IIIIIII

Chapter 1. INtrodUCHION....ciiiiiitiiiiiientttieiieneeeeeresnneseceesennsssccsssnnssssesassnnsssecsssnnnnes 1

1.1, NamMing CONVENTIONS. . .uiitiiiiitiiiiii ittt ettt seiateseaeeaaees 1
1.2, ASYNCRroNOUS EXECULION.uuittttiiiiii e ieiiiit e teeeieeeeeeenrnneeessessnnenessessnnnnessaennns 2
1.3, STAtiC LibDrary SUPPOIt. .. .ciuetiiii i et e et ee et renaeeeeneerenneerenneeeanneranns 2
Chapter 2. Using the CUSPARSE APL.....cciiieeiiiiiiieneeieeeeeenneeceesesensssecsssenssssssssnnsssccssnnns 4
N R 111 =T T Y- L 1] 1 2 PPt 4
2.2, SCAlAr Parameters. ..ottt ettt e s 4
2.3. Parallelism With SEr@amS.utir it i e it eerereeateeenneeeaneesannnesannnenns 4
Chapter 3. cuSPARSE Indexing and Data FOrmats........ccceeeiiieeiiiineeiiieeiiaeeeeineecenncacannenns 6
K T OO [T [2 1= T I o) 0 - L 6
T =T ot e g o] 1 1= £ 6
T 0 T T I o o = e 6
3.2.2. SPArse FOrMat. . ..ue ittt e ettt 6
KT T - Y o G oo 14 T= Y o F 7
K T TR R 0 7= o £ o 1 T | N 7
3.3.2. Coordinate FOrmat (COO)..iiiiirttitieiiitetreieieeeeeeearnneeeesesnnnanessessnnnneesssnnnnns 8
3.3.3. Compressed Sparse Row FOrmat (CSR)...cciiiiiiiiiiiiiiiiiiiii ittt iieiiii e ieeeieaann 8
3.3.4. Compressed Sparse Column Format (CSC)..uuiiiriiineiiiiiiiiieereeeiieeeereeennnneeesenns 9
3.3.5. Ellpack-1tpack FOrmat (ELL)....c.ueeeeiiiiiiiiiiiiiiiiiiiiiiiieeeeeeiiieeeeeeaeinnaaeeeeanns 10
3.3.6. Hybrid FOrmat (HYB)....oiouutiiiitiiiitiiiitiaiteteiteeetetenneeeanaeeeaneeranneeeanaeeannes 11
3.3.7. Block Compressed Sparse Row Format (BSR).......ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnes 11
3.3.8. Extended BSR FOrmat (BSRX)...eeuuttiiiutieittiiitiieieeeaieeeaneeeanneeeeneeeesneeesnneens 13
Chapter 4. cUSPARSE Types RefereNCe......iciiuiiiieiiiiniieiiniiiinsioninsiossssossnstosssssossssossnns 15
O I D - L = R Y] =2 15
3 o1 Y- 1 §-7=7 Yo 4 o] o T PPt 15
K B oo T=1 §:7=1 D2 [< ot o] o TN o N 15
O B ol o -1 7= =TT | U O PP 16
N T ol D1 o= T Y] 1Y o) - L PP 16
4.5.1. cusparseHYbPartition_f.....cciiiiiitiiiiiiiiii it ittt reeeieeeeeaenraeeeeaaanas 16
N o1 1= Y =1 =Y A L= of o S P P PP 16
4.6.1. CUSPArSED g TY PO L. eennetiiiiiiiiit it teeeieteereenaneeessessnnneessessnnnnesssennnnes 17
4.6.2. cUSPArsEFIlMOAE _t..iiiiiiii it i ettt e ettt e e e e e riaaeeaaas 17
4.6.3. CUSPArSEINAEXBASE _t.uuuutieinttiiittteettieiteeeitteeeieeeeaeeeenaeeeaneeeesneeesnseeesnaeens 17
4.6.4. CUSPArSEMatIiX TY PO teiiiiittiiiiiiittieeeiiteeeeeenineeeeeeeennnseeeeesnnnseseeesnnnnsaeens 17
Y R 1o L-1 57100 T=] - 1t (o] o 1 S PN 18
4.8, CUSPArSEPOINtEIMOAE B . uniiiiiiiiiiii ittt e ettt eaeennaeeeesannnneeeesessnneneeenannes 18
4.9, cusParseSOIVEPOLICY L..i.uiiniiiiiiiiii et 18
4.10. cusparseSolVeANalYSISINTO_t....iiiiiiitiiiiiiiiiieiiiieeteeeiieeeeeeennereeressnnnneesennns 19
4.11. cusparseSolveAnalysisINfo_t......cvvuiiiiiiiiiiiiii i 19
I 2 ok 37 1 1) o T P 19
www.nvidia.com

