memory passed as a parameter to the routine is not being
deallocated prior to the routine’s completion.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED

The matrix type is not supported by this function. This is usually caused
by passing an invalid matrix descriptor to the function.

To correct: check that the fields in cusparseMatDescr_t descrA
were set correctly.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 22

Chapter 5.
CUSPARSE HELPER FUNCTION REFERENCE

The cuSPARSE helper functions are described in this section.

5.1. cusparseCreate()
cusparseStatus_t
cusparseCreate(cusparseHandle_t *handle)

This function initializes the cuSPARSE library and creates a handle on the cuSPARSE
context. It must be called before any other cuSPARSE API function is invoked. It
allocates hardware resources necessary for accessing the GPU.
Output

handle the pointer to the handle to the cuSPARSE context.

Status Returned

CUSPARSE_STATUS_SUCCESS the initialization succeeded.

CUSPARSE_STATUS_NOT_INITIALIZED the CUDA Runtime initialization failed.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_ARCH_MISMATCH the device compute capability (CC) is less than
1.1. The CC of at least 1.1 is required.

5.2. cusparseCreateSolveAnalysisInfo()
cusparseStatus_t
cusparseCreateSolveAnalysisInfo(cusparseSolveAnalysisInfo_t *info)

This function creates and initializes the solve and analysis structure to default values.
Input

info the pointer to the solve and analysis structure.

Status Returned

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 23

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.3. cusparseCreateHybMat()
cusparseStatus_t
cusparseCreateHybMat(cusparseHybMat_t *hybA)

This function creates and initializes the hybA opaque data structure.
Input

hybA the pointer to the hybrid format storage structure.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.4. cusparseCreateMatDescr()
cusparseStatus_t
cusparseCreateMatDescr(cusparseMatDescr_t *descrA)

This function initializes the matrix descriptor. It sets the fields MatrixType
and IndexBase to the default values CUSPARSE_MATRIX_TYPE_GENERAL and
CUSPARSE_INDEX_BASE_ZERO , respectively, while leaving other fields uninitialized.
Input

descrA the pointer to the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the descriptor was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.5. cusparseCreateSolveAnalysisInfo()
cusparseStatus_t
cusparseCreateSolveAnalysisInfo(cusparseSolveAnalysisInfo_t *info)

This function creates and initializes the solve and analysis structure to default values.
Input

info the pointer to the solve and analysis structure.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 24

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.6. cusparseDestroy()
cusparseStatus_t
cusparseDestroy(cusparseHandle_t handle)

This function releases CPU-side resources used by the cuSPARSE library. The release of
GPU-side resources may be deferred until the application shuts down.
Input

handle the handle to the cuSPARSE context.

Status Returned

CUSPARSE_STATUS_SUCCESS the shutdown succeeded.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

5.7. cusparseDestroySolveAnalysisInfo()
cusparseStatus_t
cusparseDestroySolveAnalysisInfo(cusparseSolveAnalysisInfo_t info)

This function destroys and releases any memory required by the structure.

Input

info the solve and analysis structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.8. cusparseDestroyHybMat()
cusparseStatus_t
cusparseDestroyHybMat(cusparseHybMat_t hybA)

This function destroys and releases any memory required by the hybA structure.
Input

hybA the hybrid format storage structure.

Status Returned

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 25

5.9. cusparseDestroyMatDescr()
cusparseStatus_t
cusparseDestroyMatDescr(cusparseMatDescr_t descrA)

This function releases the memory allocated for the matrix descriptor.
Input

descrA the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.10. cusparseDestroySolveAnalysisInfo()
cusparseStatus_t
cusparseDestroySolveAnalysisInfo(cusparseSolveAnalysisInfo_t info)

This function destroys and releases any memory required by the structure.

Input

info the solve and analysis structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.11. cusparseGetLevelInfo()
cusparseStatus_t
cusparseGetLevelInfo(cusparseHandle_t handle,
 cusparseSolveAnalysisInfo_t info,
 int *nlevels,
 int **levelPtr,
 int **levelInd)

This function returns the number of levels and the assignment of rows into the levels
computed by either the csrsv_analysis, csrsm_analysis or hybsv_analysis routines.
Input

handle handle to the cuSPARSE library context.

info the pointer to the solve and analysis structure.

Output

nlevels number of levels.

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 26

levelPtr integer array of nlevels+1 elements that contains
the start of every level and the end of the last
level plus one.

levelInd integer array of m (number of rows in the matrix)
elements that contains the row indices belonging
to every level.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library or the solve analysis structure was not
initialized.

5.12. cusparseGetMatDiagType()
cusparseDiagType_t
cusparseGetMatDiagType(const cusparseMatDescr_t descrA)

This function returns the DiagType field of the matrix descriptor descrA.
Input

descrA the matrix descriptor.

Returned

One of the enumerated diagType types.

5.13. cusparseGetMatFillMode()
cusparseFillMode_t
cusparseGetMatFillMode(const cusparseMatDescr_t descrA)

This function returns the FillMode field of the matrix descriptor descrA.
Input

descrA the matrix descriptor.

Returned

One of the enumerated fillMode types.

5.14. cusparseGetMatIndexBase()
cusparseIndexBase_t
cusparseGetMatIndexBase(const cusparseMatDescr_t descrA)

This function returns the IndexBase field of the matrix descriptor descrA.
Input

descrA the matrix descriptor.

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 27

Returned

One of the enumerated indexBase types.

5.15. cusparseGetMatType()
cusparseMatrixType_t
cusparseGetMatType(const cusparseMatDescr_t descrA)

This function returns the MatrixType field of the matrix descriptor descrA.
Input

descrA the matrix descriptor.

Returned

One of the enumerated matrix types.

5.16. cusparseGetPointerMode()
cusparseStatus_t
cusparseGetPointerMode(cusparseHandlet handle,
 cusparsePointerMode_t *mode)

This function obtains the pointer mode used by the cuSPARSE library. Please see the
section on the cusparsePointerMode_t type for more details.
Input

handle the handle to the cuSPARSE context.

Output

mode One of the enumerated pointer mode types.

Status Returned

CUSPARSE_STATUS_SUCCESS the pointer mode was returned successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

5.17. cusparseGetVersion()
cusparseStatus_t
cusparseGetVersion(cusparseHandle_t handle, int *version)

This function returns the version number of the cuSPARSE library.
Input

handle the handle to the cuSPARSE context.

Output

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 28

version the version number of the library.

Status Returned

CUSPARSE_STATUS_SUCCESS the version was returned successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

5.18. cusparseSetMatDiagType()
cusparseStatus_t
cusparseSetMatDiagType(cusparseMatDescr_t descrA,
 cusparseDiagType_t diagType)

This function sets the DiagType field of the matrix descriptor descrA.
Input

diagType One of the enumerated diagType types.

Output

descrA the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the field DiagType was set successfully.

CUSPARSE_STATUS_INVALID_VALUE An invalid diagType parameter was passed.

5.19. cusparseSetMatFillMode()
cusparseStatus_t
cusparseSetMatFillMode(cusparseMatDescr_t descrA,
 cusparseFillMode_t fillMode)

This function sets the FillMode field of the matrix descriptor descrA.
Input

fillMode One of the enumerated fillMode types.

Output

descrA the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the FillMode field was set successfully.

CUSPARSE_STATUS_INVALID_VALUE An invalid fillMode parameter was passed.

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 29

5.20. cusparseSetMatIndexBase()
cusparseStatus_t
cusparseSetMatIndexBase(cusparseMatDescr_t descrA,
 cusparseIndexBase_t base)

This function sets the IndexBase field of the matrix descriptor descrA.
Input

base One of the enumerated indexBase types.

Output

descrA the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the IndexBase field was set successfully.

CUSPARSE_STATUS_INVALID_VALUE An invalid base parameter was passed.

5.21. cusparseSetMatType()
cusparseStatus_t
cusparseSetMatType(cusparseMatDescr_t descrA, cusparseMatrixType_t type)

This function sets the MatrixType field of the matrix descriptor descrA.
Input

type One of the enumerated matrix types.

Output

descrA the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the MatrixType field was set successfully.

CUSPARSE_STATUS_INVALID_VALUE An invalid type parameter was passed.

5.22. cusparseSetPointerMode()
cusparseStatus_t
cusparseSetPointerMode(cusparseHandle_t handle,
 cusparsePointerMode_t mode)

This function sets the pointer mode used by the cuSPARSE library. The default is
for the values to be passed by reference on the host. Please see the section on the
cublasPointerMode_t type for more details.
Input

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 30

handle the handle to the cuSPARSE context.

mode One of the enumerated pointer mode types.

Status Returned

CUSPARSE_STATUS_SUCCESS the pointer mode was set successfully.

CUSPARSE_STATUS_INVALID_VALUE the library was not initialized.

5.23. cusparseSetStream()
cusparseStatus_t
cusparseSetStream(cusparseHandle_t handle, cudaStream_t streamId)

This function sets the stream to be used by the cuSPARSE library to execute its routines.
Input

handle the handle to the cuSPARSE context.

streamId the stream to be used by the library.

Status Returned

CUSPARSE_STATUS_SUCCESS the stream was set successfully.

CUSPARSE_STATUS_INVALID_VALUE the library was not initialized.

5.24. cusparseCreateCsrsv2Info()

cusparseStatus_t
cusparseCreateCsrsv2Info(csrsv2Info_t *info);

This function creates and initializes the solve and analysis structure of csrsv2 to default
values.
Input

info the pointer to the solve and analysis structure of
csrsv2.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.25. cusparseDestroyCsrsv2Info()

cusparseStatus_t
cusparseDestroyCsrsv2Info(csrsv2Info_t info);

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 31

This function destroys and releases any memory required by the structure.

Input

info the solve (csrsv2_solve) and analysis
(csrsv2_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.26. cusparseCreateCsric02Info()

cusparseStatus_t
cusparseCreateCsric02Info(csric02Info_t *info);

This function creates and initializes the solve and analysis structure of incomplete
Cholesky to default values.
Input

info the pointer to the solve and analysis structure of
incomplete Cholesky.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.27. cusparseDestroyCsric02Info()

cusparseStatus_t
cusparseDestroyCsric02Info(csric02Info_t info);

This function destroys and releases any memory required by the structure.

Input

info the solve (csric02_solve) and analysis
(csric02_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.28. cusparseCreateCsrilu02Info()

cusparseStatus_t
cusparseCreateCsrilu02Info(csrilu02Info_t *info);

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 32

This function creates and initializes the solve and analysis structure of incomplete LU to
default values.
Input

info the pointer to the solve and analysis structure of
incomplete LU.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.29. cusparseDestroyCsrilu02Info()

cusparseStatus_t
cusparseDestroyCsrilu02Info(csrilu02Info_t info);

This function destroys and releases any memory required by the structure.

Input

info the solve (csrilu02_solve) and analysis
(csrilu02_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.30. cusparseCreateBsrsv2Info()

cusparseStatus_t
cusparseCreateBsrsv2Info(bsrsv2Info_t *info);

This function creates and initializes the solve and analysis structure of bsrsv2 to default
values.
Input

info the pointer to the solve and analysis structure of
bsrsv2.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 33

5.31. cusparseDestroyBsrsv2Info()

cusparseStatus_t
cusparseDestroyBsrsv2Info(bsrsv2Info_t info);

This function destroys and releases any memory required by the structure.

Input

info the solve (bsrsv2_solve) and analysis
(bsrsv2_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.32. cusparseCreateBsrsm2Info()

cusparseStatus_t
cusparseCreateBsrsm2Info(bsrsm2Info_t *info);

This function creates and initializes the solve and analysis structure of bsrsm2 to default
values.
Input

info the pointer to the solve and analysis structure of
bsrsm2.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.33. cusparseDestroyBsrsm2Info()

cusparseStatus_t
cusparseDestroyBsrsm2Info(bsrsm2Info_t info);

This function destroys and releases any memory required by the structure.

Input

info the solve (bsrsm2_solve) and analysis
(bsrsm2_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 34

5.34. cusparseCreateBsric02Info()

cusparseStatus_t
cusparseCreateBsric02Info(bsric02Info_t *info);

This function creates and initializes the solve and analysis structure of block incomplete
Cholesky to default values.
Input

info the pointer to the solve and analysis structure of
block incomplete Cholesky.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.35. cusparseDestroyBsric02Info()

cusparseStatus_t
cusparseDestroyBsric02Info(bsric02Info_t info);

This function destroys and releases any memory required by the structure.

Input

info the solve (bsric02_solve) and analysis
(bsric02_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.36. cusparseCreateBsrilu02Info()

cusparseStatus_t
cusparseCreateBsrilu02Info(bsrilu02Info_t *info);

This function creates and initializes the solve and analysis structure of block incomplete
LU to default values.
Input

info the pointer to the solve and analysis structure of
block incomplete LU.

Status Returned

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 35

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.37. cusparseDestroyBsrilu02Info()

cusparseStatus_t
cusparseDestroyBsrilu02Info(bsrilu02Info_t info);

This function destroys and releases any memory required by the structure.

Input

info the solve (bsrilu02_solve) and analysis
(bsrilu02_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.38. cusparseCreateCsrgemm2Info()

cusparseStatus_t
cusparseCreateCsrgemm2Info(csrgemm2Info_t *info);

This function creates and initializes analysis structure of general sparse matrix-matrix
multiplication.
Input

info the pointer to the analysis structure of general
sparse matrix-matrix multiplication.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.39. cusparseDestroyCsrgemm2Info()

cusparseStatus_t
cusparseDestroyCsrgemm2Info(csrgemm2Info_t info);

This function destroys and releases any memory required by the structure.

Input

info opaque structure of csrgemm2.

Status Returened

cuSPARSE Helper Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 36

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 37

Chapter 6.
CUSPARSE LEVEL 1 FUNCTION REFERENCE

This chapter describes sparse linear algebra functions that perform operations between
dense and sparse vectors.

6.1. cusparse<t>axpyi()
cusparseStatus_t
cusparseSaxpyi(cusparseHandle_t handle, int nnz,
 const float *alpha,
 const float *xVal, const int *xInd,
 float *y, cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseDaxpyi(cusparseHandle_t handle, int nnz,
 const double *alpha,
 const double *xVal, const int *xInd,
 double *y, cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseCaxpyi(cusparseHandle_t handle, int nnz,
 const cuComplex *alpha,
 const cuComplex *xVal, const int *xInd,
 cuComplex *y, cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseZaxpyi(cusparseHandle_t handle, int nnz,
 const cuDoubleComplex *alpha,
 const cuDoubleComplex *xVal, const int *xInd,
 cuDoubleComplex *y, cusparseIndexBase_t idxBase)

This function multiplies the vector x in sparse format by the constant and adds the
result to the vector y in dense format. This operation can be written as

In other words,
for i=0 to nnz-1
 y[xInd[i]-idxBase] = y[xInd[i]-idxBase] + alpha*xVal[i]

This function requires no extra storage. It is executed asynchronously with respect to the
host, and it may return control to the application on the host before the result is ready.
Input

cuSPARSE Level 1 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 38

handle handle to the cuSPARSE library context.

nnz number of elements in vector x.

alpha <type> scalar used for multiplication.

xVal <type> vector with nnz nonzero values of vector x.

xInd integer vector with nnz indices of the nonzero
values of vector x.

y <type> vector in dense format.

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

Output

y <type> updated vector in dense format (that is
unchanged if nnz == 0).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE the idxBase is neither
CUSPARSE_INDEX_BASE_ZERO nor
CUSPARSE_INDEX_BASE_ONE.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

6.2. cusparse<t>doti()
cusparseStatus_t
cusparseSdoti(cusparseHandle_t handle, int nnz,
 const float *xVal,
 const int *xInd, const float *y,
 float *resultDevHostPtr,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseDdoti(cusparseHandle_t handle, int nnz,
 const double *xVal,
 const int *xInd, const double *y,
 double *resultDevHostPtr,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseCdoti(cusparseHandle_t handle, int nnz,
 const cuComplex *xVal,
 const int *xInd, const cuComplex *y,
 cuComplex *resultDevHostPtr,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseZdoti(cusparseHandle_t handle, int nnz, const
 cuDoubleComplex *xVal,
 const int *xInd, const cuDoubleComplex *y,
 cuDoubleComplex *resultDevHostPtr,
 cusparseIndexBase_t idxBase)

cuSPARSE Level 1 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 39

This function returns the dot product of a vector x in sparse format and vector y in dense
format. This operation can be written as

In other words,
for i=0 to nnz-1
 resultDevHostPtr += xVal[i]*y[xInd[i-idxBase]]

This function requires some temporary extra storage that is allocated internally. It
is executed asynchronously with respect to the host and may return control to the
application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

nnz number of elements in vector x.

xVal <type> vector with nnz nonzero values of vector x.

xInd integer vector with nnz indices of the nonzero
values of vector x.

y <type> vector in dense format.

resultDevHostPtr pointer to the location of the result in the device
or host memory.

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

Output

resultDevHostPtr scalar result in the device or host memory (that is
zero if nnz == 0).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the reduction buffer could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE the idxBase is neither
CUSPARSE_INDEX_BASE_ZERO nor
CUSPARSE_INDEX_BASE_ONE.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Level 1 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 40

6.3. cusparse<t>dotci()
cusparseStatus_t
cusparseCdotci(cusparseHandle_t handle, int nnz,
 const cuComplex *xVal,
 const int *xInd, const cuComplex *y,
 cuComplex *resultDevHostPtr, cusparseIndexBase_t
 idxBase)
cusparseStatus_t
cusparseZdotci(cusparseHandle_t handle, int nnz,
 const cuDoubleComplex *xVal,
 const int *xInd, const cuDoubleComplex *y,
 cuDoubleComplex *resultDevHostPtr, cusparseIndexBase_t
 idxBase)

This function returns the dot product of a complex conjugate of vector x in sparse format
and vector y in dense format. This operation can be written as

In other words,
for i=0 to nnz-1
 resultDevHostPtr += *y[xInd[i-idxBase]]

This function requires some temporary extra storage that is allocated internally. It
is executed asynchronously with respect to the host and may return control to the
application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

nnz number of elements in vector x.

xVal <type> vector with nnz nonzero values of vector x.

xInd integer vector with nnz indices of the nonzero
values of vector x.

y <type> vector in dense format.

resultDevHostPtr pointer to the location of the result in the device
or host memory.

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

Output

resultDevHostPtr scalar result in the device or host memory (that is
zero if nnz == 0).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the reduction buffer could not be allocated.

cuSPARSE Level 1 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 41

CUSPARSE_STATUS_INVALID_VALUE the idxBase is neither
CUSPARSE_INDEX_BASE_ZERO nor
CUSPARSE_INDEX_BASE_ONE.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

6.4. cusparse<t>gthr()
cusparseStatus_t
cusparseSgthr(cusparseHandle_t handle, int nnz,
 const float *y,
 float *xVal, const int *xInd,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseDgthr(cusparseHandle_t handle, int nnz,
 const double *y,
 double *xVal, const int *xInd,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseCgthr(cusparseHandle_t handle, int nnz,
 const cuComplex *y,
 cuComplex *xVal, const int *xInd,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseZgthr(cusparseHandle_t handle, int nnz,
 const cuDoubleComplex *y,
 cuDoubleComplex *xVal, const int *xInd,
 cusparseIndexBase_t idxBase)

This function gathers the elements of the vector y listed in the index array xInd into the
data array xVal.

This function requires no extra storage. It is executed asynchronously with respect to the
host and it may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

nnz number of elements in vector x.

y <type> vector in dense format (of
size≥max(xInd)-idxBase+1).

xInd integer vector with nnz indices of the nonzero
values of vector x.

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

Output

xVal <type> vector with nnz nonzero values that were
gathered from vector y (that is unchanged if nnz
== 0).

cuSPARSE Level 1 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 42

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE the idxBase is neither
CUSPARSE_INDEX_BASE_ZERO nor
CUSPARSE_INDEX_BASE_ONE.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

6.5. cusparse<t>gthrz()
cusparseStatus_t
cusparseSgthrz(cusparseHandle_t handle, int nnz, float *y,
 float *xVal, const int *xInd,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseDgthrz(cusparseHandle_t handle, int nnz, double *y,
 double *xVal, const int *xInd,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseCgthrz(cusparseHandle_t handle, int nnz, cuComplex *y,
 cuComplex *xVal, const int *xInd,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseZgthrz(cusparseHandle_t handle, int nnz, cuDoubleComplex *y,
 cuDoubleComplex *xVal, const int *xInd,
 cusparseIndexBase_t idxBase)

This function gathers the elements of the vector y listed in the index array xInd into the
data array xVal. Also, it zeros out the gathered elements in the vector y.

This function requires no extra storage. It is executed asynchronously with respect to the
host, and it may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

nnz number of elements in vector x.

y <type> vector in dense format (of
size≥max(xInd)-idxBase+1).

xInd integer vector with nnz indices of the nonzero
values of vector x.

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

Output

xVal <type> vector with nnz nonzero values that were
gathered from vector y (that is unchanged if nnz
== 0).

cuSPARSE Level 1 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 43

y <type> vector in dense format with elements
indexed by xInd set to zero (it is unchanged if nnz
== 0).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE the idxBase is neither
CUSPARSE_INDEX_BASE_ZERO nor
CUSPARSE_INDEX_BASE_ONE.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

6.6. cusparse<t>roti()
cusparseStatus_t
cusparseSroti(cusparseHandle_t handle, int nnz, float *xVal,
 const int *xInd,
 float *y, const float *c, const float *s,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseDroti(cusparseHandle_t handle, int nnz, double *xVal,
 const int *xInd,
 double *y, const double *c, const double *s,
 cusparseIndexBase_t idxBase)

This function applies the Givens rotation matrix

to sparse x and dense y vectors. In other words,
for i=0 to nnz-1
 y[xInd[i]-idxBase] = c * y[xInd[i]-idxBase] - s*xVal[i]
 x[i] = c * xVal[i] + s * y[xInd[i]-idxBase]

Input

handle handle to the cuSPARSE library context.

nnz number of elements in vector x.

xVal <type> vector with nnz nonzero values of vector x.

xInd integer vector with nnz indices of the nonzero
values of vector x.

y <type> vector in dense format.

c cosine element of the rotation matrix.

s sine element of the rotation matrix.

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

cuSPARSE Level 1 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 44

Output

xVal <type> updated vector in sparse format (that is
unchanged if nnz == 0).

y <type> updated vector in dense format (that is
unchanged if nnz == 0).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE the idxBase is neither
CUSPARSE_INDEX_BASE_ZERO nor
CUSPARSE_INDEX_BASE_ONE.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

6.7. cusparse<t>sctr()
cusparseStatus_t
cusparseSsctr(cusparseHandle_t handle, int nnz,
 const float *xVal,
 const int *xInd, float *y,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseDsctr(cusparseHandle_t handle, int nnz,
 const double *xVal,
 const int *xInd, double *y,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseCsctr(cusparseHandle_t handle, int nnz,
 const cuComplex *xVal,
 const int *xInd, cuComplex *y,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseZsctr(cusparseHandle_t handle, int nnz,
 const cuDoubleComplex *xVal,
 const int *xInd, cuDoubleComplex *y,
 cusparseIndexBase_t idxBase)

This function scatters the elements of the vector x in sparse format into the vector y in
dense format. It modifies only the elements of y whose indices are listed in the array
xInd.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

nnz number of elements in vector x.

xVal <type> vector with nnz nonzero values of vector x.

cuSPARSE Level 1 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 45

xInd integer vector with nnz indices of the nonzero
values of vector x.

y <type> dense vector (of size≥max(xInd)-
idxBase+1).

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

Output

y <type> vector with nnz nonzero values that were
scattered from vector x (that is unchanged if nnz
== 0).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE the idxBase is neither
CUSPARSE_INDEX_BASE_ZERO nor
CUSPARSE_INDEX_BASE_ONE..

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 46

Chapter 7.
CUSPARSE LEVEL 2 FUNCTION REFERENCE

This chapter describes the sparse linear algebra functions that perform operations
between sparse matrices and dense vectors.

In particular, the solution of sparse triangular linear systems is implemented in two
phases. First, during the analysis phase, the sparse triangular matrix is analyzed
to determine the dependencies between its elements by calling the appropriate
csrsv_analysis() function. The analysis is specific to the sparsity pattern of the given
matrix and to the selected cusparseOperation_t type. The information from the
analysis phase is stored in the parameter of type cusparseSolveAnalysisInfo_t that
has been initialized previously with a call to cusparseCreateSolveAnalysisInfo().

Second, during the solve phase, the given sparse triangular linear system is solved using
the information stored in the cusparseSolveAnalysisInfo_t parameter by calling
the appropriate csrsv_solve() function. The solve phase may be performed multiple
times with different right-hand sides, while the analysis phase needs to be performed
only once. This is especially useful when a sparse triangular linear system must be
solved for a set of different right-hand sides one at a time, while its coefficient matrix
remains the same.

Finally, once all the solves have completed, the opaque data structure pointed to
by the cusparseSolveAnalysisInfo_t parameter can be released by calling
cusparseDestroySolveAnalysisInfo(). For more information please refer to [3].

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 47

7.1. cusparse<t>bsrmv()
cusparseStatus_t
cusparseSbsrmv(cusparseHandle_t handle, cusparseDirection_t dir,
 cusparseOperation_t trans, int mb, int nb, int nnzb,
 const float *alpha, const cusparseMatDescr_t descr,
 const float *bsrVal, const int *bsrRowPtr, const int *bsrColInd,
 int blockDim, const float *x,
 const float *beta, float *y)
cusparseStatus_t
cusparseDbsrmv(cusparseHandle_t handle, cusparseDirection_t dir,
 cusparseOperation_t trans, int mb, int nb, int nnzb,
 const double *alpha, const cusparseMatDescr_t descr,
 const double *bsrVal, const int *bsrRowPtr, const int *bsrColInd,
 int blockDim, const double *x,
 const double *beta, double *y)
cusparseStatus_t
cusparseCbsrmv(cusparseHandle_t handle, cusparseDirection_t dir,
 cusparseOperation_t trans, int mb, int nb, int nnzb,
 const cuComplex *alpha, const cusparseMatDescr_t descr,
 const cuComplex *bsrVal, const int *bsrRowPtr, const int *bsrColInd,
 int blockDim, const cuComplex *x,
 const cuComplex *beta, cuComplex *y)
cusparseStatus_t
cusparseZbsrmv(cusparseHandle_t handle, cusparseDirection_t dir,
 cusparseOperation_t trans, int mb, int nb, int nnzb,
 const cuDoubleComplex *alpha, const cusparseMatDescr_t descr,
 const cuDoubleComplex *bsrVal, const int *bsrRowPtr, const int
 *bsrColInd,
 int blockDim, const cuDoubleComplex *x,
 const cuDoubleComplex *beta, cuDoubleComplex *y)

This function performs the matrix-vector operation

where sparse matrix that is defined in BSR storage
format by the three arrays bsrVal, bsrRowPtr, and bsrColInd); x and y are vectors;

 are scalars; and

Several comments on bsrmv():

‣ Only CUSPARSE_OPERATION_NON_TRANSPOSE is supported, that is

‣ Only CUSPARSE_MATRIX_TYPE_GENERAL is supported.
‣ The size of vector x should be at least, and the size of vector

y should be at least; otherwise, the kernel may return
CUSPARSE_STATUS_EXECUTION_FAILED because of an out-of-bounds array.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 48

For example, suppose the user has a CSR format and wants to try bsrmv(), the
following code demonstrates how to use csr2bsr() conversion and bsrmv()
multiplication in single precision.
// Suppose that A is m x n sparse matrix represented by CSR format,
// hx is a host vector of size n, and hy is also a host vector of size m.
// m and n are not multiple of blockDim.
// step 1: transform CSR to BSR with column-major order
int base, nnz;
cusparseDirection_t dirA = CUSPARSE_DIRECTION_COLUMN;
int mb = (m + blockDim-1)/blockDim;
int nb = (n + blockDim-1)/blockDim;
cudaMalloc((void**)&bsrRowPtrC, sizeof(int) *(mb+1));
cusparseXcsr2bsrNnz(handle, dirA, m, n,
 descrA, csrRowPtrA, csrColIndA, blockDim,
 descrC, bsrRowPtrC);
cudaMemcpy(&nnzb, bsrRowPtrC+mb, sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(&base, bsrRowPtrC, sizeof(int), cudaMemcpyDeviceToHost);
nnzb -= base;
cudaMalloc((void**)&bsrColIndC, sizeof(int)*nnzb);
cudaMalloc((void**)&bsrValC, sizeof(float)*(blockDim*blockDim)*nnzb);
cusparseScsr2bsr(handle, dirA, m, n,
 descrA, csrValA, csrRowPtrA, csrColIndA, blockDim,
 descrC, bsrValC, bsrRowPtrC, bsrColIndC);
// step 2: allocate vector x and vector y large enough for bsrmv
cudaMalloc((void**)&x, sizeof(float)*(nb*blockDim));
cudaMalloc((void**)&y, sizeof(float)*(mb*blockDim));
cudaMemcpy(x, hx, sizeof(float)*n, cudaMemcpyHostToDevice);
cudaMemcpy(y, hy, sizeof(float)*m, cudaMemcpyHostToDevice);
// step 3: perform bsrmv
cusparseSbsrmv(handle, dirA, transA, mb, nb, alpha, descrC, bsrValC, bsrRowPtrC,
 bsrColIndC, blockDim, x, beta, y);

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

trans the operation . Only
CUSPARSE_OPERATION_NON_TRANSPOSE is
supported.

mb number of block rows of matrix .

nb number of block columns of matrix .

nnzb number of nonzero blocks of matrix .

alpha <type> scalar used for multiplication.

descr the descriptor of matrix . The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrVal <type> array of nnz csrRowPtrA(mb)
csrRowPtrA(0) nonzero blocks of matrix .

bsrRowPtr integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 49

bsrColInd integer array of nnz csrRowPtrA(mb)
csrRowPtrA(0) column indices of the nonzero
blocks of matrix .

blockDim block dimension of sparse matrix , larger than
zero.

x <type> vector of elements.

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

y <type> vector of elements.

Output

y <type> updated vector.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were
passed (m,n,nnz<0, trans !=
CUSPARSE_OPERATION_NON_TRANSPOSE,

, dir is not row-major or column-
major, or IndexBase of descr is not base-0 or
base-1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 50

7.2. cusparse<t>bsrxmv()

cusparseStatus_t
cusparseSbsrxmv(cusparseHandle_t handle,
 cusparseDirection_t dir,
 cusparseOperation_t trans,
 int sizeOfMask,
 int mb,
 int nb,
 int nnzb,
 const float *alpha,
 const cusparseMatDescr_t descr,
 const float *bsrVal,
 const int *bsrMaskPtr,
 const int *bsrRowPtr,
 const int *bsrEndPtr,
 const int *bsrColInd,
 int blockDim,
 const float *x,
 const float *beta,
 float *y)
cusparseStatus_t
cusparseDbsrxmv(cusparseHandle_t handle,
 cusparseDirection_t dir,
 cusparseOperation_t trans,
 int sizeOfMask,
 int mb,
 int nb,
 int nnzb,
 const double *alpha,
 const cusparseMatDescr_t descr,
 const double *bsrVal,
 const int *bsrMaskPtr,
 const int *bsrRowPtr,
 const int *bsrEndPtr,
 const int *bsrColInd,
 int blockDim,
 const double *x,
 const double *beta,
 double *y)
cusparseStatus_t
cusparseCbsrxmv(cusparseHandle_t handle,
 cusparseDirection_t dir,
 cusparseOperation_t trans,
 int sizeOfMask,
 int mb,
 int nb,
 int nnzb,
 const cuComplex *alpha,
 const cusparseMatDescr_t descr,
 const cuComplex *bsrVal,
 const int *bsrMaskPtr,
 const int *bsrRowPtr,
 const int *bsrEndPtr,
 const int *bsrColInd,
 int blockDim,
 const cuComplex *x,
 const cuComplex *beta,
 cuComplex *y)
cusparseStatus_t
cusparseZbsrxmv(cusparseHandle_t handle,
 cusparseDirection_t dir,
 cusparseOperation_t trans,
 int sizeOfMask,
 int mb,
 int nb,
 int nnzb,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descr,
 const cuDoubleComplex *bsrVal,
 const int *bsrMaskPtr,
 const int *bsrRowPtr,
 const int *bsrEndPtr,
 const int *bsrColInd,
 int blockDim,
 const cuDoubleComplex *x,
 const cuDoubleComplex *beta,
 cuDoubleComplex *y)

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 51

This function performs a bsrmv and a mask operation

where sparse matrix that is defined in BSRX
storage format by the four arrays bsrVal, bsrRowPtr, bsrEndPtr, and bsrColInd); x
and y are vectors; are scalars; and

The mask operation is defined by array bsrMaskPtr which contains updated block row
indices of . If row is not specified in bsrMaskPtr, then bsrxmv() does not touch row
block of and .

For example, consider the block matrix :

and its one-based BSR format (three vector form) is

Suppose we want to do the following bsrmv operation on a matrix which is slightly
different from .

We don’t need to create another BSR format for the new matrix , all that we should
do is to keep bsrVal and bsrColInd unchanged, but modify bsrRowPtr and add an
additional array bsrEndPtr which points to the last nonzero elements per row of plus
1.

For example, the following bsrRowPtr and bsrEndPtr can represent matrix :

Further we can use a mask operator (specified by array bsrMaskPtr) to update
particular block row indices of only because is never changed. In this case,
bsrMaskPtr [2] and sizeOfMask=1.

The mask operator is equivalent to the following operation:

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 52

If a block row is not present in the bsrMaskPtr, then no calculation is performed on that
row, and the corresponding value in y is unmodified. The question mark "?" is used to
inidcate row blocks not in bsrMaskPtr.

In this case, first row block is not present in bsrMaskPtr, so bsrRowPtr[0] and
bsrEndPtr[0] are not touched also.

A couple of comments on bsrxmv():

‣ Only CUSPARSE_OPERATION_NON_TRANSPOSE and
CUSPARSE_MATRIX_TYPE_GENERAL are supported.

‣ Parameters bsrMaskPtr, bsrRowPtr, bsrEndPtr and bsrColInd are consistent
with base index, either one-based or zero-based. The above example is one-based.

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

trans the operation . Only
CUSPARSE_OPERATION_NON_TRANSPOSE is
supported.

sizeOfMask number of updated block rows of .

mb number of block rows of matrix .

nb number of block columns of matrix .

nnzb number of nonzero blocks of matrix .

alpha <type> scalar used for multiplication.

descr the descriptor of matrix . The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrVal <type> array of nnz nonzero blocks of matrix .

bsrMaskPtr integer array of sizeOfMask elements that
contains the indices corresponding to updated
block rows.

bsrRowPtr integer array of mb elements that contains the
start of every block row.

bsrEndPtr integer array of mb elements that contains the end
of the every block row plus one.

bsrColInd integer array of nnzb column indices of the
nonzero blocks of matrix .

blockDim block dimension of sparse matrix , larger than
zero.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 53

x <type> vector of elements.

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

y <type> vector of elements.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were
passed (m,n,nnz<0, trans !=
CUSPARSE_OPERATION_NON_TRANSPOSE,

, dir is not row-major or column-
major, or IndexBase of descr is not base-0 or
base-1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 54

7.3. cusparse<t>csrmv()
cusparseStatus_t
cusparseScsrmv(cusparseHandle_t handle, cusparseOperation_t transA,
 int m, int n, int nnz, const float *alpha,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 const float *x, const float *beta,
 float *y)
cusparseStatus_t
cusparseDcsrmv(cusparseHandle_t handle, cusparseOperation_t transA,
 int m, int n, int nnz, const double *alpha,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 const double *x, const double *beta,
 double *y)
cusparseStatus_t
cusparseCcsrmv(cusparseHandle_t handle, cusparseOperation_t transA,
 int m, int n, int nnz, const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 const cuComplex *x, const cuComplex *beta,
 cuComplex *y)
cusparseStatus_t
cusparseZcsrmv(cusparseHandle_t handle, cusparseOperation_t transA,
 int m, int n, int nnz, const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 const cuDoubleComplex *x, const cuDoubleComplex *beta,
 cuDoubleComplex *y)

This function performs the matrix-vector operation

A is an m×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are vectors; are scalars; and

When using the (conjugate) transpose of a general matrix or a Hermitian/symmetric
matrix, this routine may produce slightly different results during different runs with
the same input parameters. For these matrix types it uses atomic operations to compute
the final result, consequently many threads may be adding floating point numbers to
the same memory location without any specific ordering, which may produce slightly
different results for each run.