CUSPARSE Library DU-06709-001_v7.5 | ii

O I T ot T 074 [1} (o R S 19

o ot o (U045} (o T PPN 19
N s TR 03] 5177 [o o T N 19
o LT o 1 5111 VA L] o T 19
3 0 o3~ el 013 T o 20
o T o L 1B (07213} o T PPN 20
0 R oY =111 0] 0 VA [] o TR O PP 20
4.20. CUSPArSeSTAtUS L. .uiinuiiiiitiiiit i e 20

Chapter 5. cuSPARSE Helper Function Reference.......cccciiiiieeiiiiiiianeeieeeiennneerecescnannces 22
o T R (U1 o 1= L = O == L =] (S N 22
5.2. cusparseCreateSolveANalySiSINfO()..eeueeeiiririieieiiiiieteeiiieeeeeeeniareeeeeenrnneeesnanes 22
5.3, CUSPArSECrEatEHYDMAL()..ueeeeieeiiitttt ittt iii ittt ettt eeeeiiaeeeeeeennsaaeeeeeannnees 23
5.4, CUSPArSECreateMatDESCI().eeeeeeeenneeetrerenneeeeeeeernneeeeeesnnneeeesesnnneeessessnnnsessesnnnnes 23
5.5. cusparseCreateSolveANalySiSINfO()..oeueeeeiiiiiiiiiiiiiiiii i ettt e eeeii e eeeeiaaeeaaanns 23
5.6, CUSPAISEDESTIOY()eeeeeennnnnteereenianeeeeeennneeeeseeennanesessesnneesssessnnnsesssessnnnesssessnnnnes 24
5.7. cusparseDestroySolveANalySiSINfO()..ceueeeeiriiiiiiiiiiiiii ittt e eiiieeeeeeiieaeeeanns 24
5.8. cUSPArsEDEStrOYHYDMAT(). .. eeuuueieinttieiteeriteeeieeeeeeeieeeereeeaaneeeanneeesnaeeeeneeeennees 24
5.9, CUSPArSEDESTIOYMATDESCI()ereeeereernnenetteeiiieeeeereerrneeeeeesesnaneeeeessnneseesessnnseseesannnes 25
5.10. cusparseDestroySolveANalySisINfO()...eeueeirieiriietiriiiiiiriieeiiereieeeeneeeenneeaanaens 25
5.11. CUSPArsEGEtLEVEUINTO()..uuueettieiiiitttieiiiieetteeiiieeeeeeearneeeeeessnneseeeessnnnsesssesnnnns 25
5.12. cusparseGetMatDiagTyPe()...oouueiiiutiiiiuiiiiiiiiiiiiiiiiiiii ittt riaeeeaes 26
5.13. cusparseGEtMatFilLMOAE() .. e eeennrrttiieiiiietieiiiireeeeeeineeeereeannnneesessnnneessessnnnnes 26
5.14. cusparseGetMatindeXBase(). . ceueeeenttrerntereneteeaeerennteeenneeeaneeeesnnerenesesonnesennneeen 26
5.15. CUSPArSEGEtMALTYPE() et eeenneeetreerieeeeteeenneeeeeeennneeeeeessnnnneessssnnnneesssssnnnsessenns 27
5.16. CUSPArsEGEtPOINTEIMOAE() . e uuurtttttiiiiii it ittt teeeieteeteeaieeeeeeeeaseeeeeesenneneens 27
5.17. CUSPArSEGELVEISTION()ereeteenneeeereeeetetreeenneeeeeeesnnneeesessnnnneesssesnnneesssessnnsesssnns 27
5.18. CUSPArsESEtMatDIAGTYPE().rreeeeeerirtteeeeeiireeeeeeeaiueeeeeeeeiuseeeeeesssseseeeesenssseseesnnns 28
5.19. cusparseSetMatFillMOdE()....ueeenetiritiiii e et e et e et eeiaeeeeeeeannaeeannaenn 28
5.20. cusparseSEtMatINAEXBaSsE()....eeeeeeernreeeerereneeeeeeeernreeeeeeserseseeeessnnssesesessnnsseseenen 29
5.21. CUSPArSESEtMaAtTYPE() et eeenetttreeiiiterteiiittetreeenaneeeseeannneesseesnnnsesssesnnnneessanns 29
5.22. CUSPArsESEtPOINTEIMOAE() . cuuunnrettieiiitttteiiiteeeeeeiieeeeeeeernneeeeeesennneeeesessnneneens 29
o T T o U o T YT Y == 10 1 T 30
5.24. cusparseCreatelsrsV2INTO().ceeueeeeererrieeeteeeiieeeeeeerrneeeeeeessnneeeeesesnseeessessnnsneens 30
5.25. cusparseDestrOYCSISY2INTO().eeeeuueeeeeterettrertereneteeeneeeenneerenneeesneeeesnneeenneeeanneens 30
5.26. cusparseCreateCsriCOZINTO() . ceeerreeetereriieeeereiereeeeeeeennneeeeeessnneeeessssnnnseesesannnnes 31
5.27. cusparseDestroyCsriCOZINfO). eeeeereteeiiiiiitetiiiiieeeteeiieeeeteeaieeeeeesaissseseeennnnes 31
5.28. cusparseCreateCsrilUOZINTO()..ceeeeeerreriietieeiiieteeeeiaeeeereeananeeseesnnneeeessssnnnnes 31
5.29. cusparseDestroyCsriluDZINfO().eee e eeeeiiriiii ittt iiiite e eeeiiieeeeeeeeieaeeeaannnnes 32
5.30. cusparseCreateBsrsV2INTO (). ceuueieeteiiittiiiit i iei ettt ettt eeteeeeaeerenneeeanaeeannas 32
5.31. cusparseDestroYBSISVZ2INTO()..ueeeiiriiiteiiiiiiiietieiiiiteeeeeiiieeeeeeeaiaeeeeesennnneeeeeanns 33
5.32. cusparseCreateBsrSMZ2INTO()...eeeeueeiertirertiiittiaiteeereeteieerereeeeaneerenaeeeeneeeanneens 33
5.33. cusparseDestroyBsrSM2INfO() . eeeueeeiiiiiii it eeeiiteeeeeeiieeeeeeeennnaeeeenennnnes 33
5.34. cusparseCreateBsriCOZINTO(). . ceeueeeeretirritieieeiteeereeeaeeeenneeeeneeranneeeenneeesnneens 34
www.nvidia.com