If exactly the same output is required for any input when multiplying by the transpose
of a general matrix, the following procedure can be used:

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 55

1. Convert the matrix from CSR to CSC format using one of the csr2csc() functions.
Notice that by interchanging the rows and columns of the result you are implicitly
transposing the matrix.

2. Call the csrmv() function with the cusparseOperation_t parameter set to
CUSPARSE_OPERATION_NON_TRANSPOSE and with the interchanged rows and columns
of the matrix stored in CSC format. This (implicitly) multiplies the vector by the
transpose of the matrix in the original CSR format.

This function requires no extra storage for the general matrices when operation
CUSPARSE_OPERATION_NON_TRANSPOSE is selected. It requires some extra storage for
Hermitian/symmetric matrices and for the general matrices when an operation different
than CUSPARSE_OPERATION_NON_TRANSPOSE is selected. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.
Input

handle handle to the cuSPARSE library context.

trans the operation .

m number of rows of matrix A.

n number of columns of matrix A.

nnz number of nonzero elements of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
CUSPARSE_MATRIX_TYPE_SYMMETRIC,
and CUSPARSE_MATRIX_TYPE_HERMITIAN.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

x <type> vector of n elements if , and m

elements if or

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

y <type> vector of m elements if , and n

elements if or

Output

y <type> updated vector.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 56

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision
(compute capability (c.c.) >= 1.3 required),
symmetric/Hermitian matrix (c.c. >= 1.2
required), or transpose operation (c.c. >= 1.1
required).

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 57

7.4. cusparse<t>gemvi()
cusparseStatus_t
cusparseSgemvi(cusparseHandle_t handle, cusparseOperation_t transA,
 int m, int n, const float *alpha,
 const float *A,
 int lda, int nnz,
 const float *x,
 const int *xInd,
 const float *beta,
 float *y,
 cusparseIndexBase_t idxBase,
 void *pBuffer)
cusparseStatus_t
cusparseDgemvi(cusparseHandle_t handle, cusparseOperation_t transA,
 int m, int n, const double *alpha,
 const double *A,
 int lda, int nnz,
 const double *x,
 const int *xInd,
 const double *beta,
 double *y,
 cusparseIndexBase_t idxBase,
 void *pBuffer)
cusparseStatus_t
cusparseCgemvi(cusparseHandle_t handle, cusparseOperation_t transA,
 int m, int n, const cuComplex *alpha,
 const cuComplex *A,
 int lda, int nnz,
 const cuComplex *x,
 const int *xInd,
 const cuComplex *beta,
 cuComplex *y,
 cusparseIndexBase_t idxBase,
 void *pBuffer)
cusparseStatus_t
cusparseCgemvi(cusparseHandle_t handle, cusparseOperation_t transA,
 int m, int n, const cuDoubleComplex *alpha,
 const cuDoubleComplex *A,
 int lda, int nnz,
 const cuDoubleComplex *x,
 const int *xInd,
 const cuDoubleComplex *beta,
 cuDoubleComplex *y,
 cusparseIndexBase_t idxBase,
 void *pBuffer)

This function performs the matrix-vector operation

A is an m×n dense matrix and a sparse vector x that is defined in a sparse storage format
by the two arrays xVal, xInd of length nnz, and y is a dense vector; are scalars;
and

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 58

To simplify the implementation, we have not (yet) optimized the transpose multiple
case. We recommend the following for users interested in this case.

1. Convert the matrix from CSR to CSC format using one of the csr2csc() functions.
Notice that by interchanging the rows and columns of the result you are implicitly
transposing the matrix.

2. Call the gemvi() function with the cusparseOperation_t parameter set to
CUSPARSE_OPERATION_NON_TRANSPOSE and with the interchanged rows and columns
of the matrix stored in CSC format. This (implicitly) multiplies the vector by the
transpose of the matrix in the original CSR format.

This function requires no extra storage for the general matrices when operation
CUSPARSE_OPERATION_NON_TRANSPOSE is selected. It requires some extra storage for
Hermitian/symmetric matrices and for the general matrices when an operation different
than CUSPARSE_OPERATION_NON_TRANSPOSE is selected. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.
Input

handle handle to the cuSPARSE library context.

trans the operation .

m number of rows of matrix A.

n number of columns of matrix A.

alpha <type> scalar used for multiplication.

A the pointer to dense matrix A.

lda size of the leading dimension of A.

nnz number of nonzero elements of vector x.

x <type> sparse vector of nnz elements of size n if

, and size m if or

xInd Indices of non-zero values in x

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

y <type> dense vector of m elements if , and

n elements if or

idxBase 0 or 1, for 0 based or 1 based indexing,
respectively

pBuffer working space buffer, of size given by
Xgemvi_getBufferSize()

Output

y <type> updated dense vector.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 59

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision
(compute capability (c.c.) >= 1.3 required),
symmetric/Hermitian matrix (c.c. >= 1.2
required), or transpose operation (c.c. >= 1.1
required).

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

7.5. cusparse<t>gemvi_bufferSize()

cusparseStatus_t
cusparseSgemvi_bufferSize(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int n,
 int nnz,
 int *pBufferSize)

cusparseStatus_t
cusparseDgemvi_bufferSize(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int n,
 int nnz,
 int *pBufferSize)

cusparseStatus_t
cusparseCgemvi_bufferSize(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int n,
 int nnz,
 int *pBufferSize)

cusparseStatus_t
cusparseZgemvi_bufferSize(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int n,
 int nnz,
 int *pBufferSize)

This function returns size of buffer used in gemvi()

A is an (m)x(n) dense matrix.

Input

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 60

handle handle to the cuSPARSE library context.

transA the operation op(A).

m number of rows of matrix A.

n number of columns of matrix Y.

nnz number of nonzero entries of vector x multiplying
A.

Output

pBufferSize number of elements needed the buffer used in
gemvi().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n, nnz<=0)

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 61

7.6. cusparse<t>bsrsv2_bufferSize()

cusparseStatus_t
cusparseSbsrsv2_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseDbsrsv2_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseCbsrsv2_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseZbsrsv2_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 int *pBufferSizeInBytes);

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 62

This function returns size of the buffer used in bsrsv2, a new sparse triangular linear
system op(A)*y = x.

A is an (mb*blockDim)x(mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA); x and y are the
right-hand-side and the solution vectors; is a scalar; and

Although there are six combinations in terms of parameter trans and the upper (lower)
triangular part of A, bsrsv2_bufferSize() returns the maximum size buffer among
these combinations. The buffer size depends on the dimensions mb, blockDim, and
the number of nonzero blocks of the matrix nnzb. If the user changes the matrix, it is
necessary to call bsrsv2_bufferSize() again to have the correct buffer size; otherwise
a segmentation fault may occur.
Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

transA the operation .

mb number of block rows of matrix A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A; must be larger
than zero.

Output

info record of internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in the
bsrsv2_analysis() and bsrsv2_solve().

Status Returned

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 63

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nnzb<=0),
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 64

7.7. cusparse<t>bsrsv2_analysis()

cusparseStatus_t
cusparseSbsrsv2_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDbsrsv2_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCbsrsv2_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZbsrsv2_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 65

This function performs the analysis phase of bsrsv2, a new sparse triangular linear
system op(A)*y = x.

A is an (mb*blockDim)x(mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA); x and y are the
right-hand side and the solution vectors; is a scalar; and

The block of BSR format is of size blockDim*blockDim, stored as column-
major or row-major as determined by parameter dirA, which is either
CUSPARSE_DIRECTION_COLUMN or CUSPARSE_DIRECTION_ROW. The matrix type must
be CUSPARSE_MATRIX_TYPE_GENERAL, and the fill mode and diagonal type are ignored.

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a buffer size returned by bsrsv2_bufferSize(). The address of
pBuffer must be multiple of 128 bytes. If it is not, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Function bsrsv2_analysis() reports a structural zero and computes level
information, which stored in the opaque structure info. The level information can
extract more parallelism for a triangular solver. However bsrsv2_solve() can be done
without level information. To disable level information, the user needs to specify the
policy of the triangular solver as CUSPARSE_SOLVE_POLICY_NO_LEVEL.

Function bsrsv2_analysis() always reports the first structural zero, even when
parameter policy is CUSPARSE_SOLVE_POLICY_NO_LEVEL. No structural zero is
reported if CUSPARSE_DIAG_TYPE_UNIT is specified, even if block A(j,j) is missing
for some j. The user needs to call cusparseXbsrsv2_zeroPivot() to know where the
structural zero is.

It is the user's choice whether to call bsrsv2_solve() if bsrsv2_analysis() reports
a structural zero. In this case, the user can still call bsrsv2_solve(), which will return
a numerical zero at the same position as a structural zero. However the result x is
meaningless.
Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

transA the operation .

mb number of block rows of matrix A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 66

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

info structure initialized using
cusparseCreateBsrsv2Info().

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user, the size is return by
bsrsv2_bufferSize().

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nnzb<=0).

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 67

7.8. cusparse<t>bsrsv2_solve()

cusparseStatus_t
cusparseSbsrsv2_solve(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 const float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 const float *x,
 float *y,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDbsrsv2_solve(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 const double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 const double *x,
 double *y,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCbsrsv2_solve(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 const cuComplex *x,
 cuComplex *y,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZbsrsv2_solve(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 int mb,
 int nnzb,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsv2Info_t info,
 const cuDoubleComplex *x,
 cuDoubleComplex *y,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 68

This function performs the solve phase of bsrsv2, a new sparse triangular linear system
op(A)*y = x.

A is an (mb*blockDim)x(mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA); x and y are the
right-hand-side and the solution vectors; is a scalar; and

The block in BSR format is of size blockDim*blockDim, stored as column-
major or row-major as determined by parameter dirA, which is either
CUSPARSE_DIRECTION_COLUMN or CUSPARSE_DIRECTION_ROW. The matrix type must
be CUSPARSE_MATRIX_TYPE_GENERAL, and the fill mode and diagonal type are ignored.
Function bsrsv02_solve() can support an arbitrary blockDim.

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires a buffer size returned by bsrsv2_bufferSize(). The address of
pBuffer must be multiple of 128 bytes. If it is not, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Although bsrsv2_solve() can be done without level information, the user
still needs to be aware of consistency. If bsrsv2_analysis() is called with
policy CUSPARSE_SOLVE_POLICY_USE_LEVEL, bsrsv2_solve() can be run
with or without levels. On the other hand, if bsrsv2_analysis() is called
with CUSPARSE_SOLVE_POLICY_NO_LEVEL, bsrsv2_solve() can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL; otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

The level information may not improve the performance, but may spend extra
time doing analysis. For example, a tridiagonal matrix has no parallelism.
In this case, CUSPARSE_SOLVE_POLICY_NO_LEVEL performs better than
CUSPARSE_SOLVE_POLICY_USE_LEVEL. If the user has an iterative solver, the best
approach is to do bsrsv2_analysis() with CUSPARSE_SOLVE_POLICY_USE_LEVEL
once. Then do bsrsv2_solve() with CUSPARSE_SOLVE_POLICY_NO_LEVEL in the first
run, and with CUSPARSE_SOLVE_POLICY_USE_LEVEL in the second run, and pick the
fastest one to perform the remaining iterations.

Function bsrsv02_solve() has the same behavior as csrsv02_solve(). That
is, bsr2csr(bsrsv02(A)) = csrsv02(bsr2csr(A)). The numerical zero of
csrsv02_solve() means there exists some zero A(j,j). The numerical zero of
bsrsv02_solve() means there exists some block A(j,j) that is not invertible.

Function bsrsv2_solve() reports the first numerical zero, including a
structural zero. No numerical zero is reported if CUSPARSE_DIAG_TYPE_UNIT
is specified, even if A(j,j) is not invertible for some j. The user needs to call
cusparseXbsrsv2_zeroPivot() to know where the numerical zero is.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 69

For example, suppose L is a lower triangular matrix with unit diagonal, then the
following code solves L*y=x by level information.

// Suppose that L is m x m sparse matrix represented by BSR format,
// The number of block rows/columns is mb, and
// the number of nonzero blocks is nnzb.
// L is lower triangular with unit diagonal.
// Assumption:
// - dimension of matrix L is m(=mb*blockDim),
// - matrix L has nnz(=nnzb*blockDim*blockDim) nonzero elements,
// - handle is already created by cusparseCreate(),
// - (d_bsrRowPtr, d_bsrColInd, d_bsrVal) is BSR of L on device memory,
// - d_x is right hand side vector on device memory.
// - d_y is solution vector on device memory.
// - d_x and d_y are of size m.
cusparseMatDescr_t descr = 0;
bsrsv2Info_t info = 0;
int pBufferSize;
void *pBuffer = 0;
int structural_zero;
int numerical_zero;
const double alpha = 1.;
const cusparseSolvePolicy_t policy = CUSPARSE_SOLVE_POLICY_USE_LEVEL;
const cusparseOperation_t trans = CUSPARSE_OPERATION_NON_TRANSPOSE;
const cusparseDirection_t dir = CUSPARSE_DIRECTION_COLUMN;

// step 1: create a descriptor which contains
// - matrix L is base-1
// - matrix L is lower triangular
// - matrix L has unit diagonal, specified by parameter CUSPARSE_DIAG_TYPE_UNIT
// (L may not have all diagonal elements.)
cusparseCreateMatDescr(&descr);
cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatFillMode(descr, CUSPARSE_FILL_MODE_LOWER);
cusparseSetMatDiagType(descr, CUSPARSE_DIAG_TYPE_UNIT);

// step 2: create a empty info structure
cusparseCreateBsrsv2Info(&info);

// step 3: query how much memory used in bsrsv2, and allocate the buffer
cusparseDbsrsv2_bufferSize(handle, dir, trans, mb, nnzb, descr,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, &pBufferSize);

// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.
cudaMalloc((void**)&pBuffer, pBufferSize);

// step 4: perform analysis
cusparseDbsrsv2_analysis(handle, dir, trans, mb, nnzb, descr,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim,
 info, policy, pBuffer);
// L has unit diagonal, so no structural zero is reported.
status = cusparseXbsrsv2_zeroPivot(handle, info, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("L(%d,%d) is missing\n", structural_zero, structural_zero);
}

// step 5: solve L*y = x
cusparseDbsrsv2_solve(handle, dir, trans, mb, nnzb, &alpha, descr,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info,
 d_x, d_y, policy, pBuffer);
// L has unit diagonal, so no numerical zero is reported.
status = cusparseXbsrsv2_zeroPivot(handle, info, &numerical_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("L(%d,%d) is zero\n", numerical_zero, numerical_zero);
}

// step 6: free resources
cudaFree(pBuffer);
cusparseDestroyBsrsv2Info(info);
cusparseDestroyMatDescr(descr);
cusparseDestroy(handle);

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 70

Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

transA the operation .

mb number of block rows and block columns of matrix
A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

x <type> right-hand-side vector of size m.

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user, the size is returned
by bsrsv2_bufferSize().

Output

y <type> solution vector of size m.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nnzb<=0).

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_MAPPING_ERROR the texture binding failed.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 71

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

7.9. cusparseXbsrsv2_zeroPivot()

cusparseStatus_t
cusparseXbsrsv2_zeroPivot(cusparseHandle_t handle,
 bsrsv2Info_t info,
 int *position);

If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A(j,j) is either structural zero or numerical zero (singular block). Otherwise
position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXbsrsv2_zeroPivot() is a blocking call. It calls
cudaDeviceSynchronize() to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set the proper
mode with cusparseSetPointerMode().
Input

handle handle to the cuSPARSE library context.

info info contains a structural zero or numerical zero
if the user already called bsrsv2_analysis() or
bsrsv2_solve().

Output

position if no structural or numerical zero, position is -1;
otherwise if A(j,j) is missing or U(j,j) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE info is not valid.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 72

7.10. cusparse<t>csrsv_analysis()

cusparseStatus_t
cusparseScsrsv_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseDcsrsv_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseCcsrsv_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseZcsrsv_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)

This function performs the analysis phase of the solution of a sparse triangular linear
system

where A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are the right-hand-side and the
solution vectors; is a scalar; and

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 73

The routine csrsv_analysis supports analysis phase of csrsv_solve, csric0 and
csrilu0. The user has to be careful of which routine is called after csrsv_analysis.
The matrix descriptor must be the same for csrsv_analysis and its subsequent call to
csrsv_solve, csric0 and csrilu0.

For csrsv_solve, the matrix type must be CUSPARSE_MATRIX_TYPE_TRIANGULAR or
CUSPARSE_MATRIX_TYPE_GENERAL.

For csrilu0, the matrix type must be CUSPARSE_MATRIX_TYPE_GENERAL.

For csric0, the matrix type must be CUSPARSE_MATRIX_TYPE_SYMMETRIC or
CUSPARSE_MATRIX_TYPE_HERMITIAN.

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a significant amount of extra storage that is proportional to the
matrix size. It is executed asynchronously with respect to the host and may return
control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

trans the operation

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix . The supported matrix
types are CUSPARSE_MATRIX_TYPE_TRIANGULAR
and CUSPARSE_MATRIX_TYPE_GENERAL
for csrsv_solve,
CUSPARSE_MATRIX_TYPE_SYMMETRIC and
CUSPARSE_MATRIX_TYPE_HERMITIAN for
csric0, CUSPARSE_MATRIX_TYPE_GENERAL
for csrilu0, while the supported diagonal
types are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure initialized using
cusparseCreateSolveAnalysisInfo.

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 74

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

7.11. cusparse<t>csrsv_solve()
cusparseStatus_t
cusparseScsrsv_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, const float *alpha,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info,
 const float *x, float *y)
cusparseStatus_t
cusparseDcsrsv_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, const double *alpha,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info,
 const double *x, double *y)
cusparseStatus_t
cusparseCcsrsv_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info,
 const cuComplex *x, cuComplex *y)
cusparseStatus_t
cusparseZcsrsv_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info,
 const cuDoubleComplex *x, cuDoubleComplex *y)

This function performs the solve phase of the solution of a sparse triangular linear
system

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 75

where A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are the right-hand-side and the
solution vectors; is a scalar; and

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

trans the operation

m number of rows and columns of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX_TYPE_TRIANGULAR
and CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

x <type> right-hand-side vector of size m.

Output

y <type> solution vector of size m.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_MAPPING_ERROR the texture binding failed.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 76

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

7.12. cusparse<t>csrsv2_bufferSize()

cusparseStatus_t
cusparseScsrsv2_bufferSize(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseDcsrsv2_bufferSize(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseCcsrsv2_bufferSize(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseZcsrsv2_bufferSize(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 int *pBufferSizeInBytes);

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 77

This function returns the size of the buffer used in csrsv2, a new sparse triangular
linear system op(A)*y = x.

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are the right-hand-side and the
solution vectors; is a scalar; and

Although there are six combinations in terms of the parameter trans and the upper
(lower) triangular part of A, csrsv2_bufferSize() returns the maximum size buffer
of these combinations. The buffer size depends on the dimension and the number of
nonzero elements of the matrix. If the user changes the matrix, it is necessary to call
csrsv2_bufferSize() again to have the correct buffer size; otherwise, a segmentation
fault may occur.
Input

handle handle to the cuSPARSE library context.

transA the operation .

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

Output

info record of internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in the
csrsv2_analysis and csrsv2_solve.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 78

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 79

7.13. cusparse<t>csrsv2_analysis()

cusparseStatus_t
cusparseScsrsv2_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDcsrsv2_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCcsrsv2_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZcsrsv2_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

This function performs the analysis phase of csrsv2, a new sparse triangular linear
system op(A)*y = x.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 80

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are the right-hand-side and the
solution vectors; is a scalar; and

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a buffer size returned by csrsv2_bufferSize(). The address of
pBuffer must be multiple of 128 bytes. If it is not, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Function csrsv2_analysis() reports a structural zero and computes level information
that is stored in opaque structure info. The level information can extract more
parallelism for a triangular solver. However csrsv2_solve() can be done without
level information. To disable level information, the user needs to specify the policy of the
triangular solver as CUSPARSE_SOLVE_POLICY_NO_LEVEL.

Function csrsv2_analysis() always reports the first structural zero, even if the
policy is CUSPARSE_SOLVE_POLICY_NO_LEVEL. No structural zero is reported if
CUSPARSE_DIAG_TYPE_UNIT is specified, even if A(j,j) is missing for some j. The
user needs to call cusparseXcsrsv2_zeroPivot() to know where the structural zero
is.

It is the user's choice whether to call csrsv2_solve() if csrsv2_analysis() reports
a structural zero. In this case, the user can still call csrsv2_solve() which will return
a numerical zero in the same position as the structural zero. However the result x is
meaningless.
Input

handle handle to the cuSPARSE library context.

transA the operation .

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 81

info structure initialized using
cusparseCreateCsrsv2Info().

policy The supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user, the size is returned
by csrsv2_bufferSize().

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0).

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 82

7.14. cusparse<t>csrsv2_solve()

cusparseStatus_t
cusparseScsrsv2_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const float *alpha,
 const cusparseMatDescr_t descra,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 const float *x,
 float *y,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDcsrsv2_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const double *alpha,
 const cusparseMatDescr_t descra,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 const double *x,
 double *y,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCcsrsv2_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cuComplex *alpha,
 const cusparseMatDescr_t descra,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 const cuComplex *x,
 cuComplex *y,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZcsrsv2_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int nnz,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descra,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrsv2Info_t info,
 const cuDoubleComplex *x,
 cuDoubleComplex *y,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 83

This function performs the solve phase of csrsv2, a new sparse triangular linear system
op(A)*y = x.

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are the right-hand-side and the
solution vectors; is a scalar; and

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires the buffer size returned by csrsv2_bufferSize().
The address of pBuffer must be multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

Although csrsv2_solve() can be done without level information, the user
still needs to be aware of consistency. If csrsv2_analysis() is called with
policy CUSPARSE_SOLVE_POLICY_USE_LEVEL, csrsv2_solve() can be run
with or without levels. On the contrary, if csrsv2_analysis() is called with
CUSPARSE_SOLVE_POLICY_NO_LEVEL, csrsv2_solve() can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL; otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

The level information may not improve the performance but spend extra
time doing analysis. For example, a tridiagonal matrix has no parallelism.
In this case, CUSPARSE_SOLVE_POLICY_NO_LEVEL performs better than
CUSPARSE_SOLVE_POLICY_USE_LEVEL. If the user has an iterative solver, the best
approach is to do csrsv2_analysis() with CUSPARSE_SOLVE_POLICY_USE_LEVEL
once. Then do csrsv2_solve() with CUSPARSE_SOLVE_POLICY_NO_LEVEL in the first
run and with CUSPARSE_SOLVE_POLICY_USE_LEVEL in the second run, picking faster
one to perform the remaining iterations.

Function csrsv2_solve() reports the first numerical zero, including a structural zero.
If status is 0, no numerical zero was found. Furthermore, no numerical zero is reported
if CUSPARSE_DIAG_TYPE_UNIT is specified, even if A(j,j) is zero for some j. The user
needs to call cusparseXcsrsv2_zeroPivot() to know where the numerical zero is.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 84

For example, suppose L is a lower triangular matrix with unit diagonal, the following
code solves L*y=x by level information.

// Suppose that L is m x m sparse matrix represented by CSR format,
// L is lower triangular with unit diagonal.
// Assumption:
// - dimension of matrix L is m,
// - matrix L has nnz number zero elements,
// - handle is already created by cusparseCreate(),
// - (d_csrRowPtr, d_csrColInd, d_csrVal) is CSR of L on device memory,
// - d_x is right hand side vector on device memory,
// - d_y is solution vector on device memory.

cusparseMatDescr_t descr = 0;
csrsv2Info_t info = 0;
int pBufferSize;
void *pBuffer = 0;
int structural_zero;
int numerical_zero;
const double alpha = 1.;
const cusparseSolvePolicy_t policy = CUSPARSE_SOLVE_POLICY_USE_LEVEL;
const cusparseOperation_t trans = CUSPARSE_OPERATION_NON_TRANSPOSE;

// step 1: create a descriptor which contains
// - matrix L is base-1
// - matrix L is lower triangular
// - matrix L has unit diagonal, specified by parameter CUSPARSE_DIAG_TYPE_UNIT
// (L may not have all diagonal elements.)
cusparseCreateMatDescr(&descr);
cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatFillMode(descr, CUSPARSE_FILL_MODE_LOWER);
cusparseSetMatDiagType(descr, CUSPARSE_DIAG_TYPE_UNIT);

// step 2: create a empty info structure
cusparseCreateCsrsv2Info(&info);

// step 3: query how much memory used in csrsv2, and allocate the buffer
cusparseDcsrsv2_bufferSize(handle, trans, m, nnz, descr,
 d_csrVal, d_csrRowPtr, d_csrColInd, &pBufferSize);
// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.
cudaMalloc((void**)&pBuffer, pBufferSize);

// step 4: perform analysis
cusparseDcsrsv2_analysis(handle, trans, m, nnz, descr,
 d_csrVal, d_csrRowPtr, d_csrColInd,
 info, policy, pBuffer);
// L has unit diagonal, so no structural zero is reported.
status = cusparseXcsrsv2_zeroPivot(handle, info, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("L(%d,%d) is missing\n", structural_zero, structural_zero);
}

// step 5: solve L*y = x
cusparseDcsrsv2_solve(handle, trans, m, nnz, &alpha, descr,
 d_csrVal, d_csrRowPtr, d_csrColInd, info,
 d_x, d_y, policy, pBuffer);
// L has unit diagonal, so no numerical zero is reported.
status = cusparseXcsrsv2_zeroPivot(handle, info, &numerical_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("L(%d,%d) is zero\n", numerical_zero, numerical_zero);
}

// step 6: free resources
cudaFree(pBuffer);
cusparseDestroyCsrsv2Info(info);
cusparseDestroyMatDescr(descr);
cusparseDestroy(handle);

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 85

Input

handle handle to the cuSPARSE library context.

transA the operation .

m number of rows and columns of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

x <type> right-hand-side vector of size m.

policy The supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user, the size is return by
csrsv2_bufferSize.

Output

y <type> solution vector of size m.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0).

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_MAPPING_ERROR the texture binding failed.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 86

7.15. cusparseXcsrsv2_zeroPivot()
cusparseStatus_t
cusparseXcsrsv2_zeroPivot(cusparseHandle_t handle,
 csrsv2Info_t info,
 int *position);

If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A(j,j) has either a structural zero or a numerical zero. Otherwise position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXcsrsv2_zeroPivot() is a blocking call. It calls
cudaDeviceSynchronize() to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set the proper
mode with cusparseSetPointerMode().
Input

handle handle to the cuSPARSE library context.

info info contains structural zero or numerical zero if
the user already called csrsv2_analysis() or
csrsv2_solve().

Output

position if no structural or numerical zero, position is -1;
otherwise, if A(j,j) is missing or U(j,j) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE info is not valid.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 87

7.16. cusparse<t>hybmv()
cusparseStatus_t
cusparseShybmv(cusparseHandle_t handle, cusparseOperation_t transA,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA, const float *x,
 const float *beta, float *y)
cusparseStatus_t
cusparseDhybmv(cusparseHandle_t handle, cusparseOperation_t transA,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA, const double *x,
 const double *beta, double *y)
cusparseStatus_t
cusparseChybmv(cusparseHandle_t handle, cusparseOperation_t transA,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA, const cuComplex *x,
 const cuComplex *beta, cuComplex *y)
cusparseStatus_t
cusparseZhybmv(cusparseHandle_t handle, cusparseOperation_t transA,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA, const cuDoubleComplex *x,
 const cuDoubleComplex *beta, cuDoubleComplex *y)

This function performs the matrix-vector operation

A is an m×n sparse matrix that is defined in the HYB storage format by an opaque data
structure hybA, x and y are vectors, are scalars, and

Notice that currently only is supported.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

transA the operation (currently only is
supported).

m number of rows of matrix A.

n number of columns of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.

hybA the matrix A in HYB storage format.

x <type> vector of n elements.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 88

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

y <type> vector of m elements.

Output

y <type> updated vector.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE the internally stored HYB format parameters are
invalid.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

7.17. cusparse<t>hybsv_analysis()
cusparseStatus_t
cusparseShybsv_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 const cusparseMatDescr_t descrA,
 cusparseHybMat_t hybA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseDhybsv_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 const cusparseMatDescr_t descrA,
 cusparseHybMat_t hybA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseChybsv_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 const cusparseMatDescr_t descrA,
 cusparseHybMat_t hybA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseZhybsv_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 const cusparseMatDescr_t descrA,
 cusparseHybMat_t hybA,
 cusparseSolveAnalysisInfo_t info)

This function performs the analysis phase of the solution of a sparse triangular linear
system

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 89

A is an m×m sparse matrix that is defined in HYB storage format by an opaque data
structure hybA, x and y are the right-hand-side and the solution vectors, is a scalar,
and

Notice that currently only is supported.

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a significant amount of extra storage that is proportional to the
matrix size. It is executed asynchronously with respect to the host and may return
control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

transA the operation (currently only is
supported).

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_TRIANGULAR and
diagonal type USPARSE_DIAG_TYPE_NON_UNIT.

hybA the matrix A in HYB storage format.

info structure initialized using
cusparseCreateSolveAnalysisInfo().

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE the internally stored HYB format parameters are
invalid.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 90

7.18. cusparse<t>hybsv_solve()
cusparseStatus_t
cusparseShybsv_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 cusparseHybMat_t hybA,
 cusparseSolveAnalysisInfo_t info,
 const float *x, float *y)
cusparseStatus_t
cusparseDhybsv_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 cusparseHybMat_t hybA,
 cusparseSolveAnalysisInfo_t info,
 const double *x, double *y)
cusparseStatus_t
cusparseChybsv_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 cusparseHybMat_t hybA,
 cusparseSolveAnalysisInfo_t info,
 const cuComplex *x, cuComplex *y)
cusparseStatus_t
cusparseZhybsv_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 cusparseHybMat_t hybA,
 cusparseSolveAnalysisInfo_t info,
 const cuDoubleComplex *x, cuDoubleComplex *y)

This function performs the solve phase of the solution of a sparse triangular linear
system:

A is an m×m sparse matrix that is defined in HYB storage format by an opaque data
structure hybA, x and y are the right-hand-side and the solution vectors, is a scalar,
and

Notice that currently only is supported.

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

cuSPARSE Level 2 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 91

transA the operation (currently only is
supported).

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_TRIANGULAR and the
diagonal type is CUSPARSE_DIAG_TYPE_NON_UNIT.

hybA the matrix A in HYB storage format.

info structure with information collected during the
analysis phase (that should be passed to the solve
phase unchanged).

x <type> right-hand-side vector of size m.

Output

y <type> solution vector of size m.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE the internally stored hyb format parameters are
invalid.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_MAPPING_ERROR the texture binding failed.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 92

Chapter 8.
CUSPARSE LEVEL 3 FUNCTION REFERENCE

This chapter describes sparse linear algebra functions that perform operations between
sparse and (usually tall) dense matrices.

In particular, the solution of sparse triangular linear systems with multiple right-
hand sides is implemented in two phases. First, during the analysis phase, the sparse
triangular matrix is analyzed to determine the dependencies between its elements
by calling the appropriate csrsm_analysis() function. The analysis is specific to
the sparsity pattern of the given matrix and to the selected cusparseOperation_t
type. The information from the analysis phase is stored in the parameter of type
cusparseSolveAnalysisInfo_t that has been initialized previously with a call to
cusparseCreateSolveAnalysisInfo().

Second, during the solve phase, the given sparse triangular linear system is solved using
the information stored in the cusparseSolveAnalysisInfo_t parameter by calling
the appropriate csrsm_solve() function. The solve phase may be performed multiple
times with different multiple right-hand sides, while the analysis phase needs to be
performed only once. This is especially useful when a sparse triangular linear system
must be solved for different sets of multiple right-hand sides one at a time, while its
coefficient matrix remains the same.

Finally, once all the solves have completed, the opaque data structure pointed to
by the cusparseSolveAnalysisInfo_t parameter can be released by calling
cusparseDestroySolveAnalysisInfo(). For more information please refer to [3].

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 93

8.1. cusparse<t>csrmm()
cusparseStatus_t
cusparseScsrmm(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int n,
 int k,
 int nnz,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *B,
 int ldb,
 const float *beta,
 float *C,
 int ldc)
cusparseStatus_t
cusparseDcsrmm(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int n,
 int k,
 int nnz,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *B,
 int ldb,
 const double *beta,
 double *C,
 int ldc)
cusparseStatus_t
cusparseCcsrmm(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int n,
 int k,
 int nnz,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *B,
 int ldb,
 const cuComplex *beta,
 cuComplex *C,
 int ldc)
cusparseStatus_t
cusparseZcsrmm(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m,
 int n,
 int k,
 int nnz,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *B,
 int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C,
 int ldc)

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 94

This function performs one of the following matrix-matrix operations:

A is an m×k sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); B and C are dense matrices; are
scalars; and

When using the (conjugate) transpose of a general matrix or a Hermitian/symmetric
matrix, this routine may produce slightly different results with the same input
parameters during different runs of this function. For these matrix types it uses atomic
operations to compute the final result; consequently, many threads may be adding
floating point numbers to the same memory location without any specific ordering,
which may produce slightly different results for each run.

If exactly the same output is required for any input when multiplying by the transpose
of a general matrix, the following procedure can be used:

1. Convert the matrix from CSR to CSC format using one of the csr2csc() functions.
Notice that by interchanging the rows and columns of the result you are implicitly
transposing the matrix.

2. Call the csrmm() function with the cusparseOperation_t parameter set to
CUSPARSE_OPERATION_NON_TRANSPOSE and with the interchanged rows and columns
of the matrix stored in CSC format. This (implicitly) multiplies the vector by the
transpose of the matrix in the original CSR format.

This function requires no extra storage for the general matrices when operation
CUSPARSE_OPERATION_NON_TRANSPOSE is selected. It requires some extra storage for
Hermitian/symmetric matrices and for the general matrices when an operation different
from CUSPARSE_OPERATION_NON_TRANSPOSE is selected. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.
Input

handle handle to the cuSPARSE library context.

transA the operation

m number of rows of sparse matrix A.

n number of columns of dense matrices B and C.

k number of columns of sparse matrix A.

nnz number of nonzero elements of sparse matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX_TYPE_GENERAL,
CUSPARSE_MATRIX_TYPE_SYMMETRIC,
and CUSPARSE_MATRIX_TYPE_HERMITIAN.
Also, the supported index bases are

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 95

CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

B array of dimensions (ldb, n).

ldb leading dimension of B. It must be at least
 if and at least

otherwise.

beta <type> scalar used for multiplication. If beta is
zero, C does not have to be a valid input.

C array of dimensions (ldc, n).

ldc leading dimension of C. It must be at least
 if and at least

otherwise.

Output

C <type> updated array of dimensions (ldc, n).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n, k, nnz<0
or ldb and ldc are incorrect).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 96

8.2. cusparse<t>csrmm2()
cusparseStatus_t
cusparseScsrmm2(cusparseHandle_t handle,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int m,
 int n,
 int k,
 int nnz,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *B,
 int ldb,
 const float *beta,
 float *C,
 int ldc)
cusparseStatus_t
cusparseDcsrmm2(cusparseHandle_t handle,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int m,
 int n,
 int k,
 int nnz,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *B,
 int ldb,
 const double *beta,
 double *C,
 int ldc)
cusparseStatus_t
cusparseCcsrmm2(cusparseHandle_t handle,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int m,
 int n,
 int k,
 int nnz,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *B,
 int ldb,
 const cuComplex *beta,
 cuComplex *C,
 int ldc)
cusparseStatus_t
cusparseZcsrmm2(cusparseHandle_t handle,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int m,
 int n,
 int k,
 int nnz,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *B,
 int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C,
 int ldc)

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 97

This function performs one of the following matrix-matrix operations:

A is an m×k sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); B and C are dense matrices; are
scalars; and

and

If op(B)=B, cusparse<t>csrmm2() is the same as cusparse<t>csrmm();
otherwise, only op(A)=A is supported and the matrix type must be
CUSPARSE_MATRIX_TYPE_GENERAL.

The motivation of transpose(B) is to improve the memory access of matrix B. The
computational pattern of A*transpose(B) with matrix B in column-major order is
equivalent to A*B with matrix B in row-major order.

In practice, no operation in iterative solver or eigenvalue solver uses A*transpose(B).
However we can perform A*transpose(transpose(B)) which is the same as A*B.
For example, suppose A is m*k, B is k*n and C is m*n, the following code shows usage of
cusparseDcsrmm().
// A is m*k, B is k*n and C is m*n
 const int ldb_B = k; // leading dimension of B
 const int ldc = m; // leading dimension of C
// perform C:=alpha*A*B + beta*C
 cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
 cusparseDcsrmm(cusparse_handle,
 CUSPARSE_OPERATION_NON_TRANSPOSE,
 m, n, k, nnz, alpha,
 descrA, csrValA, csrRowPtrA, csrColIndA,
 B, ldb_B,
 beta, C, ldc);

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 98

Instead of using A*B, our proposal is to transpose B to Bt first by calling
cublas<t>geam(), then to perform A*transpose(Bt).
// step 1: Bt := transpose(B)
 double *Bt;
 const int ldb_Bt = n; // leading dimension of Bt
 cudaMalloc((void**)&Bt, sizeof(double)*ldb_Bt*k);
 double one = 1.0;
 double zero = 0.0;
 cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_HOST);
 cublasDgeam(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_T,
 n, k, &one, B, int ldb_B, &zero, B, int ldb_B, Bt, ldb_Bt);

// step 2: perform C:=alpha*A*transpose(Bt) + beta*C
 cusparseDcsrmm2(cusparse_handle,
 CUSPARSE_OPERATION_NON_TRANSPOSE,
 CUSPARSE_OPERATION_TRANSPOSE
 m, n, k, nnz, alpha,
 descrA, csrValA, csrRowPtrA, csrColIndA,
 Bt, ldb_Bt,
 beta, C, ldc);

Remark 1: cublas<t>geam() and cusparse<t>csrmm2() are memory bound.
The complexity of cublas<t>geam() is 2*n*k, and the minimum complexity of
cusparse<t>csrmm2() is about (nnz + nnz*n + 2*m*n). If nnz per column (=nnz/
k) is large, it is worth paying the extra cost on transposition because A*transpose(B)
may be 2× faster than A*B if the sparsity pattern of A is not good.

Remark 2: A*transpose(B) is only supported on compute capability 2.0 and above.
Input

handle handle to the cuSPARSE library context.

transA the operation

transB the operation

m number of rows of sparse matrix A.

n number of columns of dense matrix and C.

k number of columns of sparse matrix A.

nnz number of nonzero elements of sparse matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
types is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 99

B array of dimensions (ldb, n) if op(B)=B and
(ldb, k) otherwise.

ldb leading dimension of B. If op(B)=B, it must be at
least if and at least
otherwise. If op(B)!=B, it must be at least
max(1, n).

beta <type> scalar used for multiplication. If beta is
zero, C does not have to be a valid input.

C array of dimensions (ldc, n).

ldc leading dimension of C. It must be at least
 if and at least

otherwise.

Output

C <type> updated array of dimensions (ldc, n).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n, k, nnz<0
or ldb and ldc are incorrect).

CUSPARSE_STATUS_ARCH_MISMATCH if op(B)=B, the device does not support double
precision or if op(B)=transpose(B) the device is
below compute capability 2.0.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED only CUSPARSE_MATRIX_TYPE_GENERAL is
supported otherwise.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 100

8.3. cusparse<t>csrsm_analysis()
cusparseStatus_t
cusparseScsrsm_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseDcsrsm_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseCcsrsm_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseZcsrsm_analysis(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)

This function performs the analysis phase of the solution of a sparse triangular linear
system

with multiple right-hand sides, where A is an m×m sparse matrix that is defined in CSR
storage format by the three arrays csrValA, csrRowPtrA, and csrColIndA; X and Y are
the right-hand-side and the solution dense matrices; is a scalar; and

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a significant amount of extra storage that is proportional to the
matrix size. It is executed asynchronously with respect to the host and may return
control to the application on the host before the result is ready.
Input

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 101

handle handle to the cuSPARSE library context.

transA the operation .

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX_TYPE_TRIANGULAR
and CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure initialized using
cusparseCreateSolveAnalysisInfo().

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 102

8.4. cusparse<t>csrsm_solve()
cusparseStatus_t
cusparseScsrsm_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, int n, const float *alpha,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info,
 const float *X, int ldx,
 float *Y, int ldy)
cusparseStatus_t
cusparseDcsrsm_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, int n, const double *alpha,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info,
 const double *X, int ldx,
 double *Y, int ldy)
cusparseStatus_t
cusparseCcsrsm_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, int n, const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info,
 const cuComplex *X, int ldx,
 cuComplex *Y, int ldy)
cusparseStatus_t
cusparseZcsrsm_solve(cusparseHandle_t handle,
 cusparseOperation_t transA,
 int m, int n, const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info,
 const cuDoubleComplex *X, int ldx,
 cuDoubleComplex *Y, int ldy)

This function performs the solve phase of the solution of a sparse triangular linear
system

with multiple right-hand sides, where A is an m×n sparse matrix that is defined in CSR
storage format by the three arrays csrValA, csrRowPtrA, and csrColIndA); X and Y
are the right-hand-side and the solution dense matrices; is a scalar; and

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 103

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

transA the operation op(A).

m number of rows and columns of matrix A.

n number of columns of matrix X and Y.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX_TYPE_TRIANGULAR
and CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should be passed to the solve
phase unchanged).

X <type> right-hand-side array of dimensions (ldx,
n).

ldx leading dimension of X (that is ≥).

Output

Y <type> solution array of dimensions (ldy, n).

ldy leading dimension of Y (that is ≥).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_MAPPING_ERROR the texture binding failed.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 104

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 105

8.5. cusparse<t>bsrmm()

cusparseStatus_t
cusparseSbsrmm(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int mb,
 int n,
 int kb,
 int nnzb,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 const float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 const int blockDim,
 const float *B,
 const int ldb,
 const float *beta,
 float *C,
 int ldc)

cusparseStatus_t
cusparseDbsrmm(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int mb,
 int n,
 int kb,
 int nnzb,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 const double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 const int blockDim,
 const double *B,
 const int ldb,
 const double *beta,
 double *C,
 int ldc)

cusparseStatus_t
cusparseCbsrmm(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int mb,
 int n,
 int kb,
 int nnzb,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 const int blockDim,
 const cuComplex *B,
 const int ldb,
 const cuComplex *beta,
 cuComplex *C,
 int ldc)

cusparseStatus_t
cusparseZbsrmm(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int mb,
 int n,
 int kb,
 int nnzb,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 const int blockDim,
 const cuDoubleComplex *B,
 const int ldb,
 const cuDoubleComplex *beta,
 cuDoubleComplex *C,
 int ldc)

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 106

This function performs one of the following matrix-matrix operations:

A is an mb×kb sparse matrix that is defined in BSR storage format by the three arrays
bsrValA, bsrRowPtrA, and bsrColIndA; B and C are dense matrices; are
scalars; and

and

The matrix type must be CUSPARSE_MATRIX_TYPE_GENERAL.

The motivation of transpose(B) is to improve memory access of matrix B. The
computational pattern of A*transpose(B) with matrix B in column-major order is
equivalent to A*B with matrix B in row-major order.

In practice, no operation in an iterative solver or eigenvalue solver uses
A*transpose(B). However, we can perform A*transpose(transpose(B)) which is
the same as A*B. For example, suppose A is mb*kb, B is k*n and C is m*n, the following
code shows usage of cusparseDbsrmm().

// A is mb*kb, B is k*n and C is m*n
 const int m = mb*blockSize;
 const int k = kb*blockSize;
 const int ldb_B = k; // leading dimension of B
 const int ldc = m; // leading dimension of C
// perform C:=alpha*A*B + beta*C
 cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
 cusparseDbsrmm(cusparse_handle,
 CUSPARSE_DIRECTION_COLUMN,
 CUSPARSE_OPERATION_NON_TRANSPOSE,
 CUSPARSE_OPERATION_NON_TRANSPOSE,
 mb, n, kb, nnzb, alpha,
 descrA, bsrValA, bsrRowPtrA, bsrColIndA, blockSize,
 B, ldb_B,
 beta, C, ldc);

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 107

Instead of using A*B, our proposal is to transpose B to Bt by first calling
cublas<t>geam(), and then to perform A*transpose(Bt).

// step 1: Bt := transpose(B)
 const int m = mb*blockSize;
 const int k = kb*blockSize;
 double *Bt;
 const int ldb_Bt = n; // leading dimension of Bt
 cudaMalloc((void**)&Bt, sizeof(double)*ldb_Bt*k);
 double one = 1.0;
 double zero = 0.0;
 cublasSetPointerMode(cublas_handle, CUBLAS_POINTER_MODE_HOST);
 cublasDgeam(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_T,
 n, k, &one, B, int ldb_B, &zero, B, int ldb_B, Bt, ldb_Bt);

// step 2: perform C:=alpha*A*transpose(Bt) + beta*C
 cusparseDbsrmm(cusparse_handle,
 CUSPARSE_DIRECTION_COLUMN,
 CUSPARSE_OPERATION_NON_TRANSPOSE,
 CUSPARSE_OPERATION_TRANSPOSE,
 mb, n, kb, nnzb, alpha,
 descrA, bsrValA, bsrRowPtrA, bsrColIndA, blockSize,
 Bt, ldb_Bt,
 beta, C, ldc);

Function bsrmm() is only supported on compute capability 2.0 and above.
Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

transA the operation op(A).

transB the operation op(B).

mb number of block rows of sparse matrix A.

n number of columns of dense matrix op(B) and A.

kb number of block columns of sparse matrix A.

nnzb number of non-zero blocks of sparse matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 108

blockDim block dimension of sparse matrix A, larger than
zero.

B array of dimensions (ldb, n) if op(B)=B and
(ldb, k) otherwise.

ldb leading dimension of B. If op(B)=B, it must be at
least If op(B) != B, it must be at least
max(1, n).

beta <type> scalar used for multiplication. If beta is
zero, C does not have to be a valid input.

C array of dimensions (ldc, n).

ldc leading dimension of C. It must be at least
 if op(A)=A and at least

otherwise.

Output

C <type> updated array of dimensions (ldc, n).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE Either invalid parameters were passed (mb, n,
kb, nnzb<0; or ldb and ldc are incorrect).

Either invalid or unsupported operations
were passed (op(A) is different from
CUSPARSE_OPERATION_NON_TRANSPOSE,
or op(B) is different from
CUSPARSE_OPERATION_NON_TRANSPOSE or
CUSPARSE_OPERATION_TRANSPOSE).

CUSPARSE_STATUS_ARCH_MISMATCH if device is below compute capability 2.0.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED only CUSPARSE_MATRIX_TYPE_GENERAL is
supported otherwise.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 109

8.6. cusparse<t>bsrsm2_bufferSize()

cusparseStatus_t
cusparseSbsrsm2_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transX,
 int mb,
 int n,
 int nnzb,
 const cusparseMatDescr_t descrA,
 float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsm2Info_t info,
 int *pBufferSizeInBytes)

cusparseStatus_t
cusparseDbsrsm2_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transX,
 int mb,
 int n,
 int nnzb,
 const cusparseMatDescr_t descrA,
 double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsm2Info_t info,
 int *pBufferSizeInBytes)

cusparseStatus_t
cusparseCbsrsm2_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transX,
 int mb,
 int n,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsm2Info_t info,
 int *pBufferSizeInBytes)

cusparseStatus_t
cusparseZbsrsm2_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transX,
 int mb,
 int n,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrsm2Info_t info,
 int *pBufferSizeInBytes)

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 110

This function returns size of buffer used in bsrsm2(), a new sparse triangular linear
system op(A)*Y = op(X).

A is an (mb*blockDim)x(mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA); X and Y are the
right-hand-side and the solution matrices; is a scalar; and

Although there are six combinations in terms of parameter trans and the upper (and
lower) triangular part of A, bsrsm2_bufferSize() returns the maximum size of the
buffer among these combinations. The buffer size depends on dimension mb,blockDim
and the number of nonzeros of the matrix, nnzb. If the user changes the matrix, it is
necessary to call bsrsm2_bufferSize() again to get the correct buffer size, otherwise a
segmentation fault may occur.
Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

transA the operation op(A).

transX the operation op(X).

mb number of block rows of matrix A.

n number of columns of matrix Y and op(X).

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A; larger than
zero.

Output

info record internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in
bsrsm2_analysis() and bsrsm2_solve().

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 111

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb, n,
nnzb<=0); base index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 112

8.7. cusparse<t>bsrsm2_analysis()

cusparseStatus_t
cusparseSbsrsm2_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transXY,
 int mb,
 int n,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const float *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int blockDim,
 bsrsm2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer)

cusparseStatus_t
cusparseDbsrsm2_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transXY,
 int mb,
 int n,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const double *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int blockDim,
 bsrsm2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer)

cusparseStatus_t
cusparseCbsrsm2_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transXY,
 int mb,
 int n,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int blockDim,
 bsrsm2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer)

cusparseStatus_t
cusparseZbsrsm2_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transXY,
 int mb,
 int n,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int blockDim,
 bsrsm2Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer)

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 113

This function performs the analysis phase of bsrsm2(), a new sparse triangular linear
system op(A)*op(Y) = op(X).

A is an (mb*blockDim)x(mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA); X and Y are the
right-hand-side and the solution matrices; is a scalar; and

and

and op(X) and op(Y) are equal.

The block of BSR format is of size blockDim*blockDim, stored in column-
major or row-major as determined by parameter dirA, which is either
CUSPARSE_DIRECTION_ROW or CUSPARSE_DIRECTION_COLUMN. The matrix type must
be CUSPARSE_MATRIX_TYPE_GENERAL, and the fill mode and diagonal type are ignored.

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires the buffer size returned by bsrsm2_bufferSize(). The address
of pBuffer must be multiple of 128 bytes. If not, CUSPARSE_STATUS_INVALID_VALUE is
returned.

Function bsrsm2_analysis() reports a structural zero and computes the level
information stored in opaque structure info. The level information can extract more
parallelism during a triangular solver. However bsrsm2_solve() can be done without
level information. To disable level information, the user needs to specify the policy of the
triangular solver as CUSPARSE_SOLVE_POLICY_NO_LEVEL.

Function bsrsm2_analysis() always reports the first structural zero, even if the
parameter policy is CUSPARSE_SOLVE_POLICY_NO_LEVEL. Besides, no structural zero
is reported if CUSPARSE_DIAG_TYPE_UNIT is specified, even if block A(j,j) is missing
for some j. The user must call cusparseXbsrsm2_query_zero_pivot() to know
where the structural zero is.

Even when bsrsm2_analysis() reports a structural zero, the user can still call
asynchronously bsrsm2_solve(). In this case, the solve will return a numerical zero in
the same position as the structural zero but this result X is meaningless.
Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

transA the operation op(A).

transXY the operation op(X) and op(Y).

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 114

mb number of block rows of matrix A.

n number of columns of matrix Y and op(X).

nnzb number of non-zero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A; larger than
zero.

info structure initialized using
cusparseCreateBsrsm2Info.

policy The supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user; the size is return by
bsrsm2_bufferSize().

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE Either invalid parameters were passed (mb, n,
nnzb<=0).

Either invalid or unsupported operations were
passed (op(X) and op(Y) are different from
CUSPARSE_OPERATION_NON_TRANSPOSE or
CUSPARSE_OPERATION_TRANSPOSE).

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 115

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 116

8.8. cusparse<t>bsrsm2_solve()

cusparseStatus_t
cusparseSbsrsm2_solve(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transXY,
 int mb,
 int n,
 int nnzb,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 const float *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int blockDim,
 bsrsm2Info_t info,
 const float *X,
 int ldx,
 float *Y,
 int ldy,
 cusparseSolvePolicy_t policy,
 void *pBuffer)

cusparseStatus_t
cusparseDbsrsm2_solve(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transXY,
 int mb,
 int n,
 int nnzb,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 const double *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int blockDim,
 bsrsm2Info_t info,
 const double *X,
 int ldx,
 double *Y,
 int ldy,
 cusparseSolvePolicy_t policy,
 void *pBuffer)

cusparseStatus_t
cusparseCbsrsm2_solve(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transXY,
 int mb,
 int n,
 int nnzb,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int blockDim,
 bsrsm2Info_t info,
 const cuComplex *X,
 int ldx,
 cuComplex *Y,
 int ldy,
 cusparseSolvePolicy_t policy,
 void *pBuffer)

cusparseStatus_t
cusparseZbsrsm2_solve(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 cusparseOperation_t transA,
 cusparseOperation_t transXY,
 int mb,
 int n,
 int nnzb,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int blockDim,
 bsrsm2Info_t info,
 const cuDoubleComplex *X,
 int ldx,
 cuDoubleComplex *Y,
 int ldy,
 cusparseSolvePolicy_t policy,
 void *pBuffer)

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 117

This function performs the solve phase of the solution of a sparse triangular linear
system:

A is an (mb*blockDim)x(mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA); X and Y are the
right-hand-side and the solution matrices; is a scalar, and

and

Only op(A)=A is supported.

op(X) and op(Y) must be performed in the same way. In other words, if op(X)=X,
op(Y)=Y.

The block of BSR format is of size blockDim*blockDim, stored as column-
major or row-major as determined by parameter dirA, which is either
CUSPARSE_DIRECTION_ROW or CUSPARSE_DIRECTION_COLUMN. The matrix type must
be CUSPARSE_MATRIX_TYPE_GENERAL, and the fill mode and diagonal type are ignored.
Function bsrsm02_solve() can support an arbitrary blockDim.

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires the buffer size returned by bsrsm2_bufferSize().
The address of pBuffer must be multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

Although bsrsm2_solve() can be done without level information, the user
still needs to be aware of consistency. If bsrsm2_analysis() is called with
policy CUSPARSE_SOLVE_POLICY_USE_LEVEL, bsrsm2_solve() can be run
with or without levels. On the other hand, if bsrsm2_analysis() is called
with CUSPARSE_SOLVE_POLICY_NO_LEVEL, bsrsm2_solve() can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL; otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Function bsrsm02_solve() has the same behavior as bsrsv02_solve(),
reporting the first numerical zero, including a structural zero. The user must call
cusparseXbsrsm2_query_zero_pivot() to know where the numerical zero is.

The motivation of transpose(X) is to improve the memory access of matrix X. The
computational pattern of transpose(X) with matrix X in column-major order is
equivalent to X with matrix X in row-major order.

In-place is supported and requires that X and Y point to the same memory block, and
ldx=ldy.
Input

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 118

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

transA the operation op(A).

transXY the operation op(X) and op(Y).

mb number of block rows of matrix A.

n number of columns of matrix Y and op(X).

nnzb number of non-zero blocks of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_UNIT and
CUSPARSE_DIAG_TYPE_NON_UNIT.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) non-zero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A; larger than
zero.

info structure initialized using
cusparseCreateBsrsm2Info().

X <type> right-hand-side array.

ldx leading dimension of X. If op(X)=X, ldx>=k;
otherwise, ldx>=n.

ldy leading dimension of Y. If op(A)=A, then ldc>=m.
If op(A)!=A, then ldx>=k.

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user; the size is returned
by bsrsm2_bufferSize().

Output

Y <type> solution array of dimensions (ldy, n).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

cuSPARSE Level 3 Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 119

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_MAPPING_ERROR the texture binding failed.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

8.9. cusparseXbsrsm2_zeroPivot()

cusparseStatus_t
cusparseXbsrsm2_zeroPivot(cusparseHandle_t handle,
 bsrsm2Info_t info,
 int *position);

If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A(j,j) is either a structural zero or a numerical zero (singular block). Otherwise
position=-1.

The position can be 0-base or 1-base, the same as the matrix.

Function cusparseXbsrsm2_zeroPivot() is a blocking call. It calls
cudaDeviceSynchronize() to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set the proper
mode with cusparseSetPointerMode().
Input

handle handle to the cuSPARSE library context.

info info contains a structural zero or a
numerical zero if the user already called
bsrsm2_analysis() or bsrsm2_solve().

Output

position if no structural or numerical zero, position is -1;
otherwise, if A(j,j) is missing or U(j,j) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE info is not valid.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 120

Chapter 9.
CUSPARSE EXTRA FUNCTION REFERENCE

This chapter describes the extra routines used to manipulate sparse matrices.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 121

9.1. cusparse<t>csrgeam()

cusparseStatus_t
cusparseXcsrgeamNnz(cusparseHandle_t handle,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 int *csrRowPtrC,
 int *nnzTotalDevHostPtr)
cusparseStatus_t
cusparseScsrgeam(cusparseHandle_t handle,
 int m,
 int n,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *beta,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const float *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 float *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseDcsrgeam(cusparseHandle_t handle,
 int m,
 int n,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *beta,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const double *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 double *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseCcsrgeam(cusparseHandle_t handle,
 int m,
 int n,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *beta,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const cuComplex *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 cuComplex *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseZcsrgeam(cusparseHandle_t handle,
 int m,
 int n,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *beta,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const cuDoubleComplex *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 cuDoubleComplex *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 122

This function performs following matrix-matrix operation

where A, B, and C are m×n sparse matrices (defined in CSR storage format by the
three arrays csrValA|csrValB|csrValC, csrRowPtrA|csrRowPtrB|csrRowPtrC,
and csrColIndA|csrColIndB|csrcolIndC respectively), and are scalars.
Since A and B have different sparsity patterns, cuSPARSE adopts a two-step approach
to complete sparse matrix C. In the first step, the user allocates csrRowPtrC of m
+1elements and uses function cusparseXcsrgeamNnz() to determine csrRowPtrC
and the total number of nonzero elements. In the second step, the user gathers nnzC
(number of nonzero elements of matrix C) from either (nnzC=*nnzTotalDevHostPtr)
or (nnzC=csrRowPtrC(m)-csrRowPtrC(0)) and allocates csrValC, csrColIndC of
nnzC elements respectively, then finally calls function cusparse[S|D|C|Z]csrgeam()
to complete matrix C.

The general procedure is as follows:
int baseC, nnzC;
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzC;
cusparseSetPointerMode(handle, CUSPARSE_POINTER_MODE_HOST);
cudaMalloc((void**)&csrRowPtrC, sizeof(int)*(m+1));
cusparseXcsrgeamNnz(handle, m, n,
 descrA, nnzA, csrRowPtrA, csrColIndA,
 descrB, nnzB, csrRowPtrB, csrColIndB,
 descrC, csrRowPtrC, nnzTotalDevHostPtr);
if (NULL != nnzTotalDevHostPtr){
 nnzC = *nnzTotalDevHostPtr;
}else{
 cudaMemcpy(&nnzC, csrRowPtrC+m, sizeof(int), cudaMemcpyDeviceToHost);
 cudaMemcpy(&baseC, csrRowPtrC, sizeof(int), cudaMemcpyDeviceToHost);
 nnzC -= baseC;
}
cudaMalloc((void**)&csrColIndC, sizeof(int)*nnzC);
cudaMalloc((void**)&csrValC, sizeof(float)*nnzC);
cusparseScsrgeam(handle, m, n,
 alpha,
 descrA, nnzA,
 csrValA, csrRowPtrA, csrColIndA,
 beta,
 descrB, nnzB,
 csrValB, csrRowPtrB, csrColIndB,
 descrC,
 csrValC, csrRowPtrC, csrColIndC);

Several comments on csrgeam():

‣ The other three combinations, NT, TN, and TT, are not supported by cuSPARSE.
In order to do any one of the three, the user should use the routine csr2csc() to
convert | to | .

‣ Only CUSPARSE_MATRIX_TYPE_GENERAL is supported. If either A or B is symmetric
or Hermitian, then the user must extend the matrix to a full one and reconfigure the
MatrixType field of the descriptor to CUSPARSE_MATRIX_TYPE_GENERAL.

‣ If the sparsity pattern of matrix C is known, the user can skip the call to function
cusparseXcsrgeamNnz(). For example, suppose that the user has an iterative
algorithm which would update A and B iteratively but keep the sparsity patterns.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 123

The user can call function cusparseXcsrgeamNnz() once to set up the sparsity
pattern of C, then call function cusparse[S|D|C|Z]geam() only for each iteration.

‣ The pointers alpha and beta must be valid.
‣ When alpha or beta is zero, it is not considered a special case by cuSPARSE. The

sparsity pattern of C is independent of the value of alpha and beta. If the user
wants , then csr2csc() is better than csrgeam().

Input

handle handle to the cuSPARSE library context.

m number of rows of sparse matrix A,B,C.

n number of columns of sparse matrix A,B,C.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

nnzA number of nonzero elements of sparse matrix A.

csrValA <type> array of nnzA csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnzA csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

descrB the descriptor of matrix B. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

nnzB number of nonzero elements of sparse matrix B.

csrValB <type> array of nnzB csrRowPtrB(m)
csrRowPtrB(0) nonzero elements of matrix B.

csrRowPtrB integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndB integer array of nnzB csrRowPtrB(m)
csrRowPtrB(0) column indices of the nonzero
elements of matrix B.

descrC the descriptor of matrix C. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

Output

csrValC <type> array of nnzC csrRowPtrC(m)
csrRowPtrC(0) nonzero elements of matrix C.

csrRowPtrC integer array of m elements that contains the
start of every row and the end of the last row plus
one.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 124

csrColIndC integer array of nnzC csrRowPtrC(m)
csrRowPtrC(0) column indices of the nonzero
elements of matrixC.

nnzTotalDevHostPtr total number of nonzero elements in device or
host memory. It is equal to (csrRowPtrC(m)-
csrRowPtrC(0)).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnz<0,
IndexBase of descrA,descrB,descrC is not
base-0 or base-1, or alpha or beta is nil)).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 125

9.2. cusparse<t>csrgemm()

cusparseStatus_t
cusparseXcsrgemmNnz(cusparseHandle_t handle,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int m,
 int n,
 int k,
 const cusparseMatDescr_t descrA,
 const int nnzA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 const int nnzB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 int *csrRowPtrC,
 int *nnzTotalDevHostPtr)
cusparseStatus_t
cusparseScsrgemm(cusparseHandle_t handle,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int m,
 int n,
 int k,
 const cusparseMatDescr_t descrA,
 const int nnzA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 const int nnzB,
 const float *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 float *csrValC,
 const int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseDcsrgemm(cusparseHandle_t handle,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int m,
 int n,
 int k,
 const cusparseMatDescr_t descrA,
 const int nnzA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 const int nnzB,
 const double *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 double *csrValC,
 const int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseCcsrgemm(cusparseHandle_t handle,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int m,
 int n,
 int k,
 const cusparseMatDescr_t descrA,
 const int nnzA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 const int nnzB,
 const cuComplex *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 cuComplex *csrValC,
 const int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseZcsrgemm(cusparseHandle_t handle,
 cusparseOperation_t transA,
 cusparseOperation_t transB,
 int m,
 int n,
 int k,
 const cusparseMatDescr_t descrA,
 const int nnzA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 const int nnzB,
 const cuDoubleComplex *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrC,
 cuDoubleComplex *csrValC,
 const int *csrRowPtrC, int *csrColIndC)

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 126

This function performs following matrix-matrix operation:

where , and C are m×k, k×n, and m×n sparse matrices (defined in CSR storage
format by the three arrays csrValA|csrValB|csrValC, csrRowPtrA|csrRowPtrB|
csrRowPtrC, and csrColIndA|csrColIndB|csrcolIndC respectively. The operation
is defined by

There are four versions, NN, NT, TN, and TT. NN stands for , NT stands for
, TN stands for and TT stands for .

The cuSPARSE library adopts a two-step approach to complete sparse matrix. In
the first step, the user allocates csrRowPtrC of m+1 elements and uses the function
cusparseXcsrgemmNnz() to determine csrRowPtrC and the total number of nonzero
elements. In the second step, the user gathers nnzC (the number of nonzero elements
of matrix C) from either (nnzC=*nnzTotalDevHostPtr) or (nnzC=csrRowPtrC(m)-
csrRowPtrC(0)) and allocates csrValC and csrColIndC of nnzC elements
respectively, then finally calls function cusparse[S|D|C|Z]csrgemm() to complete
matrix C.

The general procedure is as follows:
int baseC, nnzC;
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzC;
cusparseSetPointerMode(handle, CUSPARSE_POINTER_MODE_HOST);
cudaMalloc((void**)&csrRowPtrC, sizeof(int)*(m+1));
cusparseXcsrgemmNnz(handle, transA, transB, m, n, k,
 descrA, nnzA, csrRowPtrA, csrColIndA,
 descrB, nnzB, csrRowPtrB, csrColIndB,
 descrC, csrRowPtrC, nnzTotalDevHostPtr);
if (NULL != nnzTotalDevHostPtr){
 nnzC = *nnzTotalDevHostPtr;
}else{
 cudaMemcpy(&nnzC, csrRowPtrC+m, sizeof(int), cudaMemcpyDeviceToHost);
 cudaMemcpy(&baseC, csrRowPtrC, sizeof(int), cudaMemcpyDeviceToHost);
 nnzC -= baseC;
}
cudaMalloc((void**)&csrColIndC, sizeof(int)*nnzC);
cudaMalloc((void**)&csrValC, sizeof(float)*nnzC);
cusparseScsrgemm(handle, transA, transB, m, n, k,
 descrA, nnzA,
 csrValA, csrRowPtrA, csrColIndA,
 descrB, nnzB,
 csrValB, csrRowPtrB, csrColIndB,
 descrC,
 csrValC, csrRowPtrC, csrColIndC);

Several comments on csrgemm():

‣ Only the NN version is implemented. For the NT version, matrix C is converted to
 by csr2csc() and then call the NN version. The same technique applies to TN

and TT. The csr2csc() routine allocates working space implicitly; if the user needs
memory management, then the NN version is better.

‣ The NN version needs working space of size nnzA integers at least.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 127

‣ Only CUSPARSE_MATRIX_TYPE_GENERAL is supported. If either A or B is symmetric
or Hermitian, the user must extend the matrix to a full one and reconfigure the
MatrixType field descriptor to CUSPARSE_MATRIX_TYPE_GENERAL.

‣ Only devices of compute capability 2.0 or above are supported.

Input

handle handle to the cuSPARSE library context.

transA the operation

transB the operation

m number of rows of sparse matrix and C.

n number of columns of sparse matrix and C.

k number of columns/rows of sparse matrix /
.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

nnzA number of nonzero elements of sparse matrix A.

csrValA <type> array of nnzA csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of elements that contains
the start of every row and the end of the
last row plus one. if transA ==
CUSPARSE_OPERATION_NON_TRANSPOSE,
otherwise .

csrColIndA integer array of nnzA csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

descrB the descriptor of matrix B. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

nnzB number of nonzero elements of sparse matrix B.

csrValB <type> array of nnzB nonzero elements of matrix
B.

csrRowPtrB integer array of elements that contains
the start of every row and the end of
the last row plus one. if transB ==
CUSPARSE_OPERATION_NON_TRANSPOSE,
otherwise

csrColIndB integer array of nnzB column indices of the
nonzero elements of matrix B.

descrC the descriptor of matrix C. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

Output

csrValC <type> array of nnzC csrRowPtrC(m)
csrRowPtrC(0) nonzero elements of matrix C.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 128

csrRowPtrC integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndC integer array of nnzC csrRowPtrC(m)
csrRowPtrC(0) column indices of the nonzero
elements of matrix C.

nnzTotalDevHostPtr total number of nonzero elements in device or
host memory. It is equal to (csrRowPtrC(m)-
csrRowPtrC(0)).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n,k<0;
IndexBase of descrA,descrB,descrC is not
base-0 or base-1; or alpha or beta is nil)).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 129

9.3. cusparse<t>csrgemm2()

cusparseStatus_t
cusparseScsrgemm2_bufferSizeExt(cusparseHandle_t handle,
 int m,
 int n,
 int k,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const float *beta,
 const cusparseMatDescr_t descrD,
 int nnzD,
 const int *csrRowPtrD,
 const int *csrColIndD,
 csrgemm2Info_t info,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseDcsrgemm2_bufferSizeExt(cusparseHandle_t handle,
 int m,
 int n,
 int k,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const double *beta,
 const cusparseMatDescr_t descrD,
 int nnzD,
 const int *csrRowPtrD,
 const int *csrColIndD,
 csrgemm2Info_t info,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseCcsrgemm2_bufferSizeExt(cusparseHandle_t handle,
 int m,
 int n,
 int k,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cuComplex *beta,
 const cusparseMatDescr_t descrD,
 int nnzD,
 const int *csrRowPtrD,
 const int *csrColIndD,
 csrgemm2Info_t info,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseZcsrgemm2_bufferSizeExt(cusparseHandle_t handle,
 int m,
 int n,
 int k,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cuDoubleComplex *beta,
 const cusparseMatDescr_t descrD,
 int nnzD,
 const int *csrRowPtrD,
 const int *csrColIndD,
 csrgemm2Info_t info,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseXcsrgemm2Nnz(cusparseHandle_t handle,
 int m,
 int n,
 int k,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cusparseMatDescr_t descrD,
 int nnzD,
 const int *csrRowPtrD,
 const int *csrColIndD,
 const cusparseMatDescr_t descrC,
 int *csrRowPtrC,
 int *nnzTotalDevHostPtr,
 const csrgemm2Info_t info,
 void *pBuffer);

cusparseStatus_t
cusparseScsrgemm2(cusparseHandle_t handle,
 int m,
 int n,
 int k,
 const float *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const float *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const float *beta,
 const cusparseMatDescr_t descrD,
 int nnzD,
 const float *csrValD,
 const int *csrRowPtrD,
 const int *csrColIndD,
 const cusparseMatDescr_t descrC,
 float *csrValC,
 const int *csrRowPtrC,
 int *csrColIndC,
 const csrgemm2Info_t info,
 void *pBuffer);

cusparseStatus_t
cusparseDcsrgemm2(cusparseHandle_t handle,
 int m,
 int n,
 int k,
 const double *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const double *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const double *beta,
 const cusparseMatDescr_t descrD,
 int nnzD,
 const double *csrValD,
 const int *csrRowPtrD,
 const int *csrColIndD,
 const cusparseMatDescr_t descrC,
 double *csrValC,
 const int *csrRowPtrC,
 int *csrColIndC,
 const csrgemm2Info_t info,
 void *pBuffer);

cusparseStatus_t
cusparseCcsrgemm2(cusparseHandle_t handle,
 int m,
 int n,
 int k,
 const cuComplex *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const cuComplex *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cuComplex *beta,
 const cusparseMatDescr_t descrD,
 int nnzD,
 const cuComplex *csrValD,
 const int *csrRowPtrD,
 const int *csrColIndD,
 const cusparseMatDescr_t descrC,
 cuComplex *csrValC,
 const int *csrRowPtrC,
 int *csrColIndC,
 const csrgemm2Info_t info,
 void *pBuffer);

cusparseStatus_t
cusparseZcsrgemm2(cusparseHandle_t handle,
 int m,
 int n,
 int k,
 const cuDoubleComplex *alpha,
 const cusparseMatDescr_t descrA,
 int nnzA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrB,
 int nnzB,
 const cuDoubleComplex *csrValB,
 const int *csrRowPtrB,
 const int *csrColIndB,
 const cuDoubleComplex *beta,
 const cusparseMatDescr_t descrD,
 int nnzD,
 const cuDoubleComplex *csrValD,
 const int *csrRowPtrD,
 const int *csrColIndD,
 const cusparseMatDescr_t descrC,
 cuDoubleComplex *csrValC,
 const int *csrRowPtrC,
 int *csrColIndC,
 const csrgemm2Info_t info,
 void *pBuffer);

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 130

This function performs following matrix-matrix operation:

where A, B, D and C are m×k, k×n, m×n and m×n sparse matrices (defined in CSR storage
format by the three arrays csrValA|csrValB|csrValD|csrValC, csrRowPtrA|
csrRowPtrB|csrRowPtrD|csrRowPtrC, and csrColIndA|csrColIndB|
csrColIndD|csrcolIndC respectively.