CUSPARSE Library DU-06709-001_v7.5 | iii

5.35. cusparseDestroyBsriCOZINTO().cee.uueetiiiiiiii ittt ettt e e et eeeiia e eeaaaaas 34
5.36. cusparseCreateBsriluOZ2INTO). c.ueieeetieiteiiit et ei ettt eeeteeenaeeeaneeranneeeanneeanns 34
5.37. cusparseDestroyBsrilUOZINTO()...eeeeeeeiireeteiiiiiieteieiiieeeeeeaieeeeeesenineeeeeeennnseaeens 35
5.38. cusparseCreateCsrgemMMZ2INTO(). . eeueeieiuteiiietiriittiaiteeereeeeaeerenaeeeaneerenneeeenneeennes 35
5.39. cusparseDestroyCsrgemMmMZ2INTO()..ceeeeeeeeieiiiietetieeiiieeeereeiieeeereeeinseeeesesnnneeeeeanns 35
Chapter 6. cuSPARSE Level 1 Function Reference.........cccveeieiniiinioiniiieiiceiieersneronecsnees 37
6.1, CUSPArSE<E>AXPYI()eeeennueeeeeeeeruneeeeeeesrnneeeeeesenaseeeeessnnnseessessnnsnessesssnnnssssessnnnnes 37
IV T oF- 1 7=28 e (o] 4 || F O PP PP 38
I ol U1 o T- [Y28 e (o] (ot | () D PP 40
I AT ok =28 = 11 o f (T PP 41
IR TN o{ U1 o T- Y23 i« d | 4 | 1 PPN 42
eV o T [T e (o 4 |) P PP 43
I Aol U1 o T- 1§ Y2 Yot o o) P PPN 44
Chapter 7. cuSPARSE Level 2 Function Reference.......ccceviiiiiiiiniiiiiniiiienieienciesensonenses 46
A BT o - 143 =18 £ s 1 111V P P PP 47
VAV NV o T 14 1=2S i o1 041 11 | TS PP PP 50
A MoV o T (T2 e ok 1 11177 | T PPN 54
7.4, CUSPAISE<E>GOIMVYI() e uuunnnnnnnnnnnnnnnnennennenseeeeeeeeneeseeseesssssesssssssssssssssssssssssassassnnns 57
7.5. cusparse<t>gemVi_bUfferSiZze()...oereiiirriiiiiiii it i e e ere e eaaeaas 59
7.6. cusparse<t>bsrsv2_bufferSize()...ceeeeiieeiiiiiiiiiiii ittt ittt e eiiie e eeireeeeaaaas 61
7.7. cusparse<t>bsrsv2_analysiS()....eeeerueereerueiiteiteiteiiteiitiiteitiittieireereareeaaens 64
7.8, CUSPArSE<t>DSISV2 _SOIVE().uuuuuretiiieiiiitttieiiit et eeeeineeeeeeernneeeesessnnnnesesennnneeessanns 67
7.9. cuSParseXbSrsV2_ZEIOPIVOT() .. eeuueeeeneerernterereteeeterenneereneeeeaneerenneerennesesneesenneenanes 71
7.10. cuSPArs@<t>CSISV_aNalYSiS().eeeennureeerrernnueeeereesnnneeeeessnneeeesessnnnnesssssnnnnsesssssnnnnes 72