We provide csrgemm2 as a generalization of csrgemm. It provides more operations in
terms of alpha and beta. For example, C = -A*B+D can be done by csrgemm2.

The csrgemm2 uses alpha and beta to support the following operations:

alpha beta operation

NULL NULL invalid

NULL !NULL C = beta*D, A and B are not used

!NULL NULL C = alpha*A*B, D is not used

!NULL !NULL C = alpha*A*B + beta*D

The numerical value of alpha and beta only affects the numerical values of C, not its
sparsity pattern. For example, if alpha and beta are not zero, the sparsity pattern of C is
union of A*B and D, independent of numerical value of alpha and beta.

The following table shows different operations according to the value of m, n and k

m,n,k operation

m<0 or n <0 or k<0 invalid

m is 0 or n is 0 do nothing

m >0 and n >0 and k is 0 invalid if beta is zero;

C = beta*D if beta is not zero.

m >0 and n >0 and k >0 C = beta*D if alpha is zero.

C = alpha*A*B if beta is zero.

C = alpha*A*B + beta*D if alpha and beta are not zero.

This function requires the buffer size returned by csrgemm2_bufferSizeExt().
The address of pBuffer must be multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

The cuSPARSE library adopts a two-step approach to complete sparse matrix. In
the first step, the user allocates csrRowPtrC of m+1 elements and uses the function
cusparseXcsrgemm2Nnz() to determine csrRowPtrC and the total number of nonzero
elements. In the second step, the user gathers nnzC (the number of nonzero elements
of matrix C) from either (nnzC=*nnzTotalDevHostPtr) or (nnzC=csrRowPtrC(m)-
csrRowPtrC(0)) and allocates csrValC and csrColIndC of nnzC elements
respectively, then finally calls function cusparse[S|D|C|Z]csrgemm2() to evaluate
matrix C.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 131

The general procedure of C=-A*B+D is as follows:

// assume matrices A, B and D are ready.
int baseC, nnzC;
csrgemm2Info_t info = NULL;
size_t bufferSize;
void *buffer = NULL;
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzC;
double alpha = -1.0;
double beta = 1.0;
cusparseSetPointerMode(handle, CUSPARSE_POINTER_MODE_HOST);

// step 1: create an opaque structure
cusparseCreateCsrgemm2Info(&info);

// step 2: allocate buffer for csrgemm2Nnz and csrgemm2
cusparseDcsrgemm2_bufferSizeExt(handle, m, n, k, &alpha,
 descrA, nnzA, csrRowPtrA, csrColIndA,
 descrB, nnzB, csrRowPtrB, csrColIndB,
 descrD, nnzD, csrRowPtrD, csrColIndD,
 &beta,
 info,
 &bufferSize);
cudaMalloc(&buffer, bufferSize);

// step 3: compute csrRowPtrC
cudaMalloc((void**)&csrRowPtrC, sizeof(int)*(m+1));
cusparseXcsrgemm2Nnz(handle, m, n, k,
 descrA, nnzA, csrRowPtrA, csrColIndA,
 descrB, nnzB, csrRowPtrB, csrColIndB,
 descrD, nnzD, csrRowPtrD, csrColIndD,
 descrC, csrRowPtrC, nnzTotalDevHostPtr,
 info, buffer);
if (NULL != nnzTotalDevHostPtr){
 nnzC = *nnzTotalDevHostPtr;
}else{
 cudaMemcpy(&nnzC, csrRowPtrC+m, sizeof(int), cudaMemcpyDeviceToHost);
 cudaMemcpy(&baseC, csrRowPtrC, sizeof(int), cudaMemcpyDeviceToHost);
 nnzC -= baseC;
}

// step 4: finish sparsity pattern and value of C
cudaMalloc((void**)&csrColIndC, sizeof(int)*nnzC);
cudaMalloc((void**)&csrValC, sizeof(double)*nnzC);
// Remark: set csrValC to null if only sparsity pattern is required.
cusparseDcsrgemm2(handle, m, n, k, &alpha,
 descrA, nnzA, csrValA, csrRowPtrA, csrColIndA,
 descrB, nnzB, csrValB, csrRowPtrB, csrColIndB,
 descrD, nnzD, csrValD, csrRowPtrD, csrColIndD,
 &beta,
 descrC, csrValC, csrRowPtrC, csrColIndC,
 info, buffer);

// step 5: destroy the opaque structure
cusparseDestroyCsrgemm2Info(info);

Several comments on csrgemm2():

‣ Only the NN version is supported. For other modes, the user has to transpose A or B
explicitly.

‣ Only CUSPARSE_MATRIX_TYPE_GENERAL is supported. If either A or B is symmetric
or Hermitian, the user must extend the matrix to a full one and reconfigure the
MatrixType field descriptor to CUSPARSE_MATRIX_TYPE_GENERAL.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 132

‣ if csrValC is zero, only sparisty pattern of C is calculated.
‣ Only devices of compute capability 2.0 or above are supported.

Input

handle handle to the cuSPARSE library context.

m number of rows of sparse matrix A, D and C.

n number of columns of sparse matrix B, D and C.

k number of columns/rows of sparse matrix A / B.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

nnzA number of nonzero elements of sparse matrix A.

csrValA <type> array of nnzA nonzero elements of matrix
A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnzA column indices of the
nonzero elements of matrix A.

descrB the descriptor of matrix B. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

nnzB number of nonzero elements of sparse matrix B.

csrValB <type> array of nnzB nonzero elements of matrix
B.

csrRowPtrB integer array of k+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndB integer array of nnzB column indices of the
nonzero elements of matrix B.

descrD the descriptor of matrix D. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

nnzD number of nonzero elements of sparse matrix D.

csrValD <type> array of nnzD nonzero elements of matrix
D.

csrRowPtrD integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndD integer array of nnzD column indices of the
nonzero elements of matrix D.

beta <type> scalar used for multiplication.

descrC the descriptor of matrix C. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL only.

info structure with information used in csrgemm2Nnz
and csrgemm2.

cuSPARSE Extra Function Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 133

pBuffer buffer allocated by the user; the size is returned
by csrgemm2_bufferSizeExt.

Output

csrValC <type> array of nnzC nonzero elements of matrix
C.

csrRowPtrC integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndC integer array of nnzC column indices of the
nonzero elements of matrix C.

pBufferSizeInBytes number of bytes of the buffer used in
csrgemm2Nnnz and csrgemm2.

nnzTotalDevHostPtr total number of nonzero elements in device or
host memory. It is equal to (csrRowPtrC(m)-
csrRowPtrC(0)).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n,k<0;
IndexBase of descrA,descrB,descrD,descrC is
not base-0 or base-1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 134

Chapter 10.
CUSPARSE PRECONDITIONERS REFERENCE

This chapter describes the routines that implement different preconditioners.

In particular, the incomplete factorizations are implemented in two phases. First,
during the analysis phase, the sparse triangular matrix is analyzed to determine the
dependencies between its elements by calling the appropriate csrsv_analysis()
function. The analysis is specific to the sparsity pattern of the given matrix and the
selected cusparseOperation_t type. The information from the analysis phase is stored
in the parameter of type cusparseSolveAnalysisInfo_t that has been initialized
previously with a call to cusparseCreateSolveAnalysisInfo().

Second, during the numerical factorization phase, the given coefficient matrix is
factorized using the information stored in the cusparseSolveAnalysisInfo_t
parameter by calling the appropriate csrilu0() or csric0() function.

The analysis phase is shared across the sparse triangular solve, and the incomplete
factorization and must be performed only once. The resulting information can be passed
to the numerical factorization and the sparse triangular solve multiple times.

Finally, once the incomplete factorization and all the sparse triangular
solves have completed, the opaque data structure pointed to by the
cusparseSolveAnalysisInfo_t parameter can be released by calling
cusparseDestroySolveAnalysisInfo().

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 135

10.1. cusparse<t>csric0()

cusparseStatus_t
cusparseScsric0(cusparseHandle_t handle,
 cusparseOperation_t trans,
 int m,
 const cusparseMatDescr_t descrA,
 float *csrValM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseDcsric0(cusparseHandle_t handle,
 cusparseOperation_t trans,
 int m,
 const cusparseMatDescr_t descrA,
 double *csrValM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseCcsric0(cusparseHandle_t handle,
 cusparseOperation_t trans,
 int m,
 const cusparseMatDescr_t descrA,
 cuComplex *csrValM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseZcsric0(cusparseHandle_t handle,
 cusparseOperation_t trans,
 int m,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *csrValM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)

This function computes the incomplete-Cholesky factorization with fill-in and no
pivoting:

A is an m m Hermitian/symmetric positive definite sparse matrix that is defined in CSR
storage format by the three arrays csrValM, csrRowPtrA, and csrColIndA; and

Notice that only a lower or upper Hermitian/symmetric part of the matrix A is actually
stored. It is overwritten by the lower or upper triangular factors and , respectively.

A call to this routine must be preceded by a call to the csrsv_analysis() routine.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 136

The matrix descriptor for csrsv_analysis() and csric0() must be the same.
Otherwise, runtime error would occur.

This function requires some extra storage. It is executed asynchronously with respect to
the host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

trans the operation op .

m number of rows and columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX_TYPE_SYMMETRIC
and CUSPARSE_MATRIX_TYPE_HERMITIAN.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValM <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

Output

csrValM <type> matrix containing the incomplete-Cholesky
lower or upper triangular factor.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 137

10.2. cusparse<t>csric02_bufferSize()

cusparseStatus_t
cusparseScsric02_bufferSize(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseDcsric02_bufferSize(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseCcsric02_bufferSize(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseZcsric02_bufferSize(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 int *pBufferSizeInBytes);

This function returns size of buffer used in computing the incomplete-Cholesky
factorization with fill-in and no pivoting:

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 138

The buffer size depends on dimension m and nnz, the number of nonzeros of the matrix.
If the user changes the matrix, it is necessary to call csric02_bufferSize() again to
have the correct buffer size; otherwise, a segmentation fault may occur.
Input

handle handle to the cuSPARSE library context.

m number of rows and columns of matrix A.

nnz number of nonzeros of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

Output

info record internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in
csric02_analysis() and csric02().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 139

10.3. cusparse<t>csric02_analysis()

cusparseStatus_t
cusparseScsric02_analysis(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDcsric02_analysis(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCcsric02_analysis(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZcsric02_analysis(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

This function performs the analysis phase of the incomplete-Cholesky factorization with
 fill-in and no pivoting:

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 140

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

This function requires a buffer size returned by csric02_bufferSize(). The address
of pBuffer must be multiple of 128 bytes. If not, CUSPARSE_STATUS_INVALID_VALUE is
returned.

Function csric02_analysis() reports a structural zero and computes level
information stored in the opaque structure info. The level information can extract more
parallelism during incomplete Cholesky factorization. However csric02() can be done
without level information. To disable level information, the user must specify the policy
of csric02_analysis() and csric02() as CUSPARSE_SOLVE_POLICY_NO_LEVEL.

Function csric02_analysis() always reports the first structural zero, even
if the policy is CUSPARSE_SOLVE_POLICY_NO_LEVEL. The user needs to call
cusparseXcsric02_zeroPivot() to know where the structural zero is.

It is the user's choice whether to call csric02() if csric02_analysis() reports
a structural zero. In this case, the user can still call csric02(), which will return
a numerical zero at the same position as the structural zero. However the result is
meaningless.
Input

handle handle to the cuSPARSE library context.

m number of rows and columns of matrix A.

nnz number of nonzeros of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure initialized using
cusparseCreateCsric02Info().

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user; the size is returned
by csric02_bufferSize().

Output

info number of bytes of the buffer used in
csric02_analysis() and csric02().

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 141

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 142

10.4. cusparse<t>csric02()

cusparseStatus_t
cusparseScsric02(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 float *csrValA_valM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDcsric02(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 double *csrValA_valM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCcsric02(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuComplex *csrValA_valM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZcsric02(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *csrValA_valM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

This function performs the solve phase of the computing the incomplete-Cholesky
factorization with fill-in and no pivoting:

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 143

This function requires a buffer size returned by csric02_bufferSize(). The address
of pBuffer must be a multiple of 128 bytes. If not, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Although csric02() can be done without level information, the user still
needs to be aware of consistency. If csric02_analysis() is called with
policy CUSPARSE_SOLVE_POLICY_USE_LEVEL, csric02() can be run with
or without levels. On the other hand, if csric02_analysis() is called
with CUSPARSE_SOLVE_POLICY_NO_LEVEL, csric02() can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL; otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Function csric02() reports the first numerical zero, including a structural zero. The
user must call cusparseXcsric02_zeroPivot() to know where the numerical zero is.

Function csric02() only takes the lower triangular part of matrix A to perform
factorization. The matrix type must be CUSPARSE_MATRIX_TYPE_GENERAL, the fill mode
and diagonal type are ignored, and the strictly upper triangular part is ignored and
never touched. It does not matter if A is Hermitian or not. In other words, from the point
of view of csric02() A is Hermitian and only the lower triangular part is provided.

In practice, a positive definite matrix may not have incomplete cholesky
factorization. To the best of our knowledge, only matrix M can guarantee the
existence of incomplete cholesky factorization. If csric02() failed cholesky
factorization and reported a numerical zero, it is possible that incomplete cholesky
factorization does not exist.

For example, suppose A is a real m × m matrix, the following code solves the
precondition system M*y = x where M is the product of Cholesky factorization L and its
transpose.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 144

// Suppose that A is m x m sparse matrix represented by CSR format,
// Assumption:
// - handle is already created by cusparseCreate(),
// - (d_csrRowPtr, d_csrColInd, d_csrVal) is CSR of A on device memory,
// - d_x is right hand side vector on device memory,
// - d_y is solution vector on device memory.
// - d_z is intermediate result on device memory.

cusparseMatDescr_t descr_M = 0;
cusparseMatDescr_t descr_L = 0;
csric02Info_t info_M = 0;
csrsv2Info_t info_L = 0;
csrsv2Info_t info_Lt = 0;
int pBufferSize_M;
int pBufferSize_L;
int pBufferSize_Lt;
int pBufferSize;
void *pBuffer = 0;
int structural_zero;
int numerical_zero;
const double alpha = 1.;
const cusparseSolvePolicy_t policy_M = CUSPARSE_SOLVE_POLICY_NO_LEVEL;
const cusparseSolvePolicy_t policy_L = CUSPARSE_SOLVE_POLICY_NO_LEVEL;
const cusparseSolvePolicy_t policy_Lt = CUSPARSE_SOLVE_POLICY_USE_LEVEL;
const cusparseOperation_t trans_L = CUSPARSE_OPERATION_NON_TRANSPOSE;
const cusparseOperation_t trans_Lt = CUSPARSE_OPERATION_TRANSPOSE;

// step 1: create a descriptor which contains
// - matrix M is base-1
// - matrix L is base-1
// - matrix L is lower triangular
// - matrix L has non-unit diagonal
cusparseCreateMatDescr(&descr_M);
cusparseSetMatIndexBase(descr_M, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_M, CUSPARSE_MATRIX_TYPE_GENERAL);

cusparseCreateMatDescr(&descr_L);
cusparseSetMatIndexBase(descr_L, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_L, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_L, CUSPARSE_FILL_MODE_LOWER);
cusparseSetMatDiagType(descr_L, CUSPARSE_DIAG_TYPE_NON_UNIT);

// step 2: create a empty info structure
// we need one info for csric02 and two info's for csrsv2
cusparseCreateCsric02Info(&info_M);
cusparseCreateCsrsv2Info(&info_L);
cusparseCreateCsrsv2Info(&info_Lt);

// step 3: query how much memory used in csric02 and csrsv2, and allocate the
 buffer
cusparseDcsric02_bufferSize(handle, m, nnz,
 descr_M, d_csrVal, d_csrRowPtr, d_csrColInd, info_M, &bufferSize_M);
cusparseDcsrsv2_bufferSize(handle, trans_L, m, nnz,
 descr_L, d_csrVal, d_csrRowPtr, d_csrColInd, info_L, &pBufferSize_L);
cusparseDcsrsv2_bufferSize(handle, trans_Lt, m, nnz,
 descr_L, d_csrVal, d_csrRowPtr, d_csrColInd, info_Lt,&pBufferSize_Lt);

pBufferSize = max(bufferSize_M, max(pBufferSize_L, pBufferSize_Lt));

// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.
cudaMalloc((void**)&pBuffer, pBufferSize);

// step 4: perform analysis of incomplete Cholesky on M
// perform analysis of triangular solve on L
// perform analysis of triangular solve on L'
// The lower triangular part of M has the same sparsity pattern as L, so
// we can do analysis of csric02 and csrsv2 simultaneously.

cusparseDcsric02_analysis(handle, m, nnz, descr_M,
 d_csrVal, d_csrRowPtr, d_csrColInd, info_M,
 policy_M, pBuffer);
status = cusparseXcsric02_zeroPivot(handle, info_M, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("A(%d,%d) is missing\n", structural_zero, structural_zero);
}

cusparseDcsrsv2_analysis(handle, trans_L, m, nnz, descr_L,
 d_csrVal, d_csrRowPtr, d_csrColInd,
 info_L, policy_L, pBuffer);

cusparseDcsrsv2_analysis(handle, trans_Lt, m, nnz, descr_L,
 d_csrVal, d_csrRowPtr, d_csrColInd,
 info_Lt, policy_Lt, pBuffer);

// step 5: M = L * L'
cusparseDcsric02(handle, m, nnz, descr_M,
 d_csrVal, d_csrRowPtr, d_csrColInd, info_M, policy_M, pBuffer);
status = cusparseXcsric02_zeroPivot(handle, info_M, &numerical_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("L(%d,%d) is zero\n", numerical_zero, numerical_zero);
}

// step 6: solve L*z = x
cusparseDcsrsv2_solve(handle, trans_L, m, nnz, &alpha, descr_L,
 d_csrVal, d_csrRowPtr, d_csrColInd, info_L,
 d_x, d_z, policy_L, pBuffer);

// step 7: solve L'*y = z
cusparseDcsrsv2_solve(handle, trans_Lt, m, nnz, &alpha, descr_L,
 d_csrVal, d_csrRowPtr, d_csrColInd, info_Lt,
 d_z, d_y, policy_Lt, pBuffer);

// step 6: free resources
cudaFree(pBuffer);
cusparseDestroyMatDescr(descr_M);
cusparseDestroyMatDescr(descr_L);
cusparseDestroyCsric02Info(info_M);
cusparseDestroyCsrsv2Info(info_L);
cusparseDestroyCsrsv2Info(info_Lt);
cusparseDestroy(handle);

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 145

Input

handle handle to the cuSPARSE library context.

m number of rows and columns of matrix A.

nnz number of nonzeros of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA_valM <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user; the size is returned
by csric02_bufferSize().

Output

csrValA_valM <type> matrix containing the incomplete-Cholesky
lower triangular factor.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 146

10.5. cusparseXcsric02_zeroPivot()
cusparseStatus_t
cusparseXcsric02_zeroPivot(cusparseHandle_t handle,
 csric02Info_t info,
 int *position);

If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A(j,j) has either a structural zero or a numerical zero; otherwise, position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXcsric02_zeroPivot() is a blocking call. It calls
cudaDeviceSynchronize() to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set proper
mode with cusparseSetPointerMode().
Input

handle handle to the cuSPARSE library context.

info info contains structural zero or numerical zero if
the user already called csric02_analysis() or
csric02().

Output

position if no structural or numerical zero, position is -1;
otherwise, if A(j,j) is missing or L(j,j) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE info is not valid.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 147

10.6. cusparse<t>csrilu0()

cusparseStatus_t
cusparseScsrilu0(cusparseHandle_t handle,
 cusparseOperation_t trans,
 int m,
 const cusparseMatDescr_t descrA,
 float *csrValM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseDcsrilu0(cusparseHandle_t handle,
 cusparseOperation_t trans,
 int m,
 const cusparseMatDescr_t descrA,
 double *csrValM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseCcsrilu0(cusparseHandle_t handle,
 cusparseOperation_t trans,
 int m,
 const cusparseMatDescr_t descrA,
 cuComplex *csrValM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)
cusparseStatus_t
cusparseZcsrilu0(cusparseHandle_t handle,
 cusparseOperation_t trans,
 int m,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *csrValM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cusparseSolveAnalysisInfo_t info)

This function computes the incomplete-LU factorization with fill-in and no pivoting:

A is an m m sparse matrix that is defined in CSR storage format by the three arrays
csrValM, csrRowPtrA, and csrColIndA; and

Notice that the diagonal of lower triangular factor is unitary and need not be stored.
Therefore, the input matrix is overwritten with the resulting lower and upper triangular
factors and , respectively.

A call to this routine must be preceded by a call to the csrsv_analysis() routine.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 148

The matrix descriptor for csrsv_analysis() and csrilu0() must be the same.
Otherwise, runtime error would occur.

This function requires some extra storage. It is executed asynchronously with respect to
the host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

trans the operation op .

m number of rows and columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValM <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

Output

csrValM <type> matrix containing the incomplete-LU lower
and upper triangular factors.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 149

10.7. cusparse<t>csrilu02_numericBoost()

cusparseStatus_t
cusparseScsrilu02_numericBoost(cusparseHandle_t handle,
 csrilu02Info_t info,
 int enable_boost,
 double *tol,
 float *boost_val);

cusparseStatus_t
cusparseDcsrilu02_numericBoost(cusparseHandle_t handle,
 csrilu02Info_t info,
 int enable_boost,
 double *tol,
 double *boost_val);

cusparseStatus_t
cusparseCcsrilu02_numericBoost(cusparseHandle_t handle,
 csrilu02Info_t info,
 int enable_boost,
 double *tol,
 cuComplex *boost_val);

cusparseStatus_t
cusparseZcsrilu02_numericBoost(cusparseHandle_t handle,
 csrilu02Info_t info,
 int enable_boost,
 double *tol,
 cuDoubleComplex *boost_val);

The user can use a boost value to replace a numerical value in incomplete LU
factorization. The tol is used to determine a numerical zero, and the boost_val is used
to replace a numerical zero. The behavior is

if tol >= fabs(A(j,j)), then A(j,j)=boost_val.

To enable a boost value, the user has to set parameter enable_boost to 1 before calling
csrilu02(). To disable a boost value, the user can call csrilu02_numericBoost()
again with parameter enable_boost=0.

If enable_boost=0, tol and boost_val are ignored.

Both tol and boost_val can be in the host memory or device memory. The user can set
the proper mode with cusparseSetPointerMode().
Input

handle handle to the cuSPARSE library context.

info structure initialized using
cusparseCreateCsrilu02Info().

enable_boost disable boost by enable_boost=0; otherwise,
boost is enabled.

tol tolerance to determine a numerical zero.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 150

boost_val boost value to replace a numerical zero.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE info or pointer mode is not valid.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

10.8. cusparse<t>csrilu02_bufferSize()

cusparseStatus_t
cusparseScsrilu02_bufferSize(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseDcsrilu02_bufferSize(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseCcsrilu02_bufferSize(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseZcsrilu02_bufferSize(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 int *pBufferSizeInBytes);

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 151

This function returns size of the buffer used in computing the incomplete-LU
factorization with fill-in and no pivoting:

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The buffer size depends on the dimension m and nnz, the number of nonzeros of the
matrix. If the user changes the matrix, it is necessary to call csrilu02_bufferSize()
again to have the correct buffer size; otherwise, a segmentation fault may occur.
Input

handle handle to the cuSPARSE library context.

m number of rows and columns of matrix A.

nnz number of nonzeros of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

Output

info record internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in
csrilu02_analysis() and csrilu02().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 152

10.9. cusparse<t>csrilu02_analysis()

cusparseStatus_t
cusparseScsrilu02_analysis(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDcsrilu02_analysis(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCcsrilu02_analysis(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZcsrilu02_analysis(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

This function performs the analysis phase of the incomplete-LU factorization with fill-
in and no pivoting:

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 153

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

This function requires the buffer size returned by csrilu02_bufferSize().
The address of pBuffer must be a multiple of 128 bytes. If not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

Function csrilu02_analysis() reports a structural zero and computes level
information stored in the opaque structure info. The level information can extract more
parallelism during incomplete LU factorization; however csrilu02() can be done
without level information. To disable level information, the user must specify the policy
of csrilu02() as CUSPARSE_SOLVE_POLICY_NO_LEVEL.

It is the user's choice whether to call csrilu02() if csrilu02_analysis() reports
a structural zero. In this case, the user can still call csrilu02(), which will return
a numerical zero at the same position as the structural zero. However the result is
meaningless.
Input

handle handle to the cuSPARSE library context.

m number of rows and columns of matrix A.

nnz number of nonzeros of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure initialized using
cusparseCreateCsrilu02Info().

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user, the size is returned
by csrilu02_bufferSize().

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 154

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 155

10.10. cusparse<t>csrilu02()

cusparseStatus_t
cusparseScsrilu02(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 float *csrValA_valM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDcsrilu02(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 double *csrValA_valM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCcsrilu02(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuComplex *csrValA_valM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZcsrilu02(cusparseHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *csrValA_valM,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

This function performs the solve phase of the incomplete-LU factorization with fill-in
and no pivoting:

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 156

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA_valM, csrRowPtrA, and csrColIndA.

This function requires a buffer size returned by csrilu02_bufferSize(). The address
of pBuffer must be a multiple of 128 bytes. If not, CUSPARSE_STATUS_INVALID_VALUE
is returned.

The matrix type must be CUSPARSE_MATRIX_TYPE_GENERAL. The fill mode and
diagonal type are ignored.

Although csrilu02() can be done without level information, the user still
needs to be aware of consistency. If csrilu02_analysis() is called with
policy CUSPARSE_SOLVE_POLICY_USE_LEVEL, csrilu02() can be run with
or without levels. On the other hand, if csrilu02_analysis() is called
with CUSPARSE_SOLVE_POLICY_NO_LEVEL, csrilu02() can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL; otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Function csrilu02() reports the first numerical zero, including a structural zero. The
user must call cusparseXcsrilu02_zeroPivot() to know where the numerical zero
is.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 157

For example, suppose A is a real m × m matrix, the following code solves precondition
system M*y = x where M is the product of LU factors L and U.
// Suppose that A is m x m sparse matrix represented by CSR format,
// Assumption:
// - handle is already created by cusparseCreate(),
// - (d_csrRowPtr, d_csrColInd, d_csrVal) is CSR of A on device memory,
// - d_x is right hand side vector on device memory,
// - d_y is solution vector on device memory.
// - d_z is intermediate result on device memory.

cusparseMatDescr_t descr_M = 0;
cusparseMatDescr_t descr_L = 0;
cusparseMatDescr_t descr_U = 0;
csrilu02Info_t info_M = 0;
csrsv2Info_t info_L = 0;
csrsv2Info_t info_U = 0;
int pBufferSize_M;
int pBufferSize_L;
int pBufferSize_U;
int pBufferSize;
void *pBuffer = 0;
int structural_zero;
int numerical_zero;
const double alpha = 1.;
const cusparseSolvePolicy_t policy_M = CUSPARSE_SOLVE_POLICY_NO_LEVEL;
const cusparseSolvePolicy_t policy_L = CUSPARSE_SOLVE_POLICY_NO_LEVEL;
const cusparseSolvePolicy_t policy_U = CUSPARSE_SOLVE_POLICY_USE_LEVEL;
const cusparseOperation_t trans_L = CUSPARSE_OPERATION_NON_TRANSPOSE;
const cusparseOperation_t trans_U = CUSPARSE_OPERATION_NON_TRANSPOSE;

// step 1: create a descriptor which contains
// - matrix M is base-1
// - matrix L is base-1
// - matrix L is lower triangular
// - matrix L has unit diagonal
// - matrix U is base-1
// - matrix U is upper triangular
// - matrix U has non-unit diagonal
cusparseCreateMatDescr(&descr_M);
cusparseSetMatIndexBase(descr_M, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_M, CUSPARSE_MATRIX_TYPE_GENERAL);

cusparseCreateMatDescr(&descr_L);
cusparseSetMatIndexBase(descr_L, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_L, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_L, CUSPARSE_FILL_MODE_LOWER);
cusparseSetMatDiagType(descr_L, CUSPARSE_DIAG_TYPE_UNIT);

cusparseCreateMatDescr(&descr_U);
cusparseSetMatIndexBase(descr_U, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_U, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_U, CUSPARSE_FILL_MODE_UPPER);
cusparseSetMatDiagType(descr_U, CUSPARSE_DIAG_TYPE_NON_UNIT);

// step 2: create a empty info structure
// we need one info for csrilu02 and two info's for csrsv2
cusparseCreateCsrilu02Info(&info_M);
cusparseCreateCsrsv2Info(&info_L);
cusparseCreateCsrsv2Info(&info_U);

// step 3: query how much memory used in csrilu02 and csrsv2, and allocate the
 buffer
cusparseDcsrilu02_bufferSize(handle, m, nnz,
 descr_M, d_csrVal, d_csrRowPtr, d_csrColInd, info_M, &pBufferSize_M);
cusparseDcsrsv2_bufferSize(handle, trans_L, m, nnz,
 descr_L, d_csrVal, d_csrRowPtr, d_csrColInd, info_L, &pBufferSize_L);
cusparseDcsrsv2_bufferSize(handle, trans_U, m, nnz,
 descr_U, d_csrVal, d_csrRowPtr, d_csrColInd, info_U, &pBufferSize_U);

pBufferSize = max(pBufferSize_M, max(pBufferSize_L, pBufferSize_U));

// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.
cudaMalloc((void**)&pBuffer, pBufferSize);

// step 4: perform analysis of incomplete Cholesky on M
// perform analysis of triangular solve on L
// perform analysis of triangular solve on U
// The lower(upper) triangular part of M has the same sparsity pattern as L(U),
// we can do analysis of csrilu0 and csrsv2 simultaneously.

cusparseDcsrilu02_analysis(handle, m, nnz, descr_M,
 d_csrVal, d_csrRowPtr, d_csrColInd, info_M,
 policy_M, pBuffer);
status = cusparseXcsrilu02_zeroPivot(handle, info_M, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("A(%d,%d) is missing\n", structural_zero, structural_zero);
}

cusparseDcsrsv2_analysis(handle, trans_L, m, nnz, descr_L,
 d_csrVal, d_csrRowPtr, d_csrColInd,
 info_L, policy_L, pBuffer);

cusparseDcsrsv2_analysis(handle, trans_U, m, nnz, descr_U,
 d_csrVal, d_csrRowPtr, d_csrColInd,
 info_U, policy_U, pBuffer);

// step 5: M = L * U
cusparseDcsrilu02(handle, m, nnz, descr_M,
 d_csrVal, d_csrRowPtr, d_csrColInd, info_M, policy_M, pBuffer);
status = cusparseXcsrilu02_zeroPivot(handle, info_M, &numerical_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("U(%d,%d) is zero\n", numerical_zero, numerical_zero);
}

// step 6: solve L*z = x
cusparseDcsrsv2_solve(handle, trans_L, m, nnz, &alpha, descr_L,
 d_csrVal, d_csrRowPtr, d_csrColInd, info_L,
 d_x, d_z, policy_L, pBuffer);

// step 7: solve U*y = z
cusparseDcsrsv2_solve(handle, trans_U, m, nnz, &alpha, descr_U,
 d_csrVal, d_csrRowPtr, d_csrColInd, info_U,
 d_z, d_y, policy_U, pBuffer);

// step 6: free resources
cudaFree(pBuffer);
cusparseDestroyMatDescr(descr_M);
cusparseDestroyMatDescr(descr_L);
cusparseDestroyMatDescr(descr_U);
cusparseDestroyCsrilu02Info(info_M);
cusparseDestroyCsrsv2Info(info_L);
cusparseDestroyCsrsv2Info(info_U);
cusparseDestroy(handle);

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 158

Input

handle handle to the cuSPARSE library context.

m number of rows and columns of matrix A.

nnz number of nonzeros of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA_valM <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user; the size is returned
by csrilu02_bufferSize().

Output

csrValA_valM <type> matrix containing the incomplete-LU lower
and upper triangular factors.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 159

10.11. cusparseXcsrilu02_zeroPivot()
cusparseStatus_t
cusparseXcsrilu02_zeroPivot(cusparseHandle_t handle,
 csrilu02Info_t info,
 int *position);

If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A(j,j) has either a structural zero or a numerical zero; otherwise, position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXcsrilu02_zeroPivot() is a blocking call. It calls
cudaDeviceSynchronize() to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set proper
mode with cusparseSetPointerMode().
Input

handle handle to the cuSPARSE library context.

info info contains structural zero or numerical zero if
the user already called csrilu02_analysis() or
csrilu02().

Output

position if no structural or numerical zero, position is -1;
otherwise if A(j,j) is missing or U(j,j) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE info is not valid.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 160

10.12. cusparse<t>bsric02_bufferSize()

cusparseStatus_t
cusparseSbsric02_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseDbsric02_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseCbsric02_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseZbsric02_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 int *pBufferSizeInBytes);

This function returns the size of a buffer used in computing the incomplete-Cholesky
factorization with 0 fill-in and no pivoting

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 161

A is an (mb*blockDim)*(mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA.

The buffer size depends on the dimensions of mb, blockDim, and the number of
nonzero blocks of the matrix nnzb. If the user changes the matrix, it is necessary
to call bsric02_bufferSize() again to have the correct buffer size; otherwise, a
segmentation fault may occur.
Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows and block columns of matrix
A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

Output

info record internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in
bsric02_analysis() and bsric02().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nnzb<=0); the
base index is not 0 or 1.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 162

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 163

10.13. cusparse<t>bsric02_analysis()

cusparseStatus_t
cusparseSbsric02_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDbsric02_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCbsric02_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZbsric02_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 164

This function performs the analysis phase of the incomplete-Cholesky factorization with
0 fill-in and no pivoting

A is an (mb*blockDim)x(mb*blockDim) sparse matrix that is defined in BSR
storage format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA.
The block in BSR format is of size blockDim*blockDim, stored as column-
major or row-major as determined by parameter dirA, which is either
CUSPARSE_DIRECTION_COLUMN or CUSPARSE_DIRECTION_ROW. The matrix type must
be CUSPARSE_MATRIX_TYPE_GENERAL, and the fill mode and diagonal type are ignored.

This function requires a buffer size returned by bsric02_bufferSize90.
The address of pBuffer must be a multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

Functionbsric02_analysis() reports structural zero and computes level information
stored in the opaque structure info. The level information can extract more parallelism
during incomplete Cholesky factorization. However bsric02() can be done without
level information. To disable level information, the user needs to specify the parameter
policy of bsric02[_analysis|] as CUSPARSE_SOLVE_POLICY_NO_LEVEL.