711, CUSPArSE<t>CSISY_SOIVE() e et ttitinettetieeiitteeteeeiietteeeeeniaeeeeesesannseeeesessnseesessennnnnes 74
7.12. cusparse<t>CsrsV2_bUfferSiZe()..ceeutiiii ittt e e e ei e eeiee e aeeeaaas 76
7.13. CUSPArse<t>CSISVZ_analySiS().uueeeeeeeeiiueeeeeereiueeeeeeeinueeeeeesssnaseeeessnssseeeessnnnseeens 79
7. 14, CUSPArSE<t>CSISV2_SOIVE()ureetnntteittteinttieieteeaeeeeaneeeeraeeesneeeesneesenneeesnseeenneeeanes 82
7.15. cUSPArseXCSISV2_ZEIOPIVOL()uueeeeeerinttttieiiiitetteeiiieeeeeeeeiiaeeeeeesersesessesennneeseeeanns 86
7.16. CUSPArSE<t>NYDIMV (). ettt it e ettt e et eeeeeeenneeeanaeeaaneerenneeennes 87
7.17. cusparse<t>hybsV_analySiS()eeeeeeeeueeeererrieeeeeeeerreeeeeeessneeeeeessnnaneeeessnnnsesseesnnnes 88
7.18. cuSParse<t>hybSsV_SOIVE()..eeueiiiit ittt i eei et eeieeeeeeeenaeeeanaeeeaneeeannees 90
Chapter 8. cuSPARSE Level 3 Function ReferencCe.....ccciveeeeiiiiiiineeieeiereneeteceecennncccccannns 92
8.1, CUSPArSE<E>CSIMIMI() e ttnnnntetteeeteteeeeeaeeeeteananeeeeseeannnneeseeananneessessnnsensesannnnes 93
8.2, CUSPArSE<E>CSIMIMZ()uuuureteereeenneeeeeeeesnueeeseessnnnneeseessnnesessssssnnnessssessnnsssesssnnnnes 96
8.3. CUSPArSE<t>CSISM_ANALYSTS()eeeeennuuteetereiinteeeeeenieeeeeeeeiiaeeeeeeesnssseeeessnsssseeesennnnes 100
8.4, CUSPArSE<t>CSISM_SOIVE()ereterennnnnteereeenneeeeeeesnneeessessnnneessessnnnnesssessnnnsessesannnnes 102
8.5, CUSPArSE<E>DS MM)ittt it ittt ettt ettt e e e eeeiiaaeeeeaaannaaas 105
8.6. cusparse<t>bsrsm2_bUfferSize(). oo e iereiiiii i et e e e e 109
8.7. cusparse<t>bsrsmM2_analySiS().eeeeeeeeeuueeeeeeeiineeeeeeeriiueeeeeeesnnseeeeeeseseseeeesesnsasesens 112
8.8. cUSPArse<t>bSISM2_SOIVE() .t eeuuetiiinttieitiiittieiteeeieteeeeeeenneeeenaeeeaneerenneersnneeanns 116
8.9. cusparseXbsrsSM2_ZEIrOPIVOT().eeeeeruueeeeeerrieeeeeeeeiieeeeeeeersneeeeeesssnnseeeessnnnseseeesnnnes 119
Chapter 9. cuSPARSE Extra Function Reference.........ccoceiiieiiiiiiiiiiiiiinieieeeeienecennnnns 120
www.nvidia.com