Function bsric02_analysis always reports the first structural zero, even when
parameter policy is CUSPARSE_SOLVE_POLICY_NO_LEVEL. The user must call
cusparseXbsric02_zeroPivot() to know where the structural zero is.

It is the user's choice whether to call bsric02() if bsric02_analysis() reports a
structural zero. In this case, the user can still call bsric02(), which returns a numerical
zero in the same position as the structural zero. However the result is meaningless.
Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows and block columns of matrix
A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 165

blockDim block dimension of sparse matrix A; must be larger
than zero.

info structure initialized using
cusparseCreateBsric02Info().

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user; the size is returned
by bsric02_bufferSize().

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nnzb<=0); the
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 166

10.14. cusparse<t>bsric02()

cusparseStatus_t
cusparseSbsric02(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDbsric02(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCbsric02(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZbsric02(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsric02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 167

This function performs the solve phase of the incomplete-Cholesky factorization with 0
fill-in and no pivoting

A is an (mb*blockDim)×(mb*blockDim) sparse matrix that is defined in BSR
storage format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA.
The block in BSR format is of size blockDim*blockDim, stored as column-
major or row-major as determined by parameter dirA, which is either
CUSPARSE_DIRECTION_COLUMN or CUSPARSE_DIRECTION_ROW. The matrix type must
be CUSPARSE_MATRIX_TYPE_GENERAL, and the fill mode and diagonal type are ignored.

This function requires a buffer size returned by bsric02_bufferSize().
The address of pBuffer must be a multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

Although bsric02() can be done without level information, the user must
be aware of consistency. If bsric02_analysis() is called with policy
CUSPARSE_SOLVE_POLICY_USE_LEVEL, bsric02() can be run with
or without levels. On the other hand, if bsric02_analysis() is called
with CUSPARSE_SOLVE_POLICY_NO_LEVEL, bsric02() can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL; otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Function bsric02() has the same behavior as csric02(). That is,
bsr2csr(bsric02(A)) = csric02(bsr2csr(A)). The numerical zero of csric02()
means there exists some zero L(j,j). The numerical zero of bsric02() means there
exists some block Lj,j) that is not invertible.

Function bsric02 reports the first numerical zero, including a structural zero. The user
must call cusparseXbsric02_zeroPivot() to know where the numerical zero is.

The bsric02() function only takes the lower triangular part of matrix A to perform
factorization. The strictly upper triangular part is ignored and never touched. It does not
matter if A is Hermitian or not. In other words, from the point of view of bsric02(), A
is Hermitian and only the lower triangular part is provided. Moreover, the imaginary
part of diagonal elements of diagonal blocks is ignored.

For example, suppose A is a real m-by-m matrix, where m=mb*blockDim. The following
code solves precondition system M*y = x, where M is the product of Cholesky
factorization L and its transpose.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 168

// Suppose that A is m x m sparse matrix represented by BSR format,
// The number of block rows/columns is mb, and
// the number of nonzero blocks is nnzb.
// Assumption:
// - handle is already created by cusparseCreate(),
// - (d_bsrRowPtr, d_bsrColInd, d_bsrVal) is BSR of A on device memory,
// - d_x is right hand side vector on device memory,
// - d_y is solution vector on device memory.
// - d_z is intermediate result on device memory.
// - d_x, d_y and d_z are of size m.
cusparseMatDescr_t descr_M = 0;
cusparseMatDescr_t descr_L = 0;
bsric02Info_t info_M = 0;
bsrsv2Info_t info_L = 0;
bsrsv2Info_t info_Lt = 0;
int pBufferSize_M;
int pBufferSize_L;
int pBufferSize_Lt;
int pBufferSize;
void *pBuffer = 0;
int structural_zero;
int numerical_zero;
const double alpha = 1.;
const cusparseSolvePolicy_t policy_M = CUSPARSE_SOLVE_POLICY_NO_LEVEL;
const cusparseSolvePolicy_t policy_L = CUSPARSE_SOLVE_POLICY_NO_LEVEL;
const cusparseSolvePolicy_t policy_Lt = CUSPARSE_SOLVE_POLICY_USE_LEVEL;
const cusparseOperation_t trans_L = CUSPARSE_OPERATION_NON_TRANSPOSE;
const cusparseOperation_t trans_Lt = CUSPARSE_OPERATION_TRANSPOSE;
const cusparseDirection_t dir = CUSPARSE_DIRECTION_COLUMN;

// step 1: create a descriptor which contains
// - matrix M is base-1
// - matrix L is base-1
// - matrix L is lower triangular
// - matrix L has non-unit diagonal
cusparseCreateMatDescr(&descr_M);
cusparseSetMatIndexBase(descr_M, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_M, CUSPARSE_MATRIX_TYPE_GENERAL);

cusparseCreateMatDescr(&descr_L);
cusparseSetMatIndexBase(descr_L, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_L, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_L, CUSPARSE_FILL_MODE_LOWER);
cusparseSetMatDiagType(descr_L, CUSPARSE_DIAG_TYPE_NON_UNIT);

// step 2: create a empty info structure
// we need one info for bsric02 and two info's for bsrsv2
cusparseCreateBsric02Info(&info_M);
cusparseCreateBsrsv2Info(&info_L);
cusparseCreateBsrsv2Info(&info_Lt);

// step 3: query how much memory used in bsric02 and bsrsv2, and allocate the
 buffer
cusparseDbsric02_bufferSize(handle, dir, mb, nnzb,
 descr_M, d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_M,
 &bufferSize_M);
cusparseDbsrsv2_bufferSize(handle, dir, trans_L, mb, nnzb,
 descr_L, d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_L,
 &pBufferSize_L);
cusparseDbsrsv2_bufferSize(handle, dir, trans_Lt, mb, nnzb,
 descr_L, d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_Lt,
 &pBufferSize_Lt);

pBufferSize = max(bufferSize_M, max(pBufferSize_L, pBufferSize_Lt));

// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.
cudaMalloc((void**)&pBuffer, pBufferSize);

// step 4: perform analysis of incomplete Cholesky on M
// perform analysis of triangular solve on L
// perform analysis of triangular solve on L'
// The lower triangular part of M has the same sparsity pattern as L, so
// we can do analysis of bsric02 and bsrsv2 simultaneously.

cusparseDbsric02_analysis(handle, dir, mb, nnzb, descr_M,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_M,
 policy_M, pBuffer);
status = cusparseXbsric02_zeroPivot(handle, info_M, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("A(%d,%d) is missing\n", structural_zero, structural_zero);
}

cusparseDbsrsv2_analysis(handle, dir, trans_L, mb, nnzb, descr_L,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim,
 info_L, policy_L, pBuffer);

cusparseDbsrsv2_analysis(handle, dir, trans_Lt, mb, nnzb, descr_L,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim,
 info_Lt, policy_Lt, pBuffer);

// step 5: M = L * L'
cusparseDbsric02_solve(handle, dir, mb, nnzb, descr_M,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_M, policy_M, pBuffer);
status = cusparseXbsric02_zeroPivot(handle, info_M, &numerical_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status){
 printf("L(%d,%d) is not positive definite\n", numerical_zero,
 numerical_zero);
}

// step 6: solve L*z = x
cusparseDbsrsv2_solve(handle, dir, trans_L, mb, nnzb, &alpha, descr_L,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_L,
 d_x, d_z, policy_L, pBuffer);

// step 7: solve L'*y = z
cusparseDbsrsv2_solve(handle, dir, trans_Lt, mb, nnzb, &alpha, descr_L,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_Lt,
 d_z, d_y, policy_Lt, pBuffer);

// step 6: free resources
cudaFree(pBuffer);
cusparseDestroyMatDescr(descr_M);
cusparseDestroyMatDescr(descr_L);
cusparseDestroyBsric02Info(info_M);
cusparseDestroyBsrsv2Info(info_L);
cusparseDestroyBsrsv2Info(info_Lt);
cusparseDestroy(handle);

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 169

Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows and block columns of matrix
A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user, the size is returned
by bsric02_bufferSize().

Output

bsrValA <type> matrix containing the incomplete-Cholesky
lower triangular factor.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nnzb<=0); the
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 170

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

10.15. cusparseXbsric02_zeroPivot()

cusparseStatus_t
cusparseXbsric02_zeroPivot(cusparseHandle_t handle,
 bsric02Info_t info,
 int *position);

If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A(j,j) has either a structural zero or a numerical zero (the block is not positive
definite). Otherwise position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXbsric02_zeroPivot() is a blocking call. It calls
cudaDeviceSynchronize() to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set the proper
mode with cusparseSetPointerMode().
Input

handle handle to the cuSPARSE library context.

info info contains a structural zero or a
numerical zero if the user already called
bsric02_analysis() or bsric02().

Output

position if no structural or numerical zero, position is -1,
otherwise if A(j,j) is missing or L(j,j) is not
positive definite, position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE info is not valid.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 171

10.16. cusparse<t>bsrilu02_numericBoost()

cusparseStatus_t
cusparseSbsrilu02_numericBoost(cusparseHandle_t handle,
 bsrilu02Info_t info,
 int enable_boost,
 double *tol,
 float *boost_val);

cusparseStatus_t
cusparseDbsrilu02_numericBoost(cusparseHandle_t handle,
 bsrilu02Info_t info,
 int enable_boost,
 double *tol,
 double *boost_val);

cusparseStatus_t
cusparseCbsrilu02_numericBoost(cusparseHandle_t handle,
 bsrilu02Info_t info,
 int enable_boost,
 double *tol,
 cuComplex *boost_val);

cusparseStatus_t
cusparseZbsrilu02_numericBoost(cusparseHandle_t handle,
 bsrilu02Info_t info,
 int enable_boost,
 double *tol,
 cuDoubleComplex *boost_val);

The user can use a boost value to replace a numerical value in incomplete LU
factorization. Parameter tol is used to determine a numerical zero, and boost_val is
used to replace a numerical zero. The behavior is as follows:

if tol >= fabs(A(j,j)), then reset each diagonal element of block A(j,j) by
boost_val.

To enable a boost value, the user sets parameter enable_boost to 1 before calling
bsrilu02(). To disable the boost value, the user can call bsrilu02_numericBoost()
with parameter enable_boost=0.

If enable_boost=0, tol and boost_val are ignored.

Both tol and boost_val can be in host memory or device memory. The user can set the
proper mode with cusparseSetPointerMode().
Input

handle handle to the cuSPARSE library context.

info structure initialized using
cusparseCreateBsrilu02Info().

enable_boost disable boost by setting enable_boost=0.
Otherwise, boost is enabled.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 172

tol tolerance to determine a numerical zero.

boost_val boost value to replace a numerical zero.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE info or pointer mode is not valid.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 173

10.17. cusparse<t>bsrilu02_bufferSize()

cusparseStatus_t
cusparseSbsrilu02_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseDbsrilu02_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseCbsrilu02_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 int *pBufferSizeInBytes);

cusparseStatus_t
cusparseZbsrilu02_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 int *pBufferSizeInBytes);

This function returns the size of the buffer used in computing the incomplete-LU
factorization with 0 fill-in and no pivoting

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 174

A is an (mb*blockDim)*(mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA.

The buffer size depends on the dimensions of mb, blockDim, and the number of
nonzero blocks of the matrix nnzb. If the user changes the matrix, it is necessary to
call bsrilu02_bufferSize() again to have the correct buffer size; otherwise, a
segmentation fault may occur.
Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows and columns of matrix A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

Output

info record internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in
bsrilu02_analysis() and bsrilu02().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nnzb<=0),
base index is not 0 or 1.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 175

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 176

10.18. cusparse<t>bsrilu02_analysis()

cusparseStatus_t
cusparseSbsrilu02_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDbsrilu02_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCbsrilu02_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZbsrilu02_analysis(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 177

This function performs the analysis phase of the incomplete-LU factorization with 0 fill-
in and no pivoting

A is an (mb*blockDim)×(mb*blockDim) sparse matrix that is defined in BSR
storage format by the three arrays bsrValA, bsrRowPtrA, and bsrColIndA.
The block in BSR format is of size blockDim*blockDim, stored as column-
major or row-major as determined by parameter dirA, which is either
CUSPARSE_DIRECTION_COLUMN or CUSPARSE_DIRECTION_ROW. The matrix type must
be CUSPARSE_MATRIX_TYPE_GENERAL, and the fill mode and diagonal type are ignored.

This function requires a buffer size returned by bsrilu02_bufferSize().
The address of pBuffer must be multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

Function bsrilu02_analysis() reports a structural zero and computes
level information stored in the opaque structure info. The level information
can extract more parallelism during incomplete LU factorization. However
bsrilu02() can be done without level information. To disable level information,
the user needs to specify the parameter policy of bsrilu02[_analysis|] as
CUSPARSE_SOLVE_POLICY_NO_LEVEL.

Function bsrilu02_analysis() always reports the first structural zero, even with
parameter policy is CUSPARSE_SOLVE_POLICY_NO_LEVEL. The user must call
cusparseXbsrilu02_zeroPivot() to know where the structural zero is.

It is the user's choice whether to call bsrilu02() if bsrilu02_analysis() reports
a structural zero. In this case, the user can still call bsrilu02(), which will return
a numerical zero at the same position as the structural zero. However the result is
meaningless.
Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows and block columns of matrix
A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 178

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

info structure initialized using
cusparseCreateBsrilu02Info().

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user, the size is returned
by bsrilu02_bufferSize().

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nnzb<=0); the
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 179

10.19. cusparse<t>bsrilu02()

cusparseStatus_t
cusparseSbsrilu02(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descry,
 float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseDbsrilu02(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descry,
 double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseCbsrilu02(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descry,
 cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cusparseStatus_t
cusparseZbsrilu02(cusparseHandle_t handle,
 cusparseDirection_t dirA,
 int mb,
 int nnzb,
 const cusparseMatDescr_t descry,
 cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 bsrilu02Info_t info,
 cusparseSolvePolicy_t policy,
 void *pBuffer);

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 180

This function performs the solve phase of the incomplete-LU factorization with 0 fill-in
and no pivoting

A is an (mb*blockDim)×(mb*blockDim) sparse matrix that is defined
in BSR storage format by the three arrays bsrValA, bsrRowPtrA, and
bsrColIndA. The block in BSR format is of size blockDim*blockDim, stored
as column-major or row-major determined by parameter dirA, which is either
CUSPARSE_DIRECTION_COLUMN or CUSPARSE_DIRECTION_ROW. The matrix type must
be CUSPARSE_MATRIX_TYPE_GENERAL, and the fill mode and diagonal type are ignored.
Function bsrilu02() supports an arbitrary blockDim.

This function requires a buffer size returned by bsrilu02_bufferSize().
The address of pBuffer must be a multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

Although bsrilu02() can be used without level information, the user must
be aware of consistency. If bsrilu02_analysis() is called with policy
CUSPARSE_SOLVE_POLICY_USE_LEVEL, bsrilu02() can be run with
or without levels. On the other hand, if bsrilu02_analysis() is called
with CUSPARSE_SOLVE_POLICY_NO_LEVEL, bsrilu02() can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL; otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Function bsrilu02() has the same behavior as csrilu02(). That is,
bsr2csr(bsrilu02(A)) = csrilu02(bsr2csr(A)). The numerical zero of
csrilu02() means there exists some zero U(j,j). The numerical zero of bsrilu02()
means there exists some block U(j,j) that is not invertible.

Function bsrilu02 reports the first numerical zero, including a structural zero. The user
must call cusparseXbsrilu02_zeroPivot() to know where the numerical zero is.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 181

For example, suppose A is a real m-by-m matrix where m=mb*blockDim. The following
code solves precondition system M*y = x, where M is the product of LU factors L and U.

// Suppose that A is m x m sparse matrix represented by BSR format,
// The number of block rows/columns is mb, and
// the number of nonzero blocks is nnzb.
// Assumption:
// - handle is already created by cusparseCreate(),
// - (d_bsrRowPtr, d_bsrColInd, d_bsrVal) is BSR of A on device memory,
// - d_x is right hand side vector on device memory.
// - d_y is solution vector on device memory.
// - d_z is intermediate result on device memory.
// - d_x, d_y and d_z are of size m.
cusparseMatDescr_t descr_M = 0;
cusparseMatDescr_t descr_L = 0;
cusparseMatDescr_t descr_U = 0;
bsrilu02Info_t info_M = 0;
bsrsv2Info_t info_L = 0;
bsrsv2Info_t info_U = 0;
int pBufferSize_M;
int pBufferSize_L;
int pBufferSize_U;
int pBufferSize;
void *pBuffer = 0;
int structural_zero;
int numerical_zero;
const double alpha = 1.;
const cusparseSolvePolicy_t policy_M = CUSPARSE_SOLVE_POLICY_NO_LEVEL;
const cusparseSolvePolicy_t policy_L = CUSPARSE_SOLVE_POLICY_NO_LEVEL;
const cusparseSolvePolicy_t policy_U = CUSPARSE_SOLVE_POLICY_USE_LEVEL;
const cusparseOperation_t trans_L = CUSPARSE_OPERATION_NON_TRANSPOSE;
const cusparseOperation_t trans_U = CUSPARSE_OPERATION_NON_TRANSPOSE;
const cusparseDirection_t dir = CUSPARSE_DIRECTION_COLUMN;

// step 1: create a descriptor which contains
// - matrix M is base-1
// - matrix L is base-1
// - matrix L is lower triangular
// - matrix L has unit diagonal
// - matrix U is base-1
// - matrix U is upper triangular
// - matrix U has non-unit diagonal
cusparseCreateMatDescr(&descr_M);
cusparseSetMatIndexBase(descr_M, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_M, CUSPARSE_MATRIX_TYPE_GENERAL);

cusparseCreateMatDescr(&descr_L);
cusparseSetMatIndexBase(descr_L, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_L, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_L, CUSPARSE_FILL_MODE_LOWER);
cusparseSetMatDiagType(descr_L, CUSPARSE_DIAG_TYPE_UNIT);

cusparseCreateMatDescr(&descr_U);
cusparseSetMatIndexBase(descr_U, CUSPARSE_INDEX_BASE_ONE);
cusparseSetMatType(descr_U, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_U, CUSPARSE_FILL_MODE_UPPER);
cusparseSetMatDiagType(descr_U, CUSPARSE_DIAG_TYPE_NON_UNIT);

// step 2: create a empty info structure
// we need one info for bsrilu02 and two info's for bsrsv2
cusparseCreateBsrilu02Info(&info_M);
cusparseCreateBsrsv2Info(&info_L);
cusparseCreateBsrsv2Info(&info_U);

// step 3: query how much memory used in bsrilu02 and bsrsv2, and allocate the
 buffer
cusparseDbsrilu02_bufferSize(handle, dir, mb, nnzb,
 descr_M, d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_M,
 &pBufferSize_M);
cusparseDbsrsv2_bufferSize(handle, dir, trans_L, mb, nnzb,
 descr_L, d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_L,
 &pBufferSize_L);
cusparseDbsrsv2_bufferSize(handle, dir, trans_U, mb, nnzb,
 descr_U, d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_U,
 &pBufferSize_U);

pBufferSize = max(pBufferSize_M, max(pBufferSize_L, pBufferSize_U));

// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.
cudaMalloc((void**)&pBuffer, pBufferSize);

// step 4: perform analysis of incomplete LU factorization on M
// perform analysis of triangular solve on L
// perform analysis of triangular solve on U
// The lower(upper) triangular part of M has the same sparsity pattern as L(U),
// we can do analysis of bsrilu0 and bsrsv2 simultaneously.

cusparseDbsrilu02_analysis(handle, dir, mb, nnzb, descr_M,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_M,
 policy_M, pBuffer);
status = cusparseXbsrilu02_zeroPivot(handle, info_M, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == statuss){
 printf("A(%d,%d) is missing\n", structural_zero, structural_zero);
}

cusparseDbsrsv2_analysis(handle, dir, trans_L, mb, nnzb, descr_L,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim,
 info_L, policy_L, pBuffer);

cusparseDbsrsv2_analysis(handle, dir, trans_U, mb, nnzb, descr_U,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim,
 info_U, policy_U, pBuffer);

// step 5: M = L * U
cusparseDbsrilu02(handle, dir, mb, nnzb, descr_M,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_M, policy_M, pBuffer);
status = cusparseXbsrilu02_zeroPivot(handle, info_M, &numerical_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == statuss){
 printf("block U(%d,%d) is not invertible\n", numerical_zero, numerical_zero);
}

// step 6: solve L*z = x
cusparseDbsrsv2_solve(handle, dir, trans_L, mb, nnzb, &alpha, descr_L,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_L,
 d_x, d_z, policy_L, pBuffer);

// step 7: solve U*y = z
cusparseDbsrsv2_solve(handle, dir, trans_U, mb, nnzb, &alpha, descr_U,
 d_bsrVal, d_bsrRowPtr, d_bsrColInd, blockDim, info_U,
 d_z, d_y, policy_U, pBuffer);

// step 6: free resources
cudaFree(pBuffer);
cusparseDestroyMatDescr(descr_M);
cusparseDestroyMatDescr(descr_L);
cusparseDestroyMatDescr(descr_U);
cusparseDestroyBsrilu02Info(info_M);
cusparseDestroyBsrsv2Info(info_L);
cusparseDestroyBsrsv2Info(info_U);
cusparseDestroy(handle);

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 182

Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks: either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows and block columns of matrix
A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb bsrRowPtrA(mb)
bsrRowPtrA(0) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A; must be larger
than zero.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_USE_LEVEL.

pBuffer buffer allocated by the user; the size is returned
by bsrilu02_bufferSize().

Output

bsrValA <type> matrix containing the incomplete-LU lower
and upper triangular factors.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nnzb<=0); the
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 183

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

10.20. cusparseXbsrilu02_zeroPivot()

cusparseStatus_t
cusparseXbsrilu02_zeroPivot(cusparseHandle_t handle,
 bsrilu02Info_t info,
 int *position);

If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A(j,j) has either a structural zero or a numerical zero (the block is not invertible).
Otherwise position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXbsrilu02_zeroPivot() is a blocking call. It calls
cudaDeviceSynchronize() to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set proper the
mode with cusparseSetPointerMode().
Input

handle handle to the cuSPARSE library context.

info info contains structural zero or numerical zero if
the user already called bsrilu02_analysis() or
bsrilu02().

Output

position if no structural or numerical zero, position is -1;
otherwise if A(j,j) is missing or U(j,j) is not
invertible, position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE info is not valid.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 184

10.21. cusparse<t>gtsv()

cusparseStatus_t
cusparseSgtsv(cusparseHandle_t handle,
 int m,
 int n,
 const float *dl,
 const float *d,
 const float *du,
 float *B,
 int ldb)
cusparseStatus_t
cusparseDgtsv(cusparseHandle_t handle,
 int m,
 int n,
 const double *dl,
 const double *d,
 const double *du,
 double *B,
 int ldb)
cusparseStatus_t
cusparseCgtsv(cusparseHandle_t handle,
 int m,
 int n,
 const cuComplex *dl,
 const cuComplex *d,
 const cuComplex *du,
 cuComplex *B,
 int ldb)
cusparseStatus_t
cusparseZgtsv(cusparseHandle_t handle,
 int m,
 int n,
 const cuDoubleComplex *dl,
 const cuDoubleComplex *d,
 const cuDoubleComplex *du,
 cuDoubleComplex *B,
 int ldb)

This function computes the solution of a tridiagonal linear system with multiple right-
hand sides:

The coefficient matrix A of each of these tri-diagonal linear system is defined with three
vectors corresponding to its lower (dl), main (d), and upper (du) matrix diagonals; the
right-hand sides are stored in the dense matrix X. Notice that solution Y overwrites right-
hand-side matrix X on exit.

Assuming A is of size m and base-1, dl, d and du are defined by the following formula:

dl(i) := A(i, i-1) for i=1,2,...,m

The first element of dl is out-of-bound (dl(1) := A(1,0)), so dl(1) = 0.

d(i) = A(i,i) for i=1,2,...,m

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 185

du(i) = A(i,i+1) for i=1,2,...,m

The last element of du is out-of-bound (du(m) := A(m,m+1)), so du(m) = 0.

The routine does perform pivoting, which usually results in more accurate and more
stable results than cusparse<t>gtsv_nopivot() at the expense of some execution
time

This routine requires significant amount of temporary extra storage (min(m,8)
×(3+n)×sizeof(<type>)). It is executed asynchronously with respect to the host and
may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

m the size of the linear system (must be ≥ 3).

n number of right-hand sides, columns of matrix B.

dl <type> dense array containing the lower diagonal
of the tri-diagonal linear system. The first element
of each lower diagonal must be zero.

d <type> dense array containing the main diagonal of
the tri-diagonal linear system.

du <type> dense array containing the upper diagonal
of the tri-diagonal linear system. The last element
of each upper diagonal must be zero.

B <type> dense right-hand-side array of dimensions
(ldb, n).

ldb leading dimension of B (that is ≥ .

Output

B <type> dense solution array of dimensions (ldb,
n).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m<3, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 186

10.22. cusparse<t>gtsv_nopivot()
cusparseStatus_t
cusparseSgtsv_nopivot(cusparseHandle_t handle, int m, int n,
 const float *dl, const float *d,
 const float *du, float *B, int ldb)

cusparseStatus_t
cusparseDgtsv_nopivot(cusparseHandle_t handle, int m, int n,
 const double *dl, const double *d,
 const double *du, double *B, int ldb)
cusparseStatus_t
cusparseCgtsv_nopivot(cusparseHandle_t handle, int m, int n,
 const cuComplex *dl, const cuComplex *d,
 const cuComplex *du, cuComplex *B, int ldb)
cusparseStatus_t
cusparseZgtsv_nopivot(cusparseHandle_t handle, int m, int n,
 const cuDoubleComplex *dl, const cuDoubleComplex *d,
 const cuDoubleComplex *du, cuDoubleComplex *B, int ldb)

This function computes the solution of a tridiagonal linear system with multiple right-
hand sides:

The coefficient matrix A of each of these tri-diagonal linear system is defined with three
vectors corresponding to its lower (dl), main (d), and upper (du) matrix diagonals; the
right-hand sides are stored in the dense matrix X. Notice that solution Y overwrites right-
hand-side matrix X on exit.

The routine does not perform any pivoting and uses a combination of the Cyclic
Reduction (CR) and the Parallel Cyclic Reduction (PCR) algorithms to find the solution.
It achieves better performance when m is a power of 2.

This routine requires a significant amount of temporary extra storage
(m×(3+n)×sizeof(<type>)). It is executed asynchronously with respect to the host
and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

m the size of the linear system (must be ≥ 3).

n number of right-hand sides, columns of matrix B.

dl <type> dense array containing the lower diagonal
of the tri-diagonal linear system. The first element
of each lower diagonal must be zero.

d <type> dense array containing the main diagonal of
the tri-diagonal linear system.

du <type> dense array containing the upper diagonal
of the tri-diagonal linear system. The last element
of each upper diagonal must be zero.

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 187

B <type> dense right-hand-side array of dimensions
(ldb, n).

ldb leading dimension of B. (that is ≥ .

Output

B <type> dense solution array of dimensions (ldb,
n).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m<3, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

10.23. cusparse<t>gtsvStridedBatch()
cusparseStatus_t
cusparseSgtsvStridedBatch(cusparseHandle_t handle, int m,
 const float *dl,
 const float *d,
 const float *du, float *x,

 int batchCount, int batchStride)
cusparseStatus_t
cusparseDgtsvStridedBatch(cusparseHandle_t handle, int m,
 const double *dl,
 const double *d,
 const double *du, double *x,

 int batchCount, int batchStride)

cusparseStatus_t
cusparseCgtsvStridedBatch(cusparseHandle_t handle, int m,
 const cuComplex *dl,
 const cuComplex *d,
 const cuComplex *du, cuComplex *x,

 int batchCount, int batchStride)
cusparseStatus_t
cusparseZgtsvStridedBatch(cusparseHandle_t handle, int m,
 const cuDoubleComplex *dl,
 const cuDoubleComplex *d,
 const cuDoubleComplex *du, cuDoubleComplex *x,

 int batchCount, int batchStride)

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 188

This function computes the solution of multiple tridiagonal linear systems for i=0,
…,batchCount:

The coefficient matrix A of each of these tri-diagonal linear system is defined with three
vectors corresponding to its lower (dl), main (d), and upper (du) matrix diagonals; the
right-hand sides are stored in the dense matrix X. Notice that solution Y overwrites right-
hand-side matrix X on exit. The different matrices are assumed to be of the same size and
are stored with a fixed batchStride in memory.

The routine does not perform any pivoting and uses a combination of the Cyclic
Reduction (CR) and the Parallel Cyclic Reduction (PCR) algorithms to find the solution.
It achieves better performance when m is a power of 2.

This routine requires a significant amount of temporary extra storage
((batchCount×(4×m+2048)×sizeof(<type>))). It is executed asynchronously with
respect to the host and may return control to the application on the host before the result
is ready.
Input

handle handle to the cuSPARSE library context.

m the size of the linear system (must be ≥ 3).

dl <type> dense array containing the lower diagonal
of the tri-diagonal linear system. The lower

diagonal that corresponds to the ith linear
system starts at location dl+batchStride×i in
memory. Also, the first element of each lower
diagonal must be zero.

d <type> dense array containing the main diagonal of
the tri-diagonal linear system. The main diagonal

 that corresponds to the ith linear system starts
at location d+batchStride×i in memory.

du <type> dense array containing the upper diagonal
of the tri-diagonal linear system. The upper
diagonal that corresponds to the ith linear
system starts at location du+batchStride×i in
memory. Also, the last element of each upper
diagonal must be zero.

x <type> dense array that contains the right-hand-
side of the tri-diagonal linear system. The right-
hand-side that corresponds to the ith linear
system starts at location x+batchStride×iin
memory.

batchCount number of systems to solve.

batchStride stride (number of elements) that separates the
vectors of every system (must be at least m).

Output

cuSPARSE Preconditioners Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 189

x <type> dense array that contains the solution of
the tri-diagonal linear system. The solution
that corresponds to the ith linear system starts at
location x+batchStride×iin memory.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m<3,
batchCount≤0, batchStride<m).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 190

Chapter 11.
CUSPARSE REORDERINGS REFERENCE

This chapter describes the reordering routines used to manipulate sparse matrices.

11.1. cusparse<t>csrcolor()
cusparseStatus_t
cusparseScsrcolor(cusparseHandle_t handle, int m, int nnz,
 const cusparseMatDescr_t descrA, const float *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 const float *fractionToColor, int *ncolors, int *coloring,
 int *reordering,cusparseColorInfo_t info);

cusparseStatus_t
cusparseDcsrcolor(cusparseHandle_t handle, int m, int nnz,
 const cusparseMatDescr_t descrA, const double *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 const double *fractionToColor,int *ncolors, int *coloring,
 int *reordering, cusparseColorInfo_t info);

cusparseStatus_t
cusparseCcsrcolor(cusparseHandle_t handle, int m, int nnz,
 const cusparseMatDescr_t descrA, const cuComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 const float *fractionToColor, int *ncolors, int *coloring,
 int *reordering, cusparseColorInfo_t info);

cusparseStatus_t
cusparseZcsrcolor(cusparseHandle_t handle, int m, int nnz,
 const cusparseMatDescr_t descrA, const cuDoubleComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 const double *fractionToColor,int *ncolors, int *coloring,
 int *reordering, cusparseColorInfo_t info);

This function performs the coloring of the adjacency graph associated with the matrix
A stored in CSR format. The coloring is an assignment of colors (integer numbers)
to nodes, such that neighboring nodes have distinct colors. An approximate coloring
algorithm is used in this routine, and is stopped when a certain percentage of nodes has
been colored. The rest of the nodes are assigned distinct colors (an increasing sequence
of integers numbers, starting from the last integer used previously). The last two
auxiliary routines can be used to extract the resulting number of colors, their assignment

cuSPARSE Reorderings Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 191

and the associated reordering. The reordering is such that nodes that have been assigned
the same color are reordered to be next to each other.

The matrix A passed to this routine, must be stored as a general matrix and have a
symmetric sparsity pattern. If the matrix is nonsymmetric the user should pass A+A^T
as a parameter to this routine.
Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

fractionToColor fraction of nodes to be colored, which should be in
the interval [0.0,1.0], for example 0.8 implies that
80 percent of nodes will be colored.

info structure with information to be passed to the
coloring.

Output

ncolors The number of distinct colors used (at most the
size of the matrix, but likely much smaller).

coloring The resulting coloring permutation

reordering The resulting reordering permutation (untouched if
NULL)

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision
(compute capability (c.c.) >= 1.3 required).

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Reorderings Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 192

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 193

Chapter 12.
CUSPARSE FORMAT CONVERSION
REFERENCE

This chapter describes the conversion routines between different sparse and dense
storage formats.

coosort, csrsort, cscsort, csru2csr and csr2csc_indexOnly are sorting routines
without malloc inside, the following table estimates the buffer size

routine buffer size maximum problem size if buffer is
limited by 2GB

coosort > 16*n bytes 125M

csrsort or
cscsort

> 20*n bytes 100M

csru2csr 'd' > 28*n bytes ; 'z'
> 36*n bytes

71M for 'd' and 55M for 'z'

csr2csc_indexOnly> 16*n bytes 125M

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 194

12.1. cusparse<t>bsr2csr()
cusparseStatus_t
cusparseSbsr2csr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 const cusparseMatDescr_t descrA,
 const float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 const cusparseMatDescr_t descrC,
 float *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseDbsr2csr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 const cusparseMatDescr_t descrA,
 const double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 const cusparseMatDescr_t descrC,
 double *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseCbsr2csr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 const cusparseMatDescr_t descrC,
 cuComplex *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseZbsr2csr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int blockDim,
 const cusparseMatDescr_t descrC,
 cuDoubleComplex *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 195

This function converts a sparse matrix in BSR format that is defined by the three arrays
bsrValA, bsrRowPtrA, and bsrColIndA) into a sparse matrix in CSR format that is
defined by arrays csrValC, csrRowPtrC, and csrColIndC.

Let m(=mb*blockDim) be the number of rows of A and n(=nb*blockDim) be number
of columns of A, then A and C are m*n sparse matrices. The BSR format of A contains
nnzb(=bsrRowPtrA[mb] - bsrRowPtrA[0]) nonzero blocks, whereas the sparse
matrix A contains nnz(=nnzb*blockDim*blockDim) elements. The user must allocate
enough space for arrays csrRowPtrC, csrColIndC, and csrValC. The requirements are
as follows:

csrRowPtrC of m+1 elements

csrValC of nnz elements

csrColIndC of nnz elements

The general procedure is as follows:
// Given BSR format (bsrRowPtrA, bsrcolIndA, bsrValA) and
// blocks of BSR format are stored in column-major order.
cusparseDirection_t dir = CUSPARSE_DIRECTION_COLUMN;
int m = mb*blockDim;
int nnzb = bsrRowPtrA[mb] - bsrRowPtrA[0]; // number of blocks
int nnz = nnzb * blockDim * blockDim; // number of elements
cudaMalloc((void**)&csrRowPtrC, sizeof(int)*(m+1));
cudaMalloc((void**)&csrColIndC, sizeof(int)*nnz);
cudaMalloc((void**)&csrValC, sizeof(float)*nnz);
cusparseSbsr2csr(handle, dir, mb, nb,
 descrA,
 bsrValA, bsrRowPtrA, bsrColIndA,
 blockDim,
 descrC,
 csrValC, csrRowPtrC, csrColIndC);

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows of sparse matrix A.

nb number of block columns of sparse matrix A.

descrA the descriptor of matrix A.

bsrValA <type> array of nnzb*blockDim*blockDim
nonzero elements of matrix A.

bsrRowPtrA integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix A.

bsrColIndA integer array of nnzb column indices of the
nonzero blocks of matrix A.

blockDim block dimension of sparse matrix A.

descrC the descriptor of matrix C.

Output

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 196

csrValC <type> array of nnz(=csrRowPtrC[m]-
csrRowPtrC[0]) nonzero elements of matrix C.

csrRowPtrC integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one of matrix C.

csrColIndC integer array of nnz column indices of the nonzero
elements of matrix C.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nb<0,
IndexBase of descrA, descrC is not base-0 or
base-1, dir is not row-major or column-major, or
blockDim<1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 197

12.2. cusparse<t>gebsr2gebsc_bufferSize()

cusparseStatus_t
cusparseSgebsr2gebsc_bufferSize(cusparseHandle_t handle,
 int mb,
 int nb,
 int nnzb,
 const float *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int rowBlockDim,
 int colBlockDim,
 int *pBufferSize)

cusparseStatus_t
cusparseDgebsr2gebsc_bufferSize(cusparseHandle_t handle,
 int mb,
 int nb,
 int nnzb,
 const double *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int rowBlockDim,
 int colBlockDim,
 int *pBufferSize)

cusparseStatus_t
cusparseCgebsr2gebsc_bufferSize(cusparseHandle_t handle,
 int mb,
 int nb,
 int nnzb,
 const cuComplex *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int rowBlockDim,
 int colBlockDim,
 int *pBufferSize)

cusparseStatus_t
cusparseZgebsr2gebsc_bufferSize(cusparseHandle_t handle,
 int mb,
 int nb,
 int nnzb,
 const cuDoubleComplex *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int rowBlockDim,
 int colBlockDim,
 int *pBufferSize)

This function returns size of buffer used in computing gebsr2gebsc().
Input

handle handle to the cuSPARSE library context.

mb number of block rows of sparse matrix A.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 198

nb number of block columns of sparse matrix A.

nnzb number of nonzero blocks of matrix A.

bsrVal <type> array of
nnzb*rowBlockDim*colBlockDim non-zero
elements of matrix A.

bsrRowPtr integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColInd integer array of nnzb column indices of the non-
zero blocks of matrix A.

rowBlockDim number of rows within a block of A.

colBlockDim number of columns within a block of A.

Output

pBufferSize host pointer containing number of bytes of the
buffer used in gebsr2gebsc().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb, nb,
nnzb<0, or rowBlockDim, colBlockDim<1).

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 199

12.3. cusparse<t>gebsr2gebsc()

cusparseStatus_t
cusparseSgebsr2gebsc(cusparseHandle_t handle,
 int mb,
 int nb,
 int nnzb,
 const float *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int rowBlockDim,
 int colBlockDim,
 float *bscVal,
 int *bscRowInd,
 int *bscColPtr,
 cusparseAction_t copyValues,
 cusparseIndexBase_t baseIdx,
 void *pBuffer)

cusparseStatus_t
cusparseDgebsr2gebsc(cusparseHandle_t handle,
 int mb,
 int nb,
 int nnzb,
 const double *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int rowBlockDim,
 int colBlockDim,
 double *bscVal,
 int *bscRowInd,
 int *bscColPtr,
 cusparseAction_t copyValues,
 cusparseIndexBase_t baseIdx,
 void *pBuffer)

cusparseStatus_t
cusparseCgebsr2gebsc(cusparseHandle_t handle,
 int mb,
 int nb,
 int nnzb,
 const cuComplex *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int rowBlockDim,
 int colBlockDim,
 cuComplex *bscVal,
 int *bscRowInd,
 int *bscColPtr,
 cusparseAction_t copyValues,
 cusparseIndexBase_t baseIdx,
 void *pBuffer)

cusparseStatus_t
cusparseZgebsr2gebsc(cusparseHandle_t handle,
 int mb,
 int nb,
 int nnzb,
 const cuDoubleComplex *bsrVal,
 const int *bsrRowPtr,
 const int *bsrColInd,
 int rowBlockDim,
 int colBlockDim,
 cuDoubleComplex *bscVal,
 int *bscRowInd,
 int *bscColPtr,
 cusparseAction_t copyValues,
 cusparseIndexBase_t baseIdx,
 void *pBuffer)

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 200

This function can be seen as the same as csr2csc() when each block of size
rowBlockDim*colBlockDim is regarded as a scalar.

This sparsity pattern of the result matrix can also be seen as the transpose of the original
sparse matrix, but the memory layout of a block does not change.

The user must call gebsr2gebsc_bufferSize() to determine the size of the buffer
required by gebsr2gebsc(), allocate the buffer, and pass the buffer pointer to
gebsr2gebsc().
Input

handle handle to the cuSPARSE library context.

mb number of block rows of sparse matrix A.

nb number of block columns of sparse matrix A.

nnzb number of nonzero blocks of matrix A.

bsrVal <type> array of
nnzb*rowBlockDim*colBlockDim nonzero
elements of matrix A.

bsrRowPtr integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColInd integer array of nnzb column indices of the non-
zero blocks of matrix A.

rowBlockDim number of rows within a block of A.

colBlockDim number of columns within a block of A.

copyValues CUSPARSE_ACTION_SYMBOLIC or
CUSPARSE_ACTION_NUMERIC.

baseIdx CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

pBuffer buffer allocated by the user; the size is return by
gebsr2gebsc_bufferSize().

Output

bscVal <type> array of
nnzb*rowBlockDim*colBlockDim
non-zero elements of matrix A. It is
only filled-in if copyValues is set to
CUSPARSE_ACTION_NUMERIC.

bscRowInd integer array of nnzb row indices of the non-zero
blocks of matrix A.

bscColPtr integer array of nb+1 elements that contains the
start of every block column and the end of the last
block column plus one.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 201

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb,nb,nnzb<0,
baseIdx is not base-0 or base-1, or rowBlockDim,
colBlockDim<1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 202

12.4. cusparse<t>gebsr2gebsr_bufferSize()

cusparseStatus_t
cusparseSgebsr2gebsr_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDimA,
 int colBlockDimA,
 int rowBlockDimC,
 int colBlockDimC,
 int *pBufferSize)

cusparseStatus_t
cusparseDgebsr2gebsr_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDimA,
 int colBlockDimA,
 int rowBlockDimC,
 int colBlockDimC,
 int *pBufferSize)

cusparseStatus_t
cusparseCgebsr2gebsr_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDimA,
 int colBlockDimA,
 int rowBlockDimC,
 int colBlockDimC,
 int *pBufferSize)

cusparseStatus_t
cusparseZgebsr2gebsr_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDimA,
 int colBlockDimA,
 int rowBlockDimC,
 int colBlockDimC,
 int *pBufferSize)

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 203

This function returns size of the buffer used in computing gebsr2gebsrNnz() and
gebsr2gebsr().
Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows of sparse matrix A.

nb number of block columns of sparse matrix A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of
nnzb*rowBlockDimA*colBlockDimA non-zero
elements of matrix A.

bsrRowPtrA integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix A.

bsrColIndA integer array of nnzb column indices of the
nonzero blocks of matrix A.

rowBlockDimA number of rows within a block of A.

colBlockDimA number of columns within a block of A.

rowBlockDimC number of rows within a block of C.

colBlockDimC number of columns within a block of C

Output

pBufferSize host pointer containing number of bytes of the
buffer used in gebsr2gebsr().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb, nb,
nnzb<0; or rowBlockDimA, colBlockDimA,
rowBlockDimC, colBlockDimC<1).

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 204

12.5. cusparse<t>gebsr2gebsr()
cusparseStatus_t
cusparseXgebsr2gebsrNnz(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDimA,
 int colBlockDimA,
 const cusparseMatDescr_t descrC,
 int *bsrRowPtrC,
 int rowBlockDimC,
 int colBlockDimC,
 int *nnzTotalDevHostPtr,
 void *pBuffer)

cusparseStatus_t
cusparseSgebsr2gebsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDimA,
 int colBlockDimA,
 const cusparseMatDescr_t descrC,
 float *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC,
 int rowBlockDimC,
 int colBlockDimC,
 void *pBuffer)

cusparseStatus_t
cusparseDgebsr2gebsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDimA,
 int colBlockDimA,
 const cusparseMatDescr_t descrC,
 double *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC,
 int rowBlockDimC,
 int colBlockDimC,
 void *pBuffer)

cusparseStatus_t
cusparseCgebsr2gebsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDimA,
 int colBlockDimA,
 const cusparseMatDescr_t descrC,
 cuComplex *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC,
 int rowBlockDimC,
 int colBlockDimC,
 void *pBuffer)

cusparseStatus_t
cusparseZgebsr2gebsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 int nnzb,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDimA,
 int colBlockDimA,
 const cusparseMatDescr_t descrC,
 cuDoubleComplex *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC,
 int rowBlockDimC,
 int colBlockDimC,
 void *pBuffer)

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 205

This function converts a sparse matrix in general BSR format that is defined by the three
arrays bsrValA, bsrRowPtrA, and bsrColIndA into a sparse matrix in another general
BSR format that is defined by arrays bsrValC, bsrRowPtrC, and bsrColIndC.

If rowBlockDimA=1 and colBlockDimA=1, cusparse[S|D|C|Z]gebsr2gebsr() is the
same as cusparse[S|D|C|Z]csr2gebsr().

If rowBlockDimC=1 and colBlockDimC=1, cusparse[S|D|C|Z]gebsr2gebsr() is the
same as cusparse[S|D|C|Z]gebsr2csr().

A is an m*n sparse matrix where m(=mb*rowBlockDim) is the number of rows of A,
and n(=nb*colBlockDim) is the number of columns of A. The general BSR format of A
contains nnzb(=bsrRowPtrA[mb] - bsrRowPtrA[0]) nonzero blocks. The matrix C
is also general BSR format with a different block size, rowBlockDimC*colBlockDimC.
If m is not a multiple of rowBlockDimC, or n is not a multiple of colBlockDimC,
zeros are filled in. The number of block rows of C is mc(=(m+rowBlockDimC-1)/
rowBlockDimC). The number of block rows of C is nc(=(n+colBlockDimC-1)/
colBlockDimC). The number of nonzero blocks of C is nnzc.

The implementation adopts a two-step approach to do the conversion.
First, the user allocates bsrRowPtrC of mc+1 elements and uses function
cusparseXgebsr2gebsrNnz() to determine the number of nonzero block
columns per block row of matrix C. Second, the user gathers nnzc (number of non-
zero block columns of matrix C) from either (nnzc=*nnzTotalDevHostPtr)
or (nnzc=bsrRowPtrC[mc]-bsrRowPtrC[0]) and allocates bsrValC of
nnzc*rowBlockDimC*colBlockDimC elements and bsrColIndC of nnzc integers.
Finally the function cusparse[S|D|C|Z]gebsr2gebsr() is called to complete the
conversion.

The user must call gebsr2gebsr_bufferSize() to know the size of the buffer required
by gebsr2gebsr(), allocate the buffer, and pass the buffer pointer to gebsr2gebsr().

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 206

The general procedure is as follows:
// Given general BSR format (bsrRowPtrA, bsrColIndA, bsrValA) and
// blocks of BSR format are stored in column-major order.
cusparseDirection_t dir = CUSPARSE_DIRECTION_COLUMN;
int base, nnzc;
int m = mb*rowBlockDimA;
int n = nb*colBlockDimA;
int mc = (m+rowBlockDimC-1)/rowBlockDimC;
int nc = (n+colBlockDimC-1)/colBlockDimC;
int bufferSize;
void *pBuffer;
cusparseSgebsr2gebsr_bufferSize(handle, dir, mb, nb, nnzb,
 descrA, bsrValA, bsrRowPtrA, bsrColIndA,
 rowBlockDimA, colBlockDimA,
 rowBlockDimC, colBlockDimC,
 &bufferSize);
cudaMalloc((void**)&pBuffer, bufferSize);
cudaMalloc((void**)&bsrRowPtrC, sizeof(int)*(mc+1));
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzc;
cusparseXgebsr2gebsrNnz(handle, dir, mb, nb, nnzb,
 descrA, bsrRowPtrA, bsrColIndA,
 rowBlockDimA, colBlockDimA,
 descrC, bsrRowPtrC,
 rowBlockDimC, colBlockDimC,
 nnzTotalDevHostPtr,
 pBuffer);
if (NULL != nnzTotalDevHostPtr){
 nnzc = *nnzTotalDevHostPtr;
}else{
 cudaMemcpy(&nnzc, bsrRowPtrC+mc, sizeof(int), cudaMemcpyDeviceToHost);
 cudaMemcpy(&base, bsrRowPtrC, sizeof(int), cudaMemcpyDeviceToHost);
 nnzc -= base;
}
cudaMalloc((void**)&bsrColIndC, sizeof(int)*nnzc);
cudaMalloc((void**)&bsrValC, sizeof(float)*(rowBlockDimC*colBlockDimC)*nnzc);
cusparseSgebsr2gebsr(handle, dir, mb, nb, nnzb,
 descrA, bsrValA, bsrRowPtrA, bsrColIndA,
 rowBlockDimA, colBlockDimA,
 descrC, bsrValC, bsrRowPtrC, bsrColIndC,
 rowBlockDimC, colBlockDimC,
 pBuffer);

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows of sparse matrix A.

nb number of block columns of sparse matrix A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of
nnzb*rowBlockDimA*colBlockDimA non-zero
elements of matrix A.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 207

bsrRowPtrA integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix A.

bsrColIndA integer array of nnzb column indices of the non-
zero blocks of matrix A.

rowBlockDimA number of rows within a block of A.

colBlockDimA number of columns within a block of A.

descrC the descriptor of matrix C. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

rowBlockDimC number of rows within a block of C.

colBlockDimC number of columns within a block of C.

pBuffer buffer allocated by the user; the size is return by
gebsr2gebsr_bufferSize().

Output

bsrValC <type> array of
nnzc*rowBlockDimC*colBlockDimC non-zero
elements of matrix C.

bsrRowPtrC integer array of mc+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix C.

bsrColIndC integer array of nnzc block column indices of the
nonzero blocks of matrix C.

nnzTotalDevHostPtr total number of nonzero blocks of C.
*nnzTotalDevHostPtr is the same as
bsrRowPtrC[mc]-bsrRowPtrC[0].

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb, nb,
nnzb<0, baseIdx is not base-0 or base-1; or
rowBlockDimA, colBlockDimA, rowBlockDimC,
colBlockDimC<1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 208

12.6. cusparse<t>gebsr2csr()
cusparseStatus_t
cusparseSgebsr2csr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 const cusparseMatDescr_t descrA,
 const float *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDim,
 int colBlockDim,
 const cusparseMatDescr_t descrC,
 float *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseDgebsr2csr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 const cusparseMatDescr_t descrA,
 const double *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDim,
 int colBlockDim,
 const cusparseMatDescr_t descrC,
 double *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseCgebsr2csr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 const cusparseMatDescr_t descrA,
 const cuComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDim,
 int colBlockDim,
 const cusparseMatDescr_t descrC,
 cuComplex *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)
cusparseStatus_t
cusparseZgebsr2csr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int mb,
 int nb,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *bsrValA,
 const int *bsrRowPtrA,
 const int *bsrColIndA,
 int rowBlockDim,
 int colBlockDim,
 const cusparseMatDescr_t descrC,
 cuDoubleComplex *csrValC,
 int *csrRowPtrC,
 int *csrColIndC)

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 209

This function converts a sparse matrix in general BSR format that is defined by the three
arrays bsrValA, bsrRowPtrA, and bsrColIndA into a sparse matrix in CSR format that
is defined by arrays csrValC, csrRowPtrC, and csrColIndC.

Let m(=mb*rowBlockDim) be number of rows of A and n(=nb*colBlockDim) be
number of columns of A, then A and C are m*n sparse matrices. The general BSR format
of A contains nnzb(=bsrRowPtrA[mb] - bsrRowPtrA[0]) non-zero blocks, whereas
sparse matrix A contains nnz(=nnzb*rowBlockDim*colBlockDim) elements. The user
must allocate enough space for arrays csrRowPtrC, csrColIndC, and csrValC. The
requirements are as follows:

csrRowPtrC of m+1 elements

csrValC of nnz elements

csrColIndC of nnz elements

The general procedure is as follows:
// Given general BSR format (bsrRowPtrA, bsrColIndA, bsrValA) and
// blocks of BSR format are stored in column-major order.
cusparseDirection_t dir = CUSPARSE_DIRECTION_COLUMN;
int m = mb*rowBlockDim;
int n = nb*colBlockDim;
int nnzb = bsrRowPtrA[mb] - bsrRowPtrA[0]; // number of blocks
int nnz = nnzb * rowBlockDim * colBlockDim; // number of elements
cudaMalloc((void**)&csrRowPtrC, sizeof(int)*(m+1));
cudaMalloc((void**)&csrColIndC, sizeof(int)*nnz);
cudaMalloc((void**)&csrValC, sizeof(float)*nnz);
cusparseSgebsr2csr(handle, dir, mb, nb,
 descrA,
 bsrValA, bsrRowPtrA, bsrColIndA,
 rowBlockDim, colBlockDim,
 descrC,
 csrValC, csrRowPtrC, csrColIndC);

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows of sparse matrix A.

nb number of block columns of sparse matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

bsrValA <type> array of
nnzb*rowBlockDim*colBlockDim non-zero
elements of matrix A.

bsrRowPtrA integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix A.

bsrColIndA integer array of nnzb column indices of the non-
zero blocks of matrix A.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 210

rowBlockDim number of rows within a block of A.

colBlockDim number of columns within a block of A.

descrC the descriptor of matrix C. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

Output

csrValC <type> array of nnz non-zero elements of matrix
C.

csrRowPtrC integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one of matrix C.

csrColIndC integer array of nnz column indices of the non-
zero elements of matrix C.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (mb, nb<0
is not base-0 or base-1, or rowBlockDim,
colBlockDim<1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 211

12.7. cusparse<t>csr2gebsr_bufferSize()

cusparseStatus_t
cusparseScsr2gebsr_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int rowBlockDim,
 int colBlockDim,
 int *pBufferSize)

cusparseStatus_t
cusparseDcsr2gebsr_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int rowBlockDim,
 int colBlockDim,
 int *pBufferSize)

cusparseStatus_t
cusparseCcsr2gebsr_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int rowBlockDim,
 int colBlockDim,
 int *pBufferSize)

cusparseStatus_t
cusparseZcsr2gebsr_bufferSize(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int rowBlockDim,
 int colBlockDim,
 int *pBufferSize)

This function returns the size of the buffer used in computing csr2gebsrNnz and
csr2gebsr.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 212

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

m number of rows of sparse matrix A.

n number of columns of sparse matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one of matrix A.

csrColIndA integer array of nnz column indices of the nonzero
elements of matrix A.

descrC the descriptor of matrix C. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

rowBlockDim number of rows within a block of C.

colBlockDim number of columns within a block of C.

Output

pBufferSize host pointer containing number of bytes of
the buffer used in csr2gebsrNnz() and
csr2gebsr().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0, or
rowBlockDim, colBlockDim<1).

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 213

12.8. cusparse<t>csr2gebsr()

cusparseStatus_t
cusparseXcsr2gebsrNnz(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrC,
 int *bsrRowPtrC,
 int rowBlockDim,
 int colBlockDim,
 int *nnzTotalDevHostPtr,
 void *pBuffer)

cusparseStatus_t
cusparseScsr2gebsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrC,
 float *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC,
 int rowBlockDim,
 int colBlockDim,
 void *pBuffer)

cusparseStatus_t
cusparseDcsr2gebsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrC,
 double *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC,
 int rowBlockDim,
 int colBlockDim,
 void *pBuffer)

cusparseStatus_t
cusparseCcsr2gebsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrC,
 cuComplex *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC,
 int rowBlockDim,
 int colBlockDim,
 void *pBuffer)

cusparseStatus_t
cusparseZcsr2gebsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cusparseMatDescr_t descrC,
 cuDoubleComplex *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC,
 int rowBlockDim,
 int colBlockDim,
 void *pBuffer)

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 214

This function converts a sparse matrix A in CSR format (that is defined by arrays
csrValA, csrRowPtrA, and csrColIndA) into a sparse matrix C in general BSR format
(that is defined by the three arrays bsrValC, bsrRowPtrC, and bsrColIndC).

The matrix A is a m*n sparse matrix and matrix C is a
(mb*rowBlockDim)*(nb*colBlockDim) sparse matrix, where mb(=(m
+rowBlockDim-1)/rowBlockDim) is the number of block rows of C, and nb(=(n
+colBlockDim-1)/colBlockDim) is the number of block columns of C.

The block of C is of size rowBlockDim*colBlockDim. If m is not multiple of
rowBlockDim or n is not multiple of colBlockDim, zeros are filled in.

The implementation adopts a two-step approach to do the conversion. First, the user
allocates bsrRowPtrC of mb+1 elements and uses function cusparseXcsr2gebsrNnz()
to determine the number of nonzero block columns per block row. Second, the
user gathers nnzb (number of nonzero block columns of matrix C) from either
(nnzb=*nnzTotalDevHostPtr) or (nnzb=bsrRowPtrC[mb]-bsrRowPtrC[0]) and
allocates bsrValC of nnzb*rowBlockDim*colBlockDim elements and bsrColIndC of
nnzb integers. Finally function cusparse[S|D|C|Z]csr2gebsr() is called to complete
the conversion.

The user must obtain the size of the buffer required by csr2gebsr() by calling
csr2gebsr_bufferSize(), allocate the buffer, and pass the buffer pointer to
csr2gebsr().

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 215

The general procedure is as follows:
// Given CSR format (csrRowPtrA, csrColIndA, csrValA) and
// blocks of BSR format are stored in column-major order.
cusparseDirection_t dir = CUSPARSE_DIRECTION_COLUMN;
int base, nnzb;
int mb = (m + rowBlockDim-1)/rowBlockDim;
int nb = (n + colBlockDim-1)/colBlockDim;
int bufferSize;
void *pBuffer;
cusparseScsr2gebsr_bufferSize(handle, dir, m, n,
 descrA, csrValA, csrRowPtrA, csrColIndA,
 rowBlockDim, colBlockDim,
 &bufferSize);
cudaMalloc((void**)&pBuffer, bufferSize);
cudaMalloc((void**)&bsrRowPtrC, sizeof(int) *(mb+1));
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzb;
cusparseXcsr2gebsrNnz(handle, dir, m, n,
 descrA, csrRowPtrA, csrColIndA,
 descrC, bsrRowPtrC, rowBlockDim, colBlockDim,
 nnzTotalDevHostPtr,
 pBuffer);
if (NULL != nnzTotalDevHostPtr){
 nnzb = *nnzTotalDevHostPtr;
}else{
 cudaMemcpy(&nnzb, bsrRowPtrC+mb, sizeof(int), cudaMemcpyDeviceToHost);
 cudaMemcpy(&base, bsrRowPtrC, sizeof(int), cudaMemcpyDeviceToHost);
 nnzb -= base;
}
cudaMalloc((void**)&bsrColIndC, sizeof(int)*nnzb);
cudaMalloc((void**)&bsrValC, sizeof(float)*(rowBlockDim*colBlockDim)*nnzb);
cusparseScsr2gebsr(handle, dir, m, n,
 descrA,
 csrValA, csrRowPtrA, csrColIndA,
 descrC,
 bsrValC, bsrRowPtrC, bsrColIndC,
 rowBlockDim, colBlockDim,
 pBuffer);

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

m number of rows of sparse matrix A.

n number of columns of sparse matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one of matrix A.

csrColIndA integer array of nnz column indices of the nonzero
elements of matrix A.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 216

descrC the descriptor of matrix C. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

rowBlockDim number of rows within a block of C.

colBlockDim number of columns within a block of C.

pBuffer buffer allocated by the user, the size is return by
csr2gebsr_bufferSize().

Output

bsrValC <type> array of
nnzb*rowBlockDim*colBlockDim nonzero
elements of matrix C.

bsrRowPtrC integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix C.

bsrColIndC integer array of nnzb column indices of the
nonzero blocks of matrix C.

nnzTotalDevHostPtr total number of nonzero blocks of matrix C.
Pointer nnzTotalDevHostPtr can point to a
device memory or host memory.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0, baseIdx
is not base-0 or base-1, or rowBlockDim,
colBlockDim<1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

12.9. cusparse<t>coo2csr()
cusparseStatus_t
cusparseXcoo2csr(cusparseHandle_t handle, const int *cooRowInd,
 int nnz, int m, int *csrRowPtr, cusparseIndexBase_t
 idxBase)

This function converts the array containing the uncompressed row indices
(corresponding to COO format) into an array of compressed row pointers
(corresponding to CSR format).

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 217

It can also be used to convert the array containing the uncompressed column indices
(corresponding to COO format) into an array of column pointers (corresponding to CSC
format).

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

cooRowInd integer array of nnz uncompressed row indices.

nnz number of non-zeros of the sparse matrix (that is
also the length of array cooRowInd).

m number of rows of matrix A.

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

Output

csrRowPtr integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE idxBase is neither CUSPARSE_INDEX_BASE_ZERO
nor CUSPARSE_INDEX_BASE_ONE.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 218

12.10. cusparse<t>csc2dense()
cusparseStatus_t
cusparseScsc2dense(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const float *cscValA,
 const int *cscRowIndA, const int *cscColPtrA,
 float *A, int lda)
cusparseStatus_t
cusparseDcsc2dense(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const double *cscValA,
 const int *cscRowIndA, const int *cscColPtrA,
 double *A, int lda)
cusparseStatus_t
cusparseCcsc2dense(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *cscValA,
 const int *cscRowIndA, const int *cscColPtrA,
 cuComplex *A, int lda)
cusparseStatus_t
cusparseZcsc2dense(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *cscValA,
 const int *cscRowIndA, const int *cscColPtrA,
 cuDoubleComplex *A, int lda)

This function converts the sparse matrix in CSC format that is defined by the three
arrays cscValA, cscColPtrA, and cscRowIndA into the matrix A in dense format. The
dense matrix A is filled in with the values of the sparse matrix and with zeros elsewhere.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

cscValA <type> array of nnz cscColPtrA(m)
cscColPtrA(0) nonzero elements of matrix A.

cscRowIndA integer array of nnz cscColPtrA(m)
cscColPtrA(0) row indices of the nonzero
elements of matrix A.

cscColPtrA integer array of n+1 elements that contains the
start of every row and the end of the last column
plus one.

lda leading dimension of dense array A.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 219

Output

A array of dimensions (lda, n) that is filled in with
the values of the sparse matrix.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

12.11. cusparse<t>csc2hyb()
cusparseStatus_t
cusparseScsc2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const float *cscValA,
 const int *cscRowIndA, const int *cscColPtrA,
 cusparseHybMat_t hybA, int userEllWidth,
 cusparseHybPartition_t partitionType)
cusparseStatus_t
cusparseDcsc2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const double *cscValA,
 const int *cscRowIndA, const int *cscColPtrA,
 cusparseHybMat_t hybA, int userEllWidth,
 cusparseHybPartition_t partitionType)
cusparseStatus_t
cusparseCcsc2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *cscValA,
 const int *cscRowIndA, const int *cscColPtrA,
 cusparseHybMat_t hybA, int userEllWidth,
 cusparseHybPartition_t partitionType)
cusparseStatus_t
cusparseZcsc2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *cscValA,
 const int *cscRowIndA, const int *cscColPtrA,
 cusparseHybMat_t hybA, int userEllWidth,
 cusparseHybPartition_t partitionType)

This function converts a sparse matrix in CSC format into a sparse matrix in
HYB format. It assumes that the hybA parameter has been initialized with the
cusparseCreateHybMat() routine before calling this function.

This function requires some amount of temporary storage and a significant amount of
storage for the matrix in HYB format. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 220

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

cscValA <type> array of nnz cscColPtrA(m)
cscColPtrA(0) nonzero elements of matrix A.

cscRowIndA integer array of nnz cscColPtrA(m)
cscColPtrA(0) column indices of the nonzero
elements of matrix A.

cscColPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

userEllWidth width of the regular (ELL) part of the matrix
in HYB format, which should be less than
the maximum number of nonzeros per row
and is only required if partitionType ==
CUSPARSE_HYB_PARTITION_USER.

partitionType partitioning method to be used in the conversion
(please refer to cusparseHybPartition_t for
details).

Output

hybA the matrix A in HYB storage format.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 221

12.12. cusparse<t>csr2bsr()
cusparseStatus_t
cusparseXcsr2bsrNnz(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int blockDim,
 const cusparseMatDescr_t descrC,
 int *bsrRowPtrC,
 int *nnzTotalDevHostPtr)
cusparseStatus_t
cusparseScsr2bsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int blockDim,
 const cusparseMatDescr_t descrC,
 float *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC)
cusparseStatus_t
cusparseDcsr2bsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int blockDim,
 const cusparseMatDescr_t descrC,
 double *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC)
cusparseStatus_t
cusparseCcsr2bsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int blockDim,
 const cusparseMatDescr_t descrC,
 cuComplex *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC)
cusparseStatus_t
cusparseZcsr2bsr(cusparseHandle_t handle,
 cusparseDirection_t dir,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int blockDim,
 const cusparseMatDescr_t descrC,
 cuDoubleComplex *bsrValC,
 int *bsrRowPtrC,
 int *bsrColIndC)

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 222

This function converts a sparse matrix in CSR format that is defined by the three arrays
csrValA, csrRowPtrA, and csrColIndA into a sparse matrix in BSR format that is
defined by arrays bsrValC, bsrRowPtrC, and bsrColIndC.

A is an m*n sparse matrix. The BSR format of A has mb block rows, nb block columns,
and nnzb nonzero blocks, where mb=((m+blockDim-1)/blockDim) and nb=(n
+blockDim-1)/blockDim.

If m or n is not multiple of blockDim, zeros are filled in.

The conversion in cuSPARSE entails a two-step approach. First, the user allocates
bsrRowPtrC of mb+1 elements and uses function cusparseXcsr2bsrNnz()
to determine the number of nonzero block columns per block row. Second, the
user gathers nnzb (number of non-zero block columns of matrix C) from either
(nnzb=*nnzTotalDevHostPtr) or (nnzb=bsrRowPtrC[mb]-bsrRowPtrC[0]) and
allocates bsrValC of nnzb*blockDim*blockDim elements and bsrColIndC of nnzb
elements. Finally function cusparse[S|D|C|Z]csr2bsr90 is called to complete the
conversion.

The general procedure is as follows:
// Given CSR format (csrRowPtrA, csrcolIndA, csrValA) and
// blocks of BSR format are stored in column-major order.
cusparseDirection_t dir = CUSPARSE_DIRECTION_COLUMN;
int base, nnzb;
int mb = (m + blockDim-1)/blockDim;
cudaMalloc((void**)&bsrRowPtrC, sizeof(int) *(mb+1));
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzb;
cusparseXcsr2bsrNnz(handle, dir, m, n,
 descrA, csrRowPtrA, csrColIndA,
 blockDim,
 descrC, bsrRowPtrC,
 nnzTotalDevHostPtr);
if (NULL != nnzTotalDevHostPtr){
 nnzb = *nnzTotalDevHostPtr;
}else{
 cudaMemcpy(&nnzb, bsrRowPtrC+mb, sizeof(int), cudaMemcpyDeviceToHost);
 cudaMemcpy(&base, bsrRowPtrC, sizeof(int), cudaMemcpyDeviceToHost);
 nnzb -= base;
}
cudaMalloc((void**)&bsrColIndC, sizeof(int)*nnzb);
cudaMalloc((void**)&bsrValC, sizeof(float)*(blockDim*blockDim)*nnzb);
cusparseScsr2bsr(handle, dir, m, n,
 descrA,
 csrValA, csrRowPtrA, csrColIndA,
 blockDim,
 descrC,
 bsrValC, bsrRowPtrC, bsrColIndC);

If blockDim is large (typically, a block cannot fit into shared memory), cusparse[S|
D|C|Z]csr2bsr() allocates a temporary integer array of size mb*blockDim integers. If
device memory is not available, CUSPARSE_STATUS_ALLOC_FAILED is returned.
Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW or
CUSPARSE_DIRECTION_COLUMN.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 223

m number of rows of sparse matrix A.

n number of columns of sparse matrix A.

descrA the descriptor of matrix A.

csrValA <type> array of nnz(=csrRowPtrA[m]-
csrRowPtr[0]) non-zero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz column indices of the non-
zero elements of matrix A.

blockDim block dimension of sparse matrix A. The range of
blockDim is between 1 and min(m,n).

descrC the descriptor of matrix C.

Output

bsrValC <type> array of nnzb*blockDim*blockDim
nonzero elements of matrix C.

bsrRowPtrC integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix C.

bsrColIndC integer array of nnzb column indices of the non-
zero blocks of matrix C.

nnzTotalDevHostPtr total number of nonzero elements in device or
host memory. It is equal to (bsrRowPtrC[mb]-
bsrRowPtrC[0]).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n<0).
IndexBase field of descrA, descrC is not base-0
or base-1, dir is not row-major or column-major,
or blockDim is not between 1 and min(m,n).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

12.13. cusparse<t>csr2coo()
cusparseStatus_t
cusparseXcsr2coo(cusparseHandle_t handle, const int *csrRowPtr,
 int nnz, int m, int *cooRowInd,
 cusparseIndexBase_t idxBase)

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 224

This function converts the array containing the compressed row pointers (corresponding
to CSR format) into an array of uncompressed row indices (corresponding to COO
format).

It can also be used to convert the array containing the compressed column indices
(corresponding to CSC format) into an array of uncompressed column indices
(corresponding to COO format).

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

csrRowPtr integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

nnz number of nonzeros of the sparse matrix (that is
also the length of array cooRowInd).

m number of rows of matrix A.

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

Output

cooRowInd integer array of nnz uncompressed row indices.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE idxBase is neither CUSPARSE_INDEX_BASE_ZERO
nor CUSPARSE_INDEX_BASE_ONE.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 225

12.14. cusparse<t>csr2csc()
cusparseStatus_t
cusparseScsr2csc(cusparseHandle_t handle, int m, int n, int nnz,
 const float *csrVal, const int *csrRowPtr,
 const int *csrColInd, float *cscVal,
 int *cscRowInd, int *cscColPtr,
 cusparseAction_t copyValues,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseDcsr2csc(cusparseHandle_t handle, int m, int n, int nnz,
 const double *csrVal, const int *csrRowPtr,
 const int *csrColInd, double *cscVal,
 int *cscRowInd, int *cscColPtr,
 cusparseAction_t copyValues,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseCcsr2csc(cusparseHandle_t handle, int m, int n, int nnz,
 const cuComplex *csrVal, const int *csrRowPtr,
 const int *csrColInd, cuComplex *cscVal,
 int *cscRowInd, int *cscColPtr,
 cusparseAction_t copyValues,
 cusparseIndexBase_t idxBase)
cusparseStatus_t
cusparseZcsr2csc(cusparseHandle_t handle, int m, int n, int nnz,
 const cuDoubleComplex *csrVal, const int *csrRowPtr,
 const int *csrColInd, cuDoubleComplex *cscVal,
 int *cscRowInd, int *cscColPtr,
 cusparseAction_t copyValues,
 cusparseIndexBase_t idxBase)

This function converts a sparse matrix in CSR format (that is defined by the three
arrays csrVal, csrRowPtr, and csrColInd) into a sparse matrix in CSC format (that is
defined by arrays cscVal, cscRowInd, and cscColPtr). The resulting matrix can also
be seen as the transpose of the original sparse matrix. Notice that this routine can also be
used to convert a matrix in CSC format into a matrix in CSR format.