CUSPARSE Library DU-06709-001_v7.5 | iv

9.1, CUSPArSE<E>CSIGEAMI() et e eteennutteeeeeieteeeeeeiueeeeeeeesuaseseesesnsseseesensssesessssssssseennn 121

9.2, CUSPArSE<E>CSIGEMMI().ueeteerennnnneeereennnneeeesesnnneessessnansesssesnansesssessnnnsessessnnnnesss 125
9.3, CUSPArSE<E>CSIGOMMIZ() et tteeuutteteeeiieeeeeeeeennaeeeeeeeansseeeeeessnssseeeessnseeessssenneneess 129

Chapter 10. cuSPARSE Preconditioners Reference.......c.ccceeieiiiiieiiiiieiiieneeiieeeeencecnnnens 134
10.1. CUSPArSE<E>CSIICO()urueeeeeeennuureeeerenrueeeeeeennneeeeeeeessseeeeesennssseeesssnseeessssannaneess 135
10.2. cusparse<t>csricO2_DUfferSiZe (). eeueeeeeiireii i ieei e e eeieeeeieeeaneeanns 137
10.3. cusparse<t>CSriCOZ_aNalySiS()..eeeeeeerrureeeereeereeeeeeesrneseeeessnnnneeesessnneseseesennnneees 139
10.4. CUSPArSE<E>CSITC0Z()eeennnnnneeerrenietetteeeraeeeereeaaneeesseaaaneeeseessnnseessesssnnsesseennns 142
10.5. cusparseXcsriC02_zZeroPiVOT()..eeeeereeeteererineeeeerenrnueeeeeessaeeeesessnnseeeesensnsseeesonns 146
10.6. CUSPArSE<E>CSIIIUO()e vt ernnnerennterernterettreaneereneeeeaneerenneerenneeesneesesneesensessannesanns 147
10.7. cusparse<t>csrilu02_nNUmeEriCBOOST(). . uueeitreriieeiirieiiieereeiieeeeeeeninneeeereennneneens 149
10.8. cusparse<t>CSrilu02 _bBUffErSiZE (). uueeeiiiiiiiiiiiiiiii it et eiii e eeeeieeeeeaaanas 150
10.9. cusparse<t>CSriluOZ2_analySiS().eeeeeenueeeeereerneeeeeeenneeeeeeeennneeeessessnnneesssosnnnneesnes 152
10.10. CUSPArSE<t>CSIIIUDZ()eeeeeeeintetetieieiieteeteeeiieeeeeeeeanneeeeeesannaseseessnnsesesessnnnneeeens 155
10.11. cusparseXCSriluO2_ZErOPiVOL (). uueeeeueetenteeiiteeeieeeiieeeeieeeeeneeeeaeeesnneeesnaeeennens 159
10.12. cusparse<t>bsric0Z2_bUfferSize()..ceeereeiiiiiiiiiiii ittt it eeeiieeeeeeaannaeaenn 160
10.13. cusparse<t>bsriC0Z2_analySiS().eueeeeeeeeeereererueerereeeereerenneerereeeesneeesnaeeesneeesnnees 163
(O B R ol -1 603 e 01 o Tel X (1 D PO 166
10.15. cusparseXbsriCOZ2_ZErOPIVOT()..ueeeeueeeeneteeieeeenueeeaieeeeaneeeenneeeeneeeeeneeesnnesesnnens 170
10.16. cusparse<t>bsrilu02_NUmMEriCBOOST(). . uuueeeteerrieeeeieeiinreeeererrneeeeeeenrnnneeeessnnnnes 171
10.17. cusparse<t>bsrilu0Z2_DUfferSiZe()....eeeeeereretiriiieiieeieeeieeeaeeeenneeeaneeeaaneeees 173