This function requires a significant amount of extra storage that is proportional to the
matrix size. It is executed asynchronously with respect to the host, and it may return
control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

m number of rows of matrix .

n number of columns of matrix .

nnz number of nonzero elements of matrix .

csrVal <type> array of nnz csrRowPtr(m)
csrRowPtr(0) nonzero elements of matrix .

csrRowPtr integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 226

csrColInd integer array of nnz csrRowPtr(m)
csrRowPtr(0) column indices of the nonzero
elements of matrix .

copyValues CUSPARSE_ACTION_SYMBOLIC or
CUSPARSE_ACTION_NUMERIC.

idxBase CUSPARSE_INDEX_BASE_ZERO or
CUSPARSE_INDEX_BASE_ONE.

Output

cscVal <type> array of nnz cscColPtr(n)
cscColPtr(0) nonzero elements of matrix
. It is only filled in if copyValues is set to

CUSPARSE_ACTION_NUMERIC.

cscRowInd integer array of nnz cscColPtr(n)
cscColPtr(0) column indices of the nonzero
elements of matrix .

cscColPtr integer array of n+1 elements that contains the
start of every column and the end of the last
column plus one.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 227

12.15. cusparse<t>csr2dense()

cusparseStatus_t cusparseScsr2dense(cusparseHandle_t handle,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 float *A,
 int lda)

cusparseStatus_t cusparseDcsr2dense(cusparseHandle_t handle,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 double *A,
 int lda)

cusparseStatus_t cusparseCcsr2dense(cusparseHandle_t handle,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuComplex *A,
 int lda)

cusparseStatus_t cusparseZcsr2dense(cusparseHandle_t handle,
 int m,
 int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuDoubleComplex *A,
 int lda)

This function converts the sparse matrix in CSR format (that is defined by the three
arrays csrValA, csrRowPtrA, and csrColIndA) into the matrix A in dense format. The
dense matrix A is filled in with the values of the sparse matrix and with zeros elsewhere.

This function requires no extra storage. It is executed asynchronously with respect to the
host, and it may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

m number of rows of matrix .

n number of columns of matrix .

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 228

descrA the descriptor of matrix . The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix .

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix .

lda leading dimension of array matrixA.

Output

A array of dimensions (lda,n) that is filled in with
the values of the sparse matrix.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 229

12.16. cusparse<t>csr2hyb()
cusparseStatus_t
cusparseScsr2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseHybMat_t hybA, int userEllWidth,
 cusparseHybPartition_t partitionType)
cusparseStatus_t
cusparseDcsr2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseHybMat_t hybA, int userEllWidth,
 cusparseHybPartition_t partitionType)
cusparseStatus_t
cusparseCcsr2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseHybMat_t hybA, int userEllWidth,
 cusparseHybPartition_t partitionType)
cusparseStatus_t
cusparseZcsr2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA, const int *csrColIndA,
 cusparseHybMat_t hybA, int userEllWidth,
 cusparseHybPartition_t partitionType)

This function converts a sparse matrix in CSR format into a sparse matrix in
HYB format. It assumes that the hybA parameter has been initialized with
cusparseCreateHybMat() routine before calling this function.

This function requires some amount of temporary storage and a significant amount of
storage for the matrix in HYB format. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 230

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

userEllWidth width of the regular (ELL) part of the matrix
in HYB format, which should be less than
maximum number of nonzeros per row
and is only required if partitionType ==
CUSPARSE_HYB_PARTITION_USER.

partitionType partitioning method to be used in the conversion
(please refer to cusparseHybPartition_t for
details).

Output

hybA the matrix A in HYB storage format.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 231

12.17. cusparse<t>dense2csc()
cusparseStatus_t
cusparseSdense2csc(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const float *A,
 int lda, const int *nnzPerCol,
 float *cscValA,
 int *cscRowIndA, int *cscColPtrA)
cusparseStatus_t
cusparseDdense2csc(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const double *A,
 int lda, const int *nnzPerCol,
 double *cscValA,
 int *cscRowIndA, int *cscColPtrA)
cusparseStatus_t
cusparseCdense2csc(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *A,
 int lda, const int *nnzPerCol,
 cuComplex *cscValA,
 int *cscRowIndA, int *cscColPtrA)
cusparseStatus_t
cusparseZdense2csc(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *A,
 int lda, const int *nnzPerCol,
 cuDoubleComplex *cscValA,
 int *cscRowIndA, int *cscColPtrA)

This function converts the matrix A in dense format into a sparse matrix in CSC format.
All the parameters are assumed to have been pre-allocated by the user, and the arrays
are filled in based on nnzPerCol, which can be precomputed with cusparse<t>nnz().

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

A array of dimensions (lda, n).

lda leading dimension of dense array A.

nnzPerCol array of size n containing the number of nonzero
elements per column.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 232

Output

cscValA <type> array of nnz cscRowPtrA(m)
cscRowPtrA(0) nonzero elements of matrix
A. It is only filled in if copyValues is set to
CUSPARSE_ACTION_NUMERIC.

cscRowIndA integer array of nnz cscRowPtrA(m)
cscRowPtrA(0) row indices of the nonzero
elements of matrix A.

cscColPtrA integer array of n+1 elements that contains the
start of every column and the end of the last
column plus one.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

12.18. cusparse<t>dense2csr()
cusparseStatus_t
cusparseSdense2csr(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const float *A,
 int lda, const int *nnzPerRow,
 float *csrValA,
 int *csrRowPtrA, int *csrColIndA)
cusparseStatus_t
cusparseDdense2csr(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const double *A,
 int lda, const int *nnzPerRow,
 double *csrValA,
 int *csrRowPtrA, int *csrColIndA)
cusparseStatus_t
cusparseCdense2csr(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *A,
 int lda, const int *nnzPerRow,
 cuComplex *csrValA,
 int *csrRowPtrA, int *csrColIndA)
cusparseStatus_t
cusparseZdense2csr(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *A,
 int lda, const int *nnzPerRow,
 cuDoubleComplex *csrValA,
 int *csrRowPtrA, int *csrColIndA)

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 233

This function converts the matrix A in dense format into a sparse matrix in CSR format.
All the parameters are assumed to have been pre-allocated by the user and the arrays are
filled in based on nnzPerRow, which can be pre-computed with cusparse<t>nnz().

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

A array of dimensions (lda, n).

lda leading dimension of dense array A.

nnzPerRow array of size n containing the number of non-zero
elements per row.

Output

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every column and the end of the last
column plus one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the non-zero
elements of matrix A.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 234

12.19. cusparse<t>dense2hyb()
cusparseStatus_t
cusparseSdense2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const float *A,
 int lda, const int *nnzPerRow, cusparseHybMat_t hybA,
 int userEllWidth,
 cusparseHybPartition_t partitionType)
cusparseStatus_t
cusparseDdense2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const double *A,
 int lda, const int *nnzPerRow, cusparseHybMat_t
 hybA,
 int userEllWidth,
 cusparseHybPartition_t partitionType)
cusparseStatus_t
cusparseCdense2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuComplex *A,
 int lda, const int *nnzPerRow, cusparseHybMat_t hybA,
 int userEllWidth,
 cusparseHybPartition_t partitionType)
cusparseStatus_t
cusparseZdense2hyb(cusparseHandle_t handle, int m, int n,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *A,
 int lda, const int *nnzPerRow, cusparseHybMat_t hybA,
 int userEllWidth,
 cusparseHybPartition_t partitionType)

This function converts matrix A in dense format into a sparse matrix in HYB format.
It assumes that the routine cusparseCreateHybMat() was used to initialize the
opaque structure hybA and that the array nnzPerRow was pre-computed with
cusparse<t>nnz().

This function requires some amount of temporary storage and a significant amount of
storage for the matrix in HYB format. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

m number of rows of matrix .

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.

A array of dimensions (lda, n).

lda leading dimension of dense array A.

nnzPerRow array of size m containing the number of nonzero
elements per row.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 235

userEllWidth width of the regular (ELL) part of the matrix
in HYB format, which should be less than
maximum number of nonzeros per row
and is only required if partitionType ==
CUSPARSE_HYB_PARTITION_USER.

partitionType partitioning method to be used in the conversion
(please refer to cusparseHybPartition_t for
details).

Output

hybA the matrix A in HYB storage format.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

12.20. cusparse<t>hyb2csc()
cusparseStatus_t
cusparseShyb2csc(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 float *cscValA, int *cscRowIndA, int *cscColPtrA)
cusparseStatus_t
cusparseDhyb2csc(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 double *cscValA, int *cscRowIndA, int *cscColPtrA)

cusparseStatus_t
cusparseChyb2csc(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 cuComplex *cscValA, int *cscRowIndA, int *cscColPtrA)
cusparseStatus_t
cusparseZhyb2csc(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 cuDoubleComplex *cscValA, int *cscRowIndA, int
 *cscColPtrA)

This function converts a sparse matrix in HYB format into a sparse matrix in CSC
format.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 236

This function requires some amount of temporary storage. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.
Input

handle handle to the cuSPARSE library context.

descrA the descriptor of matrix A in Hyb
format. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.

hybA the matrix A in HYB storage format.

Output

cscValA <type> array of nnz cscColPtrA(m)
cscColPtrA(0) nonzero elements of matrix A.

cscRowIndA integer array of nnz cscColPtrA(m)
cscColPtrA(0) column indices of the non-zero
elements of matrix A.

cscColPtrA integer array of m+1 elements that contains the
start of every column and the end of the last row
plus one.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 237

12.21. cusparse<t>hyb2csr()
cusparseStatus_t
cusparseShyb2csr(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 float *csrValA, int *csrRowPtrA, int *csrColIndA)
cusparseStatus_t
cusparseDhyb2csr(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 double *csrValA, int *csrRowPtrA, int *csrColIndA)

cusparseStatus_t
cusparseChyb2csr(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 cuComplex *csrValA, int *csrRowPtrA, int *csrColIndA)
cusparseStatus_t
cusparseZhyb2csr(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 cuDoubleComplex *csrValA, int *csrRowPtrA, int
 *csrColIndA)

This function converts a sparse matrix in HYB format into a sparse matrix in CSR
format.

This function requires some amount of temporary storage. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.
Input

handle handle to the cuSPARSE library context.

descrA the descriptor of matrix A in Hyb
format. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.

hybA the matrix A in HYB storage format.

Output

csrValA <type> array of nnz csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every column and the end of the last row
plus one.

csrColIndA integer array of nnz csrRowPtrA(m)
csrRowPtrA(0) column indices of the nonzero
elements of matrix A.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 238

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

12.22. cusparse<t>hyb2dense()

cusparseStatus_t
cusparseShyb2dense(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 float *A,
 int lda)
cusparseStatus_t
cusparseDhyb2dense(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 double *A,
 int lda)
cusparseStatus_t
cusparseChyb2dense(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 cuComplex *A,
 int lda)
cusparseStatus_t
cusparseZhyb2dense(cusparseHandle_t handle,
 const cusparseMatDescr_t descrA,
 const cusparseHybMat_t hybA,
 cuDoubleComplex *A,
 int lda)

This function converts a sparse matrix in HYB format (contained in the opaque
structure) into matrix A in dense format. The dense matrix A is filled in with the values
of the sparse matrix and with zeros elsewhere.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

descrA the descriptor of matrix A in Hyb
format. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.

hybA the matrix A in HYB storage format.

lda leading dimension of dense array A.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 239

Output

A array of dimensions (lda, n) that is filled in with
the values of the sparse matrix.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE the internally stored hyb format parameters are
invalid.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

12.23. cusparse<t>nnz()
cusparseStatus_t
cusparseSnnz(cusparseHandle_t handle, cusparseDirection_t dirA, int m,
 int n, const cusparseMatDescr_t descrA,
 const float *A,
 int lda, int *nnzPerRowColumn, int *nnzTotalDevHostPtr)
cusparseStatus_t
cusparseDnnz(cusparseHandle_t handle, cusparseDirection_t dirA, int m,
 int n, const cusparseMatDescr_t descrA,
 const double *A,
 int lda, int *nnzPerRowColumn, int *nnzTotalDevHostPtr)
cusparseStatus_t
cusparseCnnz(cusparseHandle_t handle, cusparseDirection_t dirA, int m,
 int n, const cusparseMatDescr_t descrA,
 const cuComplex *A,
 int lda, int *nnzPerRowColumn, int *nnzTotalDevHostPtr)
cusparseStatus_t
cusparseZnnz(cusparseHandle_t handle, cusparseDirection_t dirA, int m,
 int n, const cusparseMatDescr_t descrA,
 const cuDoubleComplex *A,
 int lda, int *nnzPerRowColumn, int *nnzTotalDevHostPtr)

This function computes the number of nonzero elements per row or column and the
total number of nonzero elements in a dense matrix.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Input

handle handle to the cuSPARSE library context.

dirA direction that specifies whether to count nonzero
elements by CUSPARSE_DIRECTION_ROW or by
CUSPARSE_DIRECTION_COLUMN.

m number of rows of matrix A.

n number of columns of matrix A.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 240

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

A array of dimensions (lda, n).

lda leading dimension of dense array A.

Output

nnzPerRowColumn array of size m or n containing the number of
nonzero elements per row or column, respectively.

nnzTotalDevHostPtr total number of nonzero elements in device or host
memory.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

12.24. cusparseCreateIdentityPermutation()

cusparseStatus_t
cusparseCreateIdentityPermutation(cusparseHandle_t handle,
 int n,
 int *p);

This function creates an identity map. The output parameter p represents such map by p
= 0:1:(n-1).

This function is typically used with coosort, csrsort, cscsort, csr2csc_indexOnly.
Input

parameter device or host description

handle host handle to the cuSPARSE library context.

n host size of the map.

Output

parameter device or host description

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 241

p device integer array of dimensions n.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

12.25. cusparseXcoosort()

cusparseStatus_t
cusparseXcoosort_bufferSizeExt(
 cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const int *cooRows,
 const int *cooCols,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseXcoosortByRow(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 int *cooRows,
 int *cooCols,
 int *P,
 void *pBuffer);

cusparseStatus_t
cusparseXcoosortByColumn(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 int *cooRows,
 int *cooCols,
 int *P,
 void *pBuffer);

This function sorts COO format. The stable sorting is in-place. Also the user can sort by
row or sort by column.

A is an m×n sparse matrix that is defined in COO storage format by the three arrays
cooVals, cooRows, and cooCols.

The matrix must be base 0.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 242

The matrix type is regarded as CUSPARSE_MATRIX_TYPE_GENERAL implicitly. In other
words, any symmetric property is ignored.

This function coosort() requires buffer size returned by coosort_bufferSizeExt().
The address of pBuffer must be multiple of 128 bytes. If not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

The parameter P is both input and output. If the user wants to compute sorted cooVal,
P must be set as 0:1:(nnz-1) before coosort(), and after coosort(), new sorted value
array satisfies cooVal_sorted = cooVal(P).

The following code shows how to sort a COO format by row.

// A is a 3x3 sparse matrix, base-0
// | 1 2 0 |
// A = | 0 5 0 |
// | 0 8 0 |
const int m = 3;
const int n = 3;
const int nnz = 4;
cooRows[nnz] = {2, 1, 0, 0 }; // on device
cooCols[nnz] = {1, 1, 0, 1 }; // on device
cooVals[nnz] = {8.0, 5.0, 1.0, 2.0 }; // on device
size_t pBufferSizeInBytes = 0;
void *pBuffer = NULL;
int *P = NULL;

// step 1: allocate buffer
cusparseXcoosort_bufferSizeExt(handle, m, n, nnz, cooRows, cooCols,
 &pBufferSizeInBytes);
cudaMalloc(&pBuffer, sizeof(char)* pBufferSizeInBytes);

// step 2: setup permutation vector P to identity
cudaMalloc(&P, sizeof(int)*nnz);
cusparseCreateIdentityPermutation(handle, nnz, P);

// step 3: sort COO format by Row
cusparseXcoosortByRow(handle, m, n, nnz, cooRows, cooCols, P, pBuffer);

// step 4: gather sorted cooVals
cusparseDgthr(handle, nnz, cooVals, cooVals_sorted, P,
 CUSPARSE_INDEX_BASE_ZERO);

Input

parameter device or host description

handle host handle to the cuSPARSE library context.

m host number of rows of matrix A.

n host number of columns of matrix A.

nnz host number of nonzero elements of matrix A.

cooRows device integer array of nnz unsorted row indices of A.

cooCols device integer array of nnz unsorted column indices of A.

P device integer array of nnz unsorted map indices. To construct
cooVal, the user has to set P=0:1:(nnz-1).

pBuffer device buffer allocated by the user; the size is returned by
coosort_bufferSizeExt().

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 243

Output

parameter device or host description

cooRows device integer array of nnz sorted row indices of A.

cooCols device integer array of nnz sorted column indices of A.

P device integer array of nnz sorted map indices.

pBufferSizeInBytes host number of bytes of the buffer.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (n<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

12.26. cusparseXcsrsort()

cusparseStatus_t
cusparseXcsrsort_bufferSizeExt(
 cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const int *csrRowPtr,
 const int *csrColInd,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseXcsrsort(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtr,
 int *csrColInd,
 int *P,
 void *pBuffer);

This function sorts CSR format. The stable sorting is in-place.

The matrix type is regarded as CUSPARSE_MATRIX_TYPE_GENERAL implicitly. In other
words, any symmetric property is ignored.

This function csrsort() requires buffer size returned by csrsort_bufferSizeExt().
The address of pBuffer must be multiple of 128 bytes. If not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 244

The parameter P is both input and output. If the user wants to compute sorted csrVal,
P must be set as 0:1:(nnz-1) before csrsort(), and after csrsort(), new sorted value
array satisfies csrVal_sorted = csrVal(P).

The general procedure is as follows:

// A is a 3x3 sparse matrix, base-0
// | 1 2 3 |
// A = | 4 5 6 |
// | 7 8 9 |
const int m = 3;
const int n = 3;
const int nnz = 9;
csrRowPtr[m+1] = { 0, 3, 6, 9}; // on device
csrColInd[nnz] = { 2, 1, 0, 0, 2,1, 1, 2, 0}; // on device
csrVal[nnz] = { 3, 2, 1, 4, 6, 5, 8, 9, 7}; // on device
size_t pBufferSizeInBytes = 0;
void *pBuffer = NULL;
int *P = NULL;

// step 1: allocate buffer
cusparseXcsrsort_bufferSizeExt(handle, m, n, nnz, csrRowPtr, csrColInd,
 &pBufferSizeInBytes);
cudaMalloc(&pBuffer, sizeof(char)* pBufferSizeInBytes);

// step 2: setup permutation vector P to identity
cudaMalloc(&P, sizeof(int)*nnz);
cusparseCreateIdentityPermutation(handle, nnz, P);

// step 3: sort CSR format
cusparseXcsrsort(handle, m, n, nnz, descrA, csrRowPtr, csrColInd, P, pBuffer);

// step 4: gather sorted csrVal
cusparseDgthr(handle, nnz, csrVal, csrVal_sorted, P, CUSPARSE_INDEX_BASE_ZERO);

Input

parameter device or host description

handle host handle to the cuSPARSE library context.

m host number of rows of matrix A.

n host number of columns of matrix A.

nnz host number of nonzero elements of matrix A.

csrRowsPtr device integer array of m+1 elements that contains the start of
every row and the end of the last row plus one.

csrColInd device integer array of nnz unsorted column indices of A.

P device integer array of nnz unsorted map indices. To construct
csrVal, the user has to set P=0:1:(nnz-1).

pBuffer device buffer allocated by the user; the size is returned by
csrsort_bufferSizeExt().

Output

parameter device or host description

csrColInd device integer array of nnz sorted column indices of A.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 245

P device integer array of nnz sorted map indices.

pBufferSizeInBytes host number of bytes of the buffer.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

12.27. cusparseXcscsort()

cusparseStatus_t
cusparseXcscsort_bufferSizeExt(
 cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const int *cscColPtr,
 const int *cscRowInd,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseXcscsort(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const int *cscColPtr,
 int *cscRowInd,
 int *P,
 void *pBuffer);

This function sorts CSC format. The stable sorting is in-place.

The matrix type is regarded as CUSPARSE_MATRIX_TYPE_GENERAL implicitly. In other
words, any symmetric property is ignored.

This function cscsort() requires buffer size returned by cscsort_bufferSizeExt().
The address of pBuffer must be multiple of 128 bytes. If not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

The parameter P is both input and output. If the user wants to compute sorted cscVal,
P must be set as 0:1:(nnz-1) before cscsort(), and after cscsort(), new sorted value
array satisfies cscVal_sorted = cscVal(P).

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 246

The general procedure is as follows:

// A is a 3x3 sparse matrix, base-0
// | 1 2 |
// A = | 4 0 |
// | 0 8 |
const int m = 3;
const int n = 2;
const int nnz = 4;
cscColPtr[n+1] = { 0, 2, 4}; // on device
cscRowInd[nnz] = { 1, 0, 2, 0}; // on device
cscVal[nnz] = { 4.0, 1.0, 8.0, 2.0 }; // on device
size_t pBufferSizeInBytes = 0;
void *pBuffer = NULL;
int *P = NULL;

// step 1: allocate buffer
cusparseXcscsort_bufferSizeExt(handle, m, n, nnz, cscColPtr, cscRowInd,
 &pBufferSizeInBytes);
cudaMalloc(&pBuffer, sizeof(char)* pBufferSizeInBytes);

// step 2: setup permutation vector P to identity
cudaMalloc(&P, sizeof(int)*nnz);
cusparseCreateIdentityPermutation(handle, nnz, P);

// step 3: sort CSC format
cusparseXcscsort(handle, m, n, nnz, descrA, cscColPtr, cscRowInd, P, pBuffer);

// step 4: gather sorted cscVal
cusparseDgthr(handle, nnz, cscVal, cscVal_sorted, P, CUSPARSE_INDEX_BASE_ZERO);

Input

parameter device or host description

handle host handle to the cuSPARSE library context.

m host number of rows of matrix A.

n host number of columns of matrix A.

nnz host number of nonzero elements of matrix A.

cscColPtr device integer array of n+1 elements that contains the start of
every column and the end of the last column plus one.

cscRowInd device integer array of nnz unsorted row indices of A.

P device integer array of nnz unsorted map indices. To construct
cscVal, the user has to set P=0:1:(nnz-1).

pBuffer device buffer allocated by the user; the size is returned by
cscsort_bufferSizeExt().

Output

parameter device or host description

cscRowInd device integer array of nnz sorted row indices of A.

P device integer array of nnz sorted map indices.

pBufferSizeInBytes host number of bytes of the buffer.

Status Returned

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 247

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 248

12.28. cusparseXcsru2csr()

cusparseStatus_t cusparseCreateCsru2csrInfo(csru2csrInfo_t *info);

cusparseStatus_t cusparseDestroyCsru2csrInfo(csru2csrInfo_t info);

cusparseStatus_t
cusparseScsru2csr_bufferSizeExt(
 cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 float *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseDcsru2csr_bufferSizeExt(
 cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 double *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseCcsru2csr_bufferSizeExt(
 cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 cuComplex *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseZcsru2csr_bufferSizeExt(
 cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 cuDoubleComplex *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 size_t *pBufferSizeInBytes);

cusparseStatus_t
cusparseScsru2csr(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 float *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 void *pBuffer);

cusparseStatus_t
cusparseDcsru2csr(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 double *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 void *pBuffer);

cusparseStatus_t
cusparseCcsru2csr(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuComplex *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 void *pBuffer);

cusparseStatus_t
cusparseZcsru2csr(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 void *pBuffer);

cusparseStatus_t
cusparseScsr2csru(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 float *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 void *pBuffer);

cusparseStatus_t
cusparseDcsr2csru(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 double *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 void *pBuffer);

cusparseStatus_t
cusparseCcsr2csru(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuComplex *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 void *pBuffer);

cusparseStatus_t
cusparseZcsr2csru(cusparseHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 cuDoubleComplex *csrVal,
 const int *csrRowPtr,
 int *csrColInd,
 csru2csrInfo_t info,
 void *pBuffer);

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 249

This function transfers unsorted CSR format to CSR format, and vice versa. The
operation is in-place.

This function is a wrapper of csrsort and gthr. The usecase is the following scenario.

If the user has a matrix A of CSR format which is unsorted, and implements his own
code (which can be CPU or GPU kernel) based on this special order (for example,
diagonal first, then lower triangle, then upper triangle), and wants to convert it to CSR
format when calling CUSPARSE library, and then convert it back when doing something
else on his/her kernel. For example, suppose the user wants to solve a linear system
Ax=b by the following iterative scheme

The code heavily uses SpMv and triangular solve. Assume that the user has an in-
house design of SpMV (Sparse Matrix-Vector multiplication) based on special order
of A. However the user wants to use CUSAPRSE library for triangular solver. Then the
following code can work.

The requirements of step 2 and step 5 are

1. In-place operation.

2. The permutation vector P is hidden in an opaque structure.

3. No cudaMalloc inside the conversion routine. Instead, the user has to provide the
buffer explicitly.

4. The conversion between unsorted CSR and sorted CSR may needs several times, but
the function only generates the permutation vector P once.

5. The function is based on csrsort, gather and scatter operations.

The operation is called csru2csr, which means unsorted CSR to sorted CSR. Also we
provide the inverse operation, called csr2csru.

In order to keep the permutation vector invisible, we need an opaque structure
called csru2csrInfo. Then two functions (cusparseCreateCsru2csrInfo,
cusparseDestroyCsru2csrInfo) are used to initialize and to destroy the opaque
structure.

cusparse[S|D|C|Z]csru2csr_bufferSizeExt returns the size of the buffer.
The permutation vector P is also allcated inside csru2csrInfo. The lifetime of the
permutation vector is the same as the lifetime of csru2csrInfo.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 250

cusparse[S|D|C|Z]csru2csr performs forward transformation from unsorted CSR to
sorted CSR. First call uses csrsort to generate the permutation vector P, and subsequent
call uses P to do transformation.

cusparse[S|D|C|Z]csr2csru performs backward transformation from sorted CSR to
unsorted CSR. P is used to get unsorted form back.

The following tables describe parameters of csr2csru_bufferSizeExt and csr2csru.
Input

parameter device or host description

handle host handle to the cuSPARSE library context.

m host number of rows of matrix A.

n host number of columns of matrix A.

nnz host number of nonzero elements of matrix A.

descrA host the descriptor of matrix A. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL, Also, the supported
index bases are CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrVal device <type> array of nnz unsorted nonzero elements of matrix
A.

csrRowsPtr device integer array of m+1 elements that contains the start of
every row and the end of the last row plus one.

csrColInd device integer array of nnz unsorted column indices of A.

info host opaque structure initialized using
cusparseCreateCsru2csrInfo().

pBuffer device buffer allocated by the user; the size is returned by
csru2csr_bufferSizeExt().

Output

parameter device or host description

csrVal device <type> array of nnz sorted nonzero elements of matrix
A.

csrColInd device integer array of nnz sorted column indices of A.

pBufferSizeInBytes host number of bytes of the buffer.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT_INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL_ERROR an internal operation failed.

cuSPARSE Format Conversion Reference

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 251

CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 252

Chapter 13.
APPENDIX A: CUSPARSE LIBRARY C++
EXAMPLE

For sample code reference please see the example code below. It shows an application
written in C++ using the cuSPARSE library API. The code performs the following
actions:

1. Creates a sparse test matrix in COO format.

2. Creates a sparse and dense vector.

3. Allocates GPU memory and copies the matrix and vectors into it.

4. Initializes the cuSPARSE library.

5. Creates and sets up the matrix descriptor.

6. Converts the matrix from COO to CSR format.

7. Exercises Level 1 routines.

8. Exercises Level 2 routines.

9. Exercises Level 3 routines.

10. Destroys the matrix descriptor.

Appendix A: cuSPARSE Library C++ Example

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 253

11. Releases resources allocated for the cuSPARSE library.
//Example: Application using C++ and the CUSPARSE library
//---
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include "cusparse.h"

#define CLEANUP(s) \
do { \
 printf ("%s\n", s); \
 if (yHostPtr) free(yHostPtr); \
 if (zHostPtr) free(zHostPtr); \
 if (xIndHostPtr) free(xIndHostPtr); \
 if (xValHostPtr) free(xValHostPtr); \
 if (cooRowIndexHostPtr) free(cooRowIndexHostPtr);\
 if (cooColIndexHostPtr) free(cooColIndexHostPtr);\
 if (cooValHostPtr) free(cooValHostPtr); \
 if (y) cudaFree(y); \
 if (z) cudaFree(z); \
 if (xInd) cudaFree(xInd); \
 if (xVal) cudaFree(xVal); \
 if (csrRowPtr) cudaFree(csrRowPtr); \
 if (cooRowIndex) cudaFree(cooRowIndex); \
 if (cooColIndex) cudaFree(cooColIndex); \
 if (cooVal) cudaFree(cooVal); \
 if (descr) cusparseDestroyMatDescr(descr);\
 if (handle) cusparseDestroy(handle); \
 cudaDeviceReset(); \
 fflush (stdout); \
} while (0)

int main(){
 cudaError_t cudaStat1,cudaStat2,cudaStat3,cudaStat4,cudaStat5,cudaStat6;
 cusparseStatus_t status;
 cusparseHandle_t handle=0;
 cusparseMatDescr_t descr=0;
 int * cooRowIndexHostPtr=0;
 int * cooColIndexHostPtr=0;
 double * cooValHostPtr=0;
 int * cooRowIndex=0;
 int * cooColIndex=0;
 double * cooVal=0;
 int * xIndHostPtr=0;
 double * xValHostPtr=0;
 double * yHostPtr=0;
 int * xInd=0;
 double * xVal=0;
 double * y=0;
 int * csrRowPtr=0;
 double * zHostPtr=0;
 double * z=0;
 int n, nnz, nnz_vector;
 double dzero =0.0;
 double dtwo =2.0;
 double dthree=3.0;
 double dfive =5.0;

 printf("testing example\n");
 /* create the following sparse test matrix in COO format */
 /* |1.0 2.0 3.0|
 | 4.0 |
 |5.0 6.0 7.0|
 | 8.0 9.0| */
 n=4; nnz=9;
 cooRowIndexHostPtr = (int *) malloc(nnz*sizeof(cooRowIndexHostPtr[0]));
 cooColIndexHostPtr = (int *) malloc(nnz*sizeof(cooColIndexHostPtr[0]));
 cooValHostPtr = (double *)malloc(nnz*sizeof(cooValHostPtr[0]));
 if ((!cooRowIndexHostPtr) || (!cooColIndexHostPtr) || (!cooValHostPtr)){
 CLEANUP("Host malloc failed (matrix)");
 return 1;
 }
 cooRowIndexHostPtr[0]=0; cooColIndexHostPtr[0]=0; cooValHostPtr[0]=1.0;
 cooRowIndexHostPtr[1]=0; cooColIndexHostPtr[1]=2; cooValHostPtr[1]=2.0;
 cooRowIndexHostPtr[2]=0; cooColIndexHostPtr[2]=3; cooValHostPtr[2]=3.0;
 cooRowIndexHostPtr[3]=1; cooColIndexHostPtr[3]=1; cooValHostPtr[3]=4.0;
 cooRowIndexHostPtr[4]=2; cooColIndexHostPtr[4]=0; cooValHostPtr[4]=5.0;
 cooRowIndexHostPtr[5]=2; cooColIndexHostPtr[5]=2; cooValHostPtr[5]=6.0;
 cooRowIndexHostPtr[6]=2; cooColIndexHostPtr[6]=3; cooValHostPtr[6]=7.0;
 cooRowIndexHostPtr[7]=3; cooColIndexHostPtr[7]=1; cooValHostPtr[7]=8.0;
 cooRowIndexHostPtr[8]=3; cooColIndexHostPtr[8]=3; cooValHostPtr[8]=9.0;
 /*
 //print the matrix
 printf("Input data:\n");
 for (int i=0; i<nnz; i++){
 printf("cooRowIndexHostPtr[%d]=%d ",i,cooRowIndexHostPtr[i]);
 printf("cooColIndexHostPtr[%d]=%d ",i,cooColIndexHostPtr[i]);
 printf("cooValHostPtr[%d]=%f \n",i,cooValHostPtr[i]);
 }
 */

 /* create a sparse and dense vector */
 /* xVal= [100.0 200.0 400.0] (sparse)
 xInd= [0 1 3]
 y = [10.0 20.0 30.0 40.0 | 50.0 60.0 70.0 80.0] (dense) */
 nnz_vector = 3;
 xIndHostPtr = (int *) malloc(nnz_vector*sizeof(xIndHostPtr[0]));
 xValHostPtr = (double *)malloc(nnz_vector*sizeof(xValHostPtr[0]));
 yHostPtr = (double *)malloc(2*n *sizeof(yHostPtr[0]));
 zHostPtr = (double *)malloc(2*(n+1) *sizeof(zHostPtr[0]));
 if((!xIndHostPtr) || (!xValHostPtr) || (!yHostPtr) || (!zHostPtr)){
 CLEANUP("Host malloc failed (vectors)");
 return 1;
 }
 yHostPtr[0] = 10.0; xIndHostPtr[0]=0; xValHostPtr[0]=100.0;
 yHostPtr[1] = 20.0; xIndHostPtr[1]=1; xValHostPtr[1]=200.0;
 yHostPtr[2] = 30.0;
 yHostPtr[3] = 40.0; xIndHostPtr[2]=3; xValHostPtr[2]=400.0;
 yHostPtr[4] = 50.0;
 yHostPtr[5] = 60.0;
 yHostPtr[6] = 70.0;
 yHostPtr[7] = 80.0;
 /*
 //print the vectors
 for (int j=0; j<2; j++){
 for (int i=0; i<n; i++){
 printf("yHostPtr[%d,%d]=%f\n",i,j,yHostPtr[i+n*j]);
 }
 }
 for (int i=0; i<nnz_vector; i++){
 printf("xIndHostPtr[%d]=%d ",i,xIndHostPtr[i]);
 printf("xValHostPtr[%d]=%f\n",i,xValHostPtr[i]);
 }
 */

 /* allocate GPU memory and copy the matrix and vectors into it */
 cudaStat1 = cudaMalloc((void**)&cooRowIndex,nnz*sizeof(cooRowIndex[0]));
 cudaStat2 = cudaMalloc((void**)&cooColIndex,nnz*sizeof(cooColIndex[0]));
 cudaStat3 = cudaMalloc((void**)&cooVal, nnz*sizeof(cooVal[0]));
 cudaStat4 = cudaMalloc((void**)&y, 2*n*sizeof(y[0]));
 cudaStat5 = cudaMalloc((void**)&xInd,nnz_vector*sizeof(xInd[0]));
 cudaStat6 = cudaMalloc((void**)&xVal,nnz_vector*sizeof(xVal[0]));
 if ((cudaStat1 != cudaSuccess) ||
 (cudaStat2 != cudaSuccess) ||
 (cudaStat3 != cudaSuccess) ||
 (cudaStat4 != cudaSuccess) ||
 (cudaStat5 != cudaSuccess) ||
 (cudaStat6 != cudaSuccess)) {
 CLEANUP("Device malloc failed");
 return 1;
 }
 cudaStat1 = cudaMemcpy(cooRowIndex, cooRowIndexHostPtr,
 (size_t)(nnz*sizeof(cooRowIndex[0])),
 cudaMemcpyHostToDevice);
 cudaStat2 = cudaMemcpy(cooColIndex, cooColIndexHostPtr,
 (size_t)(nnz*sizeof(cooColIndex[0])),
 cudaMemcpyHostToDevice);
 cudaStat3 = cudaMemcpy(cooVal, cooValHostPtr,
 (size_t)(nnz*sizeof(cooVal[0])),
 cudaMemcpyHostToDevice);
 cudaStat4 = cudaMemcpy(y, yHostPtr,
 (size_t)(2*n*sizeof(y[0])),
 cudaMemcpyHostToDevice);
 cudaStat5 = cudaMemcpy(xInd, xIndHostPtr,
 (size_t)(nnz_vector*sizeof(xInd[0])),
 cudaMemcpyHostToDevice);
 cudaStat6 = cudaMemcpy(xVal, xValHostPtr,
 (size_t)(nnz_vector*sizeof(xVal[0])),
 cudaMemcpyHostToDevice);
 if ((cudaStat1 != cudaSuccess) ||
 (cudaStat2 != cudaSuccess) ||
 (cudaStat3 != cudaSuccess) ||
 (cudaStat4 != cudaSuccess) ||
 (cudaStat5 != cudaSuccess) ||
 (cudaStat6 != cudaSuccess)) {
 CLEANUP("Memcpy from Host to Device failed");
 return 1;
 }

 /* initialize cusparse library */
 status= cusparseCreate(&handle);
 if (status != CUSPARSE_STATUS_SUCCESS) {
 CLEANUP("CUSPARSE Library initialization failed");
 return 1;
 }

 /* create and setup matrix descriptor */
 status= cusparseCreateMatDescr(&descr);
 if (status != CUSPARSE_STATUS_SUCCESS) {
 CLEANUP("Matrix descriptor initialization failed");
 return 1;
 }
 cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL);
 cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO);

 /* exercise conversion routines (convert matrix from COO 2 CSR format) */
 cudaStat1 = cudaMalloc((void**)&csrRowPtr,(n+1)*sizeof(csrRowPtr[0]));
 if (cudaStat1 != cudaSuccess) {
 CLEANUP("Device malloc failed (csrRowPtr)");
 return 1;
 }
 status= cusparseXcoo2csr(handle,cooRowIndex,nnz,n,
 csrRowPtr,CUSPARSE_INDEX_BASE_ZERO);
 if (status != CUSPARSE_STATUS_SUCCESS) {
 CLEANUP("Conversion from COO to CSR format failed");
 return 1;
 }
 //csrRowPtr = [0 3 4 7 9]

 // The following test only works for compute capability 1.3 and above
 // because it needs double precision.
 int devId;
 cudaDeviceProp prop;
 cudaError_t cudaStat;
 cudaStat = cudaGetDevice(&devId);
 if (cudaSuccess != cudaStat){
 CLEANUP("cudaGetDevice failed");
 printf("Error: cudaStat %d, %s\n", cudaStat,
 cudaGetErrorString(cudaStat));
 return 1;
 }
 cudaStat = cudaGetDeviceProperties(&prop, devId) ;
 if (cudaSuccess != cudaStat){
 CLEANUP("cudaGetDeviceProperties failed");
 printf("Error: cudaStat %d, %s\n", cudaStat,
 cudaGetErrorString(cudaStat));
 return 1;
 }
 int cc = 100*prop.major + 10*prop.minor;
 if (cc < 130){
 CLEANUP("waive the test because only sm13 and above are supported\n");
 printf("the device has compute capability %d\n", cc);
 printf("example test WAIVED");
 return 2;
 }

 /* exercise Level 1 routines (scatter vector elements) */
 status= cusparseDsctr(handle, nnz_vector, xVal, xInd,
 &y[n], CUSPARSE_INDEX_BASE_ZERO);
 if (status != CUSPARSE_STATUS_SUCCESS) {
 CLEANUP("Scatter from sparse to dense vector failed");
 return 1;
 }
 //y = [10 20 30 40 | 100 200 70 400]

 /* exercise Level 2 routines (csrmv) */
 status= cusparseDcsrmv(handle,CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, nnz,
 &dtwo, descr, cooVal, csrRowPtr, cooColIndex,
 &y[0], &dthree, &y[n]);
 if (status != CUSPARSE_STATUS_SUCCESS) {
 CLEANUP("Matrix-vector multiplication failed");
 return 1;
 }
 //y = [10 20 30 40 | 680 760 1230 2240]
 cudaMemcpy(yHostPtr, y, (size_t)(2*n*sizeof(y[0])), cudaMemcpyDeviceToHost);
 /*
 printf("Intermediate results:\n");
 for (int j=0; j<2; j++){
 for (int i=0; i<n; i++){
 printf("yHostPtr[%d,%d]=%f\n",i,j,yHostPtr[i+n*j]);
 }
 }
 */

 /* exercise Level 3 routines (csrmm) */
 cudaStat1 = cudaMalloc((void**)&z, 2*(n+1)*sizeof(z[0]));
 if (cudaStat1 != cudaSuccess) {
 CLEANUP("Device malloc failed (z)");
 return 1;
 }
 cudaStat1 = cudaMemset((void *)z,0, 2*(n+1)*sizeof(z[0]));
 if (cudaStat1 != cudaSuccess) {
 CLEANUP("Memset on Device failed");
 return 1;
 }
 status= cusparseDcsrmm(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, 2, n,
 nnz, &dfive, descr, cooVal, csrRowPtr, cooColIndex,
 y, n, &dzero, z, n+1);
 if (status != CUSPARSE_STATUS_SUCCESS) {
 CLEANUP("Matrix-matrix multiplication failed");
 return 1;
 }

 /* print final results (z) */
 cudaStat1 = cudaMemcpy(zHostPtr, z,
 (size_t)(2*(n+1)*sizeof(z[0])),
 cudaMemcpyDeviceToHost);
 if (cudaStat1 != cudaSuccess) {
 CLEANUP("Memcpy from Device to Host failed");
 return 1;
 }
 //z = [950 400 2550 2600 0 | 49300 15200 132300 131200 0]
 /*
 printf("Final results:\n");
 for (int j=0; j<2; j++){
 for (int i=0; i<n+1; i++){
 printf("z[%d,%d]=%f\n",i,j,zHostPtr[i+(n+1)*j]);
 }
 }
 */

 /* destroy matrix descriptor */
 status = cusparseDestroyMatDescr(descr);
 descr = 0;
 if (status != CUSPARSE_STATUS_SUCCESS) {
 CLEANUP("Matrix descriptor destruction failed");
 return 1;
 }

 /* destroy handle */
 status = cusparseDestroy(handle);
 handle = 0;
 if (status != CUSPARSE_STATUS_SUCCESS) {
 CLEANUP("CUSPARSE Library release of resources failed");
 return 1;
 }

 /* check the results */
 /* Notice that CLEANUP() contains a call to cusparseDestroy(handle) */
 if ((zHostPtr[0] != 950.0) ||
 (zHostPtr[1] != 400.0) ||
 (zHostPtr[2] != 2550.0) ||
 (zHostPtr[3] != 2600.0) ||
 (zHostPtr[4] != 0.0) ||
 (zHostPtr[5] != 49300.0) ||
 (zHostPtr[6] != 15200.0) ||
 (zHostPtr[7] != 132300.0) ||
 (zHostPtr[8] != 131200.0) ||
 (zHostPtr[9] != 0.0) ||
 (yHostPtr[0] != 10.0) ||
 (yHostPtr[1] != 20.0) ||
 (yHostPtr[2] != 30.0) ||
 (yHostPtr[3] != 40.0) ||
 (yHostPtr[4] != 680.0) ||
 (yHostPtr[5] != 760.0) ||
 (yHostPtr[6] != 1230.0) ||
 (yHostPtr[7] != 2240.0)){
 CLEANUP("example test FAILED");
 return 1;
 }
 else{
 CLEANUP("example test PASSED");
 return 0;
 }
}

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 254

Chapter 14.
APPENDIX B: CUSPARSE FORTRAN
BINDINGS

The cuSPARSE library is implemented using the C-based CUDA toolchain, and it thus
provides a C-style API that makes interfacing to applications written in C or C++ trivial.
There are also many applications implemented in Fortran that would benefit from using
cuSPARSE, and therefore a cuSPARSE Fortran interface has been developed.

Unfortunately, Fortran-to-C calling conventions are not standardized and differ by
platform and toolchain. In particular, differences may exist in the following areas:

Symbol names (capitalization, name decoration)

Argument passing (by value or reference)

Passing of pointer arguments (size of the pointer)

To provide maximum flexibility in addressing those differences, the cuSPARSE Fortran
interface is provided in the form of wrapper functions, which are written in C and
are located in the file cusparse_fortran.c. This file also contains a few additional
wrapper functions (for cudaMalloc(), cudaMemset, and so on) that can be used to
allocate memory on the GPU.

The cuSPARSE Fortran wrapper code is provided as an example only and needs to be
compiled into an application for it to call the cuSPARSE API functions. Providing this
source code allows users to make any changes necessary for a particular platform and
toolchain.

The cuSPARSE Fortran wrapper code has been used to demonstrate interoperability
with the compilers g95 0.91 (on 32-bit and 64-bit Linux) and g95 0.92 (on 32-bit and 64-
bit Mac OS X). In order to use other compilers, users have to make any changes to the
wrapper code that may be required.

The direct wrappers, intended for production code, substitute device pointers for vector
and matrix arguments in all cuSPARSE functions. To use these interfaces, existing
applications need to be modified slightly to allocate and deallocate data structures
in GPU memory space (using CUDA_MALLOC() and CUDA_FREE()) and to copy data
between GPU and CPU memory spaces (using the CUDA_MEMCPY() routines). The
sample wrappers provided in cusparse_fortran.c map device pointers to the OS-

Appendix B: cuSPARSE Fortran Bindings

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 255

dependent type size_t, which is 32 bits wide on 32-bit platforms and 64 bits wide on a
64-bit platforms.

One approach to dealing with index arithmetic on device pointers in Fortran code is to
use C-style macros and to use the C preprocessor to expand them. On Linux and Mac
OS X, preprocessing can be done by using the option '-cpp' with g95 or gfortran. The
function GET_SHIFTED_ADDRESS(), provided with the cuSPARSE Fortran wrappers,
can also be used, as shown in example B.

Example B shows the the C++ of example A implemented in Fortran 77 on the host. This
example should be compiled with ARCH_64 defined as 1 on a 64-bit OS system and as
undefined on a 32-bit OS system. For example, on g95 or gfortran, it can be done directly
on the command line using the option -cpp -DARCH_64=1.

Appendix B: cuSPARSE Fortran Bindings

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 256

14.1. Example B, Fortran Application
c #define ARCH_64 0
c #define ARCH_64 1

 program cusparse_fortran_example
 implicit none
 integer cuda_malloc
 external cuda_free
 integer cuda_memcpy_c2fort_int
 integer cuda_memcpy_c2fort_real
 integer cuda_memcpy_fort2c_int
 integer cuda_memcpy_fort2c_real
 integer cuda_memset
 integer cusparse_create
 external cusparse_destroy
 integer cusparse_get_version
 integer cusparse_create_mat_descr
 external cusparse_destroy_mat_descr
 integer cusparse_set_mat_type
 integer cusparse_get_mat_type
 integer cusparse_get_mat_fill_mode
 integer cusparse_get_mat_diag_type
 integer cusparse_set_mat_index_base
 integer cusparse_get_mat_index_base
 integer cusparse_xcoo2csr
 integer cusparse_dsctr
 integer cusparse_dcsrmv
 integer cusparse_dcsrmm
 external get_shifted_address
#if ARCH_64
 integer*8 handle
 integer*8 descrA
 integer*8 cooRowIndex
 integer*8 cooColIndex
 integer*8 cooVal
 integer*8 xInd
 integer*8 xVal
 integer*8 y
 integer*8 z
 integer*8 csrRowPtr
 integer*8 ynp1
#else
 integer*4 handle
 integer*4 descrA
 integer*4 cooRowIndex
 integer*4 cooColIndex
 integer*4 cooVal
 integer*4 xInd
 integer*4 xVal
 integer*4 y
 integer*4 z
 integer*4 csrRowPtr
 integer*4 ynp1
#endif
 integer status
 integer cudaStat1,cudaStat2,cudaStat3
 integer cudaStat4,cudaStat5,cudaStat6
 integer n, nnz, nnz_vector
 parameter (n=4, nnz=9, nnz_vector=3)
 integer cooRowIndexHostPtr(nnz)
 integer cooColIndexHostPtr(nnz)
 real*8 cooValHostPtr(nnz)
 integer xIndHostPtr(nnz_vector)
 real*8 xValHostPtr(nnz_vector)
 real*8 yHostPtr(2*n)
 real*8 zHostPtr(2*(n+1))
 integer i, j
 integer version, mtype, fmode, dtype, ibase
 real*8 dzero,dtwo,dthree,dfive
 real*8 epsilon

 write(*,*) "testing fortran example"

c predefined constants (need to be careful with them)
 dzero = 0.0
 dtwo = 2.0
 dthree= 3.0
 dfive = 5.0
c create the following sparse test matrix in COO format
c (notice one-based indexing)
c |1.0 2.0 3.0|
c | 4.0 |
c |5.0 6.0 7.0|
c | 8.0 9.0|
 cooRowIndexHostPtr(1)=1
 cooColIndexHostPtr(1)=1
 cooValHostPtr(1) =1.0
 cooRowIndexHostPtr(2)=1
 cooColIndexHostPtr(2)=3
 cooValHostPtr(2) =2.0
 cooRowIndexHostPtr(3)=1
 cooColIndexHostPtr(3)=4
 cooValHostPtr(3) =3.0
 cooRowIndexHostPtr(4)=2
 cooColIndexHostPtr(4)=2
 cooValHostPtr(4) =4.0
 cooRowIndexHostPtr(5)=3
 cooColIndexHostPtr(5)=1
 cooValHostPtr(5) =5.0
 cooRowIndexHostPtr(6)=3
 cooColIndexHostPtr(6)=3
 cooValHostPtr(6) =6.0
 cooRowIndexHostPtr(7)=3
 cooColIndexHostPtr(7)=4
 cooValHostPtr(7) =7.0
 cooRowIndexHostPtr(8)=4
 cooColIndexHostPtr(8)=2
 cooValHostPtr(8) =8.0
 cooRowIndexHostPtr(9)=4
 cooColIndexHostPtr(9)=4
 cooValHostPtr(9) =9.0
c print the matrix
 write(*,*) "Input data:"
 do i=1,nnz
 write(*,*) "cooRowIndexHostPtr[",i,"]=",cooRowIndexHostPtr(i)
 write(*,*) "cooColIndexHostPtr[",i,"]=",cooColIndexHostPtr(i)
 write(*,*) "cooValHostPtr[", i,"]=",cooValHostPtr(i)
 enddo

c create a sparse and dense vector
c xVal= [100.0 200.0 400.0] (sparse)
c xInd= [0 1 3]
c y = [10.0 20.0 30.0 40.0 | 50.0 60.0 70.0 80.0] (dense)
c (notice one-based indexing)
 yHostPtr(1) = 10.0
 yHostPtr(2) = 20.0
 yHostPtr(3) = 30.0
 yHostPtr(4) = 40.0
 yHostPtr(5) = 50.0
 yHostPtr(6) = 60.0
 yHostPtr(7) = 70.0
 yHostPtr(8) = 80.0
 xIndHostPtr(1)=1
 xValHostPtr(1)=100.0
 xIndHostPtr(2)=2
 xValHostPtr(2)=200.0
 xIndHostPtr(3)=4
 xValHostPtr(3)=400.0
c print the vectors
 do j=1,2
 do i=1,n
 write(*,*) "yHostPtr[",i,",",j,"]=",yHostPtr(i+n*(j-1))
 enddo
 enddo
 do i=1,nnz_vector
 write(*,*) "xIndHostPtr[",i,"]=",xIndHostPtr(i)
 write(*,*) "xValHostPtr[",i,"]=",xValHostPtr(i)
 enddo

c allocate GPU memory and copy the matrix and vectors into it
c cudaSuccess=0
c cudaMemcpyHostToDevice=1
 cudaStat1 = cuda_malloc(cooRowIndex,nnz*4)
 cudaStat2 = cuda_malloc(cooColIndex,nnz*4)
 cudaStat3 = cuda_malloc(cooVal, nnz*8)
 cudaStat4 = cuda_malloc(y, 2*n*8)
 cudaStat5 = cuda_malloc(xInd,nnz_vector*4)
 cudaStat6 = cuda_malloc(xVal,nnz_vector*8)
 if ((cudaStat1 /= 0) .OR.
 $ (cudaStat2 /= 0) .OR.
 $ (cudaStat3 /= 0) .OR.
 $ (cudaStat4 /= 0) .OR.
 $ (cudaStat5 /= 0) .OR.
 $ (cudaStat6 /= 0)) then
 write(*,*) "Device malloc failed"
 write(*,*) "cudaStat1=",cudaStat1
 write(*,*) "cudaStat2=",cudaStat2
 write(*,*) "cudaStat3=",cudaStat3
 write(*,*) "cudaStat4=",cudaStat4
 write(*,*) "cudaStat5=",cudaStat5
 write(*,*) "cudaStat6=",cudaStat6
 stop 2
 endif
 cudaStat1 = cuda_memcpy_fort2c_int(cooRowIndex,cooRowIndexHostPtr,
 $ nnz*4,1)
 cudaStat2 = cuda_memcpy_fort2c_int(cooColIndex,cooColIndexHostPtr,
 $ nnz*4,1)
 cudaStat3 = cuda_memcpy_fort2c_real(cooVal, cooValHostPtr,
 $ nnz*8,1)
 cudaStat4 = cuda_memcpy_fort2c_real(y, yHostPtr,
 $ 2*n*8,1)
 cudaStat5 = cuda_memcpy_fort2c_int(xInd, xIndHostPtr,
 $ nnz_vector*4,1)
 cudaStat6 = cuda_memcpy_fort2c_real(xVal, xValHostPtr,
 $ nnz_vector*8,1)
 if ((cudaStat1 /= 0) .OR.
 $ (cudaStat2 /= 0) .OR.
 $ (cudaStat3 /= 0) .OR.
 $ (cudaStat4 /= 0) .OR.
 $ (cudaStat5 /= 0) .OR.
 $ (cudaStat6 /= 0)) then
 write(*,*) "Memcpy from Host to Device failed"
 write(*,*) "cudaStat1=",cudaStat1
 write(*,*) "cudaStat2=",cudaStat2
 write(*,*) "cudaStat3=",cudaStat3
 write(*,*) "cudaStat4=",cudaStat4
 write(*,*) "cudaStat5=",cudaStat5
 write(*,*) "cudaStat6=",cudaStat6
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 stop 1
 endif

c initialize cusparse library
c CUSPARSE_STATUS_SUCCESS=0
 status = cusparse_create(handle)
 if (status /= 0) then
 write(*,*) "CUSPARSE Library initialization failed"
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 stop 1
 endif
c get version
c CUSPARSE_STATUS_SUCCESS=0
 status = cusparse_get_version(handle,version)
 if (status /= 0) then
 write(*,*) "CUSPARSE Library initialization failed"
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cusparse_destroy(handle)
 stop 1
 endif
 write(*,*) "CUSPARSE Library version",version

c create and setup the matrix descriptor
c CUSPARSE_STATUS_SUCCESS=0
c CUSPARSE_MATRIX_TYPE_GENERAL=0
c CUSPARSE_INDEX_BASE_ONE=1
 status= cusparse_create_mat_descr(descrA)
 if (status /= 0) then
 write(*,*) "Creating matrix descriptor failed"
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cusparse_destroy(handle)
 stop 1
 endif
 status = cusparse_set_mat_type(descrA,0)
 status = cusparse_set_mat_index_base(descrA,1)
c print the matrix descriptor
 mtype = cusparse_get_mat_type(descrA)
 fmode = cusparse_get_mat_fill_mode(descrA)
 dtype = cusparse_get_mat_diag_type(descrA)
 ibase = cusparse_get_mat_index_base(descrA)
 write (*,*) "matrix descriptor:"
 write (*,*) "t=",mtype,"m=",fmode,"d=",dtype,"b=",ibase

c exercise conversion routines (convert matrix from COO 2 CSR format)
c cudaSuccess=0
c CUSPARSE_STATUS_SUCCESS=0
c CUSPARSE_INDEX_BASE_ONE=1
 cudaStat1 = cuda_malloc(csrRowPtr,(n+1)*4)
 if (cudaStat1 /= 0) then
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)
 write(*,*) "Device malloc failed (csrRowPtr)"
 stop 2
 endif
 status= cusparse_xcoo2csr(handle,cooRowIndex,nnz,n,
 $ csrRowPtr,1)
 if (status /= 0) then
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cuda_free(csrRowPtr)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)
 write(*,*) "Conversion from COO to CSR format failed"
 stop 1
 endif
c csrRowPtr = [0 3 4 7 9]

c exercise Level 1 routines (scatter vector elements)
c CUSPARSE_STATUS_SUCCESS=0
c CUSPARSE_INDEX_BASE_ONE=1
 call get_shifted_address(y,n*8,ynp1)
 status= cusparse_dsctr(handle, nnz_vector, xVal, xInd,
 $ ynp1, 1)
 if (status /= 0) then
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cuda_free(csrRowPtr)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)
 write(*,*) "Scatter from sparse to dense vector failed"
 stop 1
 endif
c y = [10 20 30 40 | 100 200 70 400]

c exercise Level 2 routines (csrmv)
c CUSPARSE_STATUS_SUCCESS=0
c CUSPARSE_OPERATION_NON_TRANSPOSE=0
 status= cusparse_dcsrmv(handle, 0, n, n, nnz, dtwo,
 $ descrA, cooVal, csrRowPtr, cooColIndex,
 $ y, dthree, ynp1)
 if (status /= 0) then
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cuda_free(csrRowPtr)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)
 write(*,*) "Matrix-vector multiplication failed"
 stop 1
 endif

c print intermediate results (y)
c y = [10 20 30 40 | 680 760 1230 2240]
c cudaSuccess=0
c cudaMemcpyDeviceToHost=2
 cudaStat1 = cuda_memcpy_c2fort_real(yHostPtr, y, 2*n*8, 2)
 if (cudaStat1 /= 0) then
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cuda_free(csrRowPtr)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)
 write(*,*) "Memcpy from Device to Host failed"
 stop 1
 endif
 write(*,*) "Intermediate results:"
 do j=1,2
 do i=1,n
 write(*,*) "yHostPtr[",i,",",j,"]=",yHostPtr(i+n*(j-1))
 enddo
 enddo

c exercise Level 3 routines (csrmm)
c cudaSuccess=0
c CUSPARSE_STATUS_SUCCESS=0
c CUSPARSE_OPERATION_NON_TRANSPOSE=0
 cudaStat1 = cuda_malloc(z, 2*(n+1)*8)
 if (cudaStat1 /= 0) then
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cuda_free(csrRowPtr)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)
 write(*,*) "Device malloc failed (z)"
 stop 2
 endif
 cudaStat1 = cuda_memset(z, 0, 2*(n+1)*8)
 if (cudaStat1 /= 0) then
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cuda_free(z)
 call cuda_free(csrRowPtr)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)
 write(*,*) "Memset on Device failed"
 stop 1
 endif
 status= cusparse_dcsrmm(handle, 0, n, 2, n, nnz, dfive,
 $ descrA, cooVal, csrRowPtr, cooColIndex,
 $ y, n, dzero, z, n+1)
 if (status /= 0) then
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cuda_free(z)
 call cuda_free(csrRowPtr)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)
 write(*,*) "Matrix-matrix multiplication failed"
 stop 1
 endif

c print final results (z)
c cudaSuccess=0
c cudaMemcpyDeviceToHost=2
 cudaStat1 = cuda_memcpy_c2fort_real(zHostPtr, z, 2*(n+1)*8, 2)
 if (cudaStat1 /= 0) then
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cuda_free(z)
 call cuda_free(csrRowPtr)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)
 write(*,*) "Memcpy from Device to Host failed"
 stop 1
 endif
c z = [950 400 2550 2600 0 | 49300 15200 132300 131200 0]
 write(*,*) "Final results:"
 do j=1,2
 do i=1,n+1
 write(*,*) "z[",i,",",j,"]=",zHostPtr(i+(n+1)*(j-1))
 enddo
 enddo

c check the results
 epsilon = 0.00000000000001
 if ((DABS(zHostPtr(1) - 950.0) .GT. epsilon) .OR.
 $ (DABS(zHostPtr(2) - 400.0) .GT. epsilon) .OR.
 $ (DABS(zHostPtr(3) - 2550.0) .GT. epsilon) .OR.
 $ (DABS(zHostPtr(4) - 2600.0) .GT. epsilon) .OR.
 $ (DABS(zHostPtr(5) - 0.0) .GT. epsilon) .OR.
 $ (DABS(zHostPtr(6) - 49300.0) .GT. epsilon) .OR.
 $ (DABS(zHostPtr(7) - 15200.0) .GT. epsilon) .OR.
 $ (DABS(zHostPtr(8) - 132300.0).GT. epsilon) .OR.
 $ (DABS(zHostPtr(9) - 131200.0).GT. epsilon) .OR.
 $ (DABS(zHostPtr(10) - 0.0) .GT. epsilon) .OR.
 $ (DABS(yHostPtr(1) - 10.0) .GT. epsilon) .OR.
 $ (DABS(yHostPtr(2) - 20.0) .GT. epsilon) .OR.
 $ (DABS(yHostPtr(3) - 30.0) .GT. epsilon) .OR.
 $ (DABS(yHostPtr(4) - 40.0) .GT. epsilon) .OR.
 $ (DABS(yHostPtr(5) - 680.0) .GT. epsilon) .OR.
 $ (DABS(yHostPtr(6) - 760.0) .GT. epsilon) .OR.
 $ (DABS(yHostPtr(7) - 1230.0) .GT. epsilon) .OR.
 $ (DABS(yHostPtr(8) - 2240.0) .GT. epsilon)) then
 write(*,*) "fortran example test FAILED"
 else
 write(*,*) "fortran example test PASSED"
 endif

c deallocate GPU memory and exit
 call cuda_free(cooRowIndex)
 call cuda_free(cooColIndex)
 call cuda_free(cooVal)
 call cuda_free(xInd)
 call cuda_free(xVal)
 call cuda_free(y)
 call cuda_free(z)
 call cuda_free(csrRowPtr)
 call cusparse_destroy_mat_descr(descrA)
 call cusparse_destroy(handle)

 stop 0
 end

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 257

Chapter 15.
APPENDIX C: ACKNOWLEDGEMENTS

NVIDIA would like to thank the following individuals and institutions for their
contributions:

‣ The cusparse<t>gtsv implementation is derived from a version developed by Li-Wen
Chang from the University of Illinois.

www.nvidia.com
cuSPARSE Library DU-06709-001_v7.5 | 258

Chapter 16.
BIBLIOGRAPHY

[1] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector Multiplication on
Throughput-Oriented Processors”, Supercomputing, 2009.

[2] R. Grimes, D. Kincaid, and D. Young, “ITPACK 2.0 User’s Guide”, Technical Report
CNA-150, Center for Numerical Analysis, University of Texas, 1979.

[3] M. Naumov, “Incomplete-LU and Cholesky Preconditioned Iterative Methods Using
cuSPARSE and cuBLAS”, Technical Report and White Paper, 2011.

http://research.nvidia.com/content/implementing-sparse-matrix-vector-multiplication-throughput-oriented-processors
http://research.nvidia.com/content/implementing-sparse-matrix-vector-multiplication-throughput-oriented-processors
http://developer.nvidia.com/content/accelerated-solution-sparse-linear-systems
http://developer.nvidia.com/content/accelerated-solution-sparse-linear-systems

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2015 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Introduction
	1.1. Naming Conventions
	1.2. Asynchronous Execution
	1.3. Static Library support

	Using the cuSPARSE API
	2.1. Thread Safety
	2.2. Scalar Parameters
	2.3. Parallelism with Streams

	cuSPARSE Indexing and Data Formats
	3.1. Index Base Format
	3.2. Vector Formats
	3.2.1. Dense Format
	3.2.2. Sparse Format

	3.3. Matrix Formats
	3.3.1. Dense Format
	3.3.2. Coordinate Format (COO)
	3.3.3. Compressed Sparse Row Format (CSR)
	3.3.4. Compressed Sparse Column Format (CSC)
	3.3.5. Ellpack-Itpack Format (ELL)
	3.3.6. Hybrid Format (HYB)
	3.3.7. Block Compressed Sparse Row Format (BSR)
	3.3.8. Extended BSR Format (BSRX)

	cuSPARSE Types Reference
	4.1. Data types
	4.2. cusparseAction_t
	4.3. cusparseDirection_t
	4.4. cusparseHandle_t
	4.5. cusparseHybMat_t
	4.5.1. cusparseHybPartition_t

	4.6. cusparseMatDescr_t
	4.6.1. cusparseDiagType_t
	4.6.2. cusparseFillMode_t
	4.6.3. cusparseIndexBase_t
	4.6.4. cusparseMatrixType_t

	4.7. cusparseOperation_t
	4.8. cusparsePointerMode_t
	4.9. cusparseSolvePolicy_t
	4.10. cusparseSolveAnalysisInfo_t
	4.11. cusparseSolveAnalysisInfo_t
	4.12. csrsv2Info_t
	4.13. csric02Info_t
	4.14. csrilu02Info_t
	4.15. bsrsv2Info_t
	4.16. bsrsm2Info_t
	4.17. bsric02Info_t
	4.18. bsrilu02Info_t
	4.19. csrgemm2Info_t
	4.20. cusparseStatus_t

	cuSPARSE Helper Function Reference
	5.1. cusparseCreate()
	5.2. cusparseCreateSolveAnalysisInfo()
	5.3. cusparseCreateHybMat()
	5.4. cusparseCreateMatDescr()
	5.5. cusparseCreateSolveAnalysisInfo()
	5.6. cusparseDestroy()
	5.7. cusparseDestroySolveAnalysisInfo()
	5.8. cusparseDestroyHybMat()
	5.9. cusparseDestroyMatDescr()
	5.10. cusparseDestroySolveAnalysisInfo()
	5.11. cusparseGetLevelInfo()
	5.12. cusparseGetMatDiagType()
	5.13. cusparseGetMatFillMode()
	5.14. cusparseGetMatIndexBase()
	5.15. cusparseGetMatType()
	5.16. cusparseGetPointerMode()
	5.17. cusparseGetVersion()
	5.18. cusparseSetMatDiagType()
	5.19. cusparseSetMatFillMode()
	5.20. cusparseSetMatIndexBase()
	5.21. cusparseSetMatType()
	5.22. cusparseSetPointerMode()
	5.23. cusparseSetStream()
	5.24. cusparseCreateCsrsv2Info()
	5.25. cusparseDestroyCsrsv2Info()
	5.26. cusparseCreateCsric02Info()
	5.27. cusparseDestroyCsric02Info()
	5.28. cusparseCreateCsrilu02Info()
	5.29. cusparseDestroyCsrilu02Info()
	5.30. cusparseCreateBsrsv2Info()
	5.31. cusparseDestroyBsrsv2Info()
	5.32. cusparseCreateBsrsm2Info()
	5.33. cusparseDestroyBsrsm2Info()
	5.34. cusparseCreateBsric02Info()
	5.35. cusparseDestroyBsric02Info()
	5.36. cusparseCreateBsrilu02Info()
	5.37. cusparseDestroyBsrilu02Info()
	5.38. cusparseCreateCsrgemm2Info()
	5.39. cusparseDestroyCsrgemm2Info()

	cuSPARSE Level 1 Function Reference
	6.1. cusparse<t>axpyi()
	6.2. cusparse<t>doti()
	6.3. cusparse<t>dotci()
	6.4. cusparse<t>gthr()
	6.5. cusparse<t>gthrz()
	6.6. cusparse<t>roti()
	6.7. cusparse<t>sctr()

	cuSPARSE Level 2 Function Reference
	7.1. cusparse<t>bsrmv()
	7.2. cusparse<t>bsrxmv()
	7.3. cusparse<t>csrmv()
	7.4. cusparse<t>gemvi()
	7.5. cusparse<t>gemvi_bufferSize()
	7.6. cusparse<t>bsrsv2_bufferSize()
	7.7. cusparse<t>bsrsv2_analysis()
	7.8. cusparse<t>bsrsv2_solve()
	7.9. cusparseXbsrsv2_zeroPivot()
	7.10. cusparse<t>csrsv_analysis()
	7.11. cusparse<t>csrsv_solve()
	7.12. cusparse<t>csrsv2_bufferSize()
	7.13. cusparse<t>csrsv2_analysis()
	7.14. cusparse<t>csrsv2_solve()
	7.15. cusparseXcsrsv2_zeroPivot()
	7.16. cusparse<t>hybmv()
	7.17. cusparse<t>hybsv_analysis()
	7.18. cusparse<t>hybsv_solve()

	cuSPARSE Level 3 Function Reference
	8.1. cusparse<t>csrmm()
	8.2. cusparse<t>csrmm2()
	8.3. cusparse<t>csrsm_analysis()
	8.4. cusparse<t>csrsm_solve()
	8.5. cusparse<t>bsrmm()
	8.6. cusparse<t>bsrsm2_bufferSize()
	8.7. cusparse<t>bsrsm2_analysis()
	8.8. cusparse<t>bsrsm2_solve()
	8.9. cusparseXbsrsm2_zeroPivot()

	cuSPARSE Extra Function Reference
	9.1. cusparse<t>csrgeam()
	9.2. cusparse<t>csrgemm()
	9.3. cusparse<t>csrgemm2()

	cuSPARSE Preconditioners Reference
	10.1. cusparse<t>csric0()
	10.2. cusparse<t>csric02_bufferSize()
	10.3. cusparse<t>csric02_analysis()
	10.4. cusparse<t>csric02()
	10.5. cusparseXcsric02_zeroPivot()
	10.6. cusparse<t>csrilu0()
	10.7. cusparse<t>csrilu02_numericBoost()
	10.8. cusparse<t>csrilu02_bufferSize()
	10.9. cusparse<t>csrilu02_analysis()
	10.10. cusparse<t>csrilu02()
	10.11. cusparseXcsrilu02_zeroPivot()
	10.12. cusparse<t>bsric02_bufferSize()
	10.13. cusparse<t>bsric02_analysis()
	10.14. cusparse<t>bsric02()
	10.15. cusparseXbsric02_zeroPivot()
	10.16. cusparse<t>bsrilu02_numericBoost()
	10.17. cusparse<t>bsrilu02_bufferSize()
	10.18. cusparse<t>bsrilu02_analysis()
	10.19. cusparse<t>bsrilu02()
	10.20. cusparseXbsrilu02_zeroPivot()
	10.21. cusparse<t>gtsv()
	10.22. cusparse<t>gtsv_nopivot()
	10.23. cusparse<t>gtsvStridedBatch()

	cuSPARSE Reorderings Reference
	11.1. cusparse<t>csrcolor()

	cuSPARSE Format Conversion Reference
	12.1. cusparse<t>bsr2csr()
	12.2. cusparse<t>gebsr2gebsc_bufferSize()
	12.3. cusparse<t>gebsr2gebsc()
	12.4. cusparse<t>gebsr2gebsr_bufferSize()
	12.5. cusparse<t>gebsr2gebsr()
	12.6. cusparse<t>gebsr2csr()
	12.7. cusparse<t>csr2gebsr_bufferSize()
	12.8. cusparse<t>csr2gebsr()
	12.9. cusparse<t>coo2csr()
	12.10. cusparse<t>csc2dense()
	12.11. cusparse<t>csc2hyb()
	12.12. cusparse<t>csr2bsr()
	12.13. cusparse<t>csr2coo()
	12.14. cusparse<t>csr2csc()
	12.15. cusparse<t>csr2dense()
	12.16. cusparse<t>csr2hyb()
	12.17. cusparse<t>dense2csc()
	12.18. cusparse<t>dense2csr()
	12.19. cusparse<t>dense2hyb()
	12.20. cusparse<t>hyb2csc()
	12.21. cusparse<t>hyb2csr()
	12.22. cusparse<t>hyb2dense()
	12.23. cusparse<t>nnz()
	12.24. cusparseCreateIdentityPermutation()
	12.25. cusparseXcoosort()
	12.26. cusparseXcsrsort()
	12.27. cusparseXcscsort()
	12.28. cusparseXcsru2csr()

	Appendix A: cuSPARSE Library C++ Example
	Appendix B: cuSPARSE Fortran Bindings
	14.1. Example B, Fortran Application

	Appendix C: Acknowledgements
	Bibliography