10.18. cusparse<t>bsrilu02_analySiS()e.eeeeeereeeeeeeerrneeeererenereeeessrnneeeesessnnesessesonnnneess 176
10.19. CUSPArsE<t>DSIIIUODZ() . uuueereneerereereiteeettreeterenneeeaneerenneereneeeesneesenneesonnesenns 179
10.20. cusparseXbsrilu02_zZeroPiVOt()...eeeerreeeeereeriieeeeeeeninneeeerenrnnneeeesesnneeessensnnnneens 183
10,27, CUSPAISESE>GESV () uuttettteiiitteeteeeiieteeeeeearnaeeeeeeennseeseesessssseseesenssesseessnnnsaeens 184
10.22. cusSParse<t>gtsV_NOPIVOL().ueeeeeerernneeeeereirneeeereeesneeeeeesssnnneesesesnnneesssasnnnnassenns 186
10.23. cusparse<t>gtsvStridedBatCh()...ceeeeieeiiiiiiiiiii i it e e e e naeaea 187

Chapter 11. cuSPARSE Reorderings ReferenCe......ccceeieiieiiiiiiiineieinneiennneeennceennnecennns 190
11,1, CUSPArSE<E>CSICOLON()ururteeenennteeeeeerineeeeeeeereeeeeeessnnsseeeeessnnsseeesssnnseesesssnnnnnes 190

Chapter 12. cuSPARSE Format Conversion Reference........ccceveeiiiieiiiiieiineeeenneecenneennns 193
(2 IRV o - 1 €128 e o3 ok () S P P 194
12.2. cusparse<t>gebsr2gebsc_bufferSize().....occvviiieiiiiiiiiiiiiiiiiiiiiii e 197
12.3. CUSPArSE<t>gEDSI2GEDSC().uuereereenreetererinereereeerneeeeeeessnneeessessnnnneesssssnnnsessenns 199
12.4. cusparse<t>gebsr2gebsr_bufferSize().....cvereiriieiiiiiiiiiiiiiii i ceereeeeeanas 202
12.5. CUSPArse<t>geDSI2GEDSI (). eeeereernnneetireiieteereaereeeereearnneeeseessnneeeesessnnnnesssennnnes 204
12.6. CUSPArSE<E>GEDSI 2SI () urrttetteeittetieeiitteeteeaaieeeeeeeeaiaeeeeeeensssseeesesansssesesennnnns 208
12.7. cusparse<t>Csr2gebsr_DUfferSiZe()....eeireerieeiiiiiiiiiieiiiiieeeeiaieeereeennnneeeesanns 211
12.8. CUSPArSE<E>CSI2GEDST () uurttetteeiutteteeeiiteeeeeeeiieeeeeeesaiaeeeesessssseseesesesssesesennnnes 213
12.9. CUSPArSE<E>CO0Z2CSI()eeunnueeeereennnneeesessnneeessessnnnnesseesnnneessesssnnsessesssnnnesssesnnnns 216
12.10. CUSPArSE<t>CSC2AENSE()urreeeerennnereereeeiueeeeeeeesnseeeeeesssssesesessnsseessessnsasessesenns 218
12,11, CUSPArSE<t>CSC2NYD() e nuttieinttiitieet et eetteeeterenneeeaeerasneerenaeeesnseeennaeeanes 219
(2 VR o1 o -1 603 e ot 7 o 1Y of (T PP 221
12,13, CUSPArSE<E>CSI2C00()eeeeerennnnntereeeennnneeeseasnneesseeesnnnessesesnnessssessnnsessssennnneess 223
www.nvidia.com

CUSPARSE Library DU-06709-001_v7.5 | v

12,14, CUSPAISE<E>CSI2CSC()urureeeeeennuueeeeeeeanueeeeeeeasaseeeeeesssssseeessessssesesssnssssessesannanes 225

12.15. CUSPArSE<t>CSI2AENSE() et nnnttenetteinteteieteeeeeteraeeeareeteaneerenaeeeeneseesneesenaeeenneens 227
12.16. CUSPArse<t>CSI2NYD (). .uueeiiiiiiiii i it e ittt et e rei e as 229
12.17. CUSPArSE<t>AENSEZ2CSC() et etnnrererneerenteeaneetenneerenaeeesneeeesneeeenseeesnsesesnseeenseeennes 231
12.18. CUSPArSE<t>AENSE2CSI()ereeeeennneeeeteennueeeeeeesnnaeeeeeessnseeeesessnnseseessssnsessesesnnnnnes 232
12.19. cusparse<t>denseZhybD()...cccueiiiiniiiiiiiii i e et e e e e 234
12.20. CUSPArSE<t>NYDZ2CSC()eeunnneeettereiiteeeeeaiieeeeeeeeinaeeeeeeesnneeeeesssnnseeeesssnseseeeanns 235
12.21. CUSPArSE <t YD 2CSI () ueteeenttteinterettieeteterteeeneteeaneerenneeeaneeeeaneesenneeesneeeennes 237
12.22. CUSPArSe<t>NYD2dENSE()..uueetieriiiretiieeiiieetereerreeeeeeesrneeeeesessnnnneeesssnnseseesanns 238
(A B U o 1= 1 §:0=23 e | 1 4 (FS N 239
12.24. cusparseCreateldentityPermutation().....coeeveeeeeireriieerrerinieeeereernneeeeeesnnnneeenns 240
12.25. CUSPAIrSEXCOOSOMT() et tnnnnreeeereeeueteeeeeenuseeeeeesenseeeseesenusseseeessseseseesennsssseeennns 241
12.26. CUSPAISEXCSISONT()eeeenunnuneeereennueeeeresenaneeeseesnnneeeesessnaneesssesnnnsssssessnnnsessssnnns 243
12,27, CUSPAISEXCSCSONE()eeeetennueteeteeeneeeeeeeessseeeeeesenseseseesennsssseesssssssseessssssssesanns 245
12.28. CUSPAISEXCSIUZCST () eenunueeeereennuneeeseenaneeessessnnneessesssannasssessnnnsessessnnnsesssssnnnns 248
Chapter 13. Appendix A: cuSPARSE Library C++ Example.....c.cccciiiiieiiieiiinneeeieeiennneeeeenns 252
Chapter 14. Appendix B: cuSPARSE Fortran Bindings.......ccceceeiiiiiiiieiiiieieiienenaneecnnnnn 254
14.1. Example B, Fortran AppliCation.....cciuueiiiiiiiiiiiiiiiiiiiiii it eeiiee e eeeenaaaees 256
Chapter 15. Appendix C: Acknowledgements.cccvieeiiiiiiiiiieiiereneneeennerecencscnnnceannns 257
Chapter 16. Bibliography...cccieeeeeiiiiiiineeieiiiianeeteeeeenneeeeeesennsstecsssanssseccssnnassscasnnns 258
www.nvidia.com

CUSPARSE Library DU-06709-001_v7.5 | vi

Chapter 1.
INTRODUCTION

The cuSPARSE library contains a set of basic linear algebra subroutines used for
handling sparse matrices. It is implemented on top of the NVIDIA® CUDA™ runtime
(which is part of the CUDA Toolkit) and is designed to be called from C and C++. The
library routines can be classified into four categories:

» Level 1: operations between a vector in sparse format and a vector in dense format

» Level 2: operations between a matrix in sparse format and a vector in dense format

» Level 3: operations between a matrix in sparse format and a set of vectors in dense
format (which can also usually be viewed as a dense tall matrix)

» Conversion: operations that allow conversion between different matrix formats

The cuSPARSE library allows developers to access the computational resources of the
NVIDIA graphics processing unit (GPU), although it does not auto-parallelize across
multiple GPUs. The cuSPARSE API assumes that input and output data reside in GPU
(device) memory, unless it is explicitly indicated otherwise by the string DevHostPtr in
a function parameter's name (for example, the parameter *resultDevHostPtr in the
function cusparse<t>doti ()).

It is the responsibility of the developer to allocate memory and to copy data between
GPU memory and CPU memory using standard CUDA runtime API routines, such as
cudaMalloc (), cudaFree (), cudaMemcpy (), and cudaMemcpyAsync ().

The cuSPARSE library requires hardware with compute capability (CC) of at least 2.0
or higher. Please see the NVIDIA CUDA C Programming Guide, Appendix A for a list of
the compute capabilities corresponding to all NVIDIA GPUs.

1.1. Naming Conventions

The cuSPARSE library functions are available for data types float, double,
cuComplex, and cuDoubleComplex. The sparse Level 1, Level 2, and Level 3 functions
follow this naming convention:

cusparse<t>[<matrix data format>]<operation>[<output matrix data
format>]

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 1

Introduction

where <t>can be S, D, C, 2, or X, corresponding to the data types £loat, double,
cuComplex, cuDoubleComplex, and the generic type, respectively.

The <matrix data format>can be dense, coo, csr, csc, or hyb, corresponding to
the dense, coordinate, compressed sparse row, compressed sparse column, and hybrid
storage formats, respectively.

Finally, the <operation> can be axpyi, doti, dotci, gthr, gthrz, roti, or sctr,
corresponding to the Level 1 functions; it also can be mv or sv, corresponding to the
Level 2 functions, as well as mm or sm, corresponding to the Level 3 functions.

All of the functions have the return type cusparseStatus_t and are explained in more
detail in the chapters that follow.

1.2. Asynchronous Execution

The cuSPARSE library functions are executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.
Developers can use the cudaDeviceSynchronize () function to ensure that the
execution of a particular cuSPARSE library routine has completed.

A developer can also use the cudaMemcpy () routine to copy data from the

device to the host and vice versa, using the cudaMemcpyDeviceToHost and
cudaMemcpyHostToDevice parameters, respectively. In this case there is no need to add
a call to cudaDeviceSynchronize () because the call to cudaMemcpy () with the above
parameters is blocking and completes only when the results are ready on the host.

1.3. Static Library support

Starting with release 6.5, the cuSPARSE Library is also delivered in a static form as
libcusparse_static.a on Linux and Mac OSes. The static cuSPARSE library and all others
static maths libraries depend on a common thread abstraction layer library called
libculibos.a on Linux and Mac and culibos.lib on Windows.

For example, on linux, to compile a small application using cuSPARSE against the
dynamic library, the following command can be used:

nvcc myCusparseApp.c -lcusparse -o myCusparseApp
Whereas to compile against the static cuSPARSE library, the following command has to
be used:

nvcc myCusparseApp.c -lcusparse static —-lculibos -o myCusparseApp

It is also possible to use the native Host C++ compiler. Depending on the Host Operating
system, some additional libraries like pthread or d1 might be needed on the linking
line. The following command on Linux is suggested :

g++ myCusparseApp.c -lcusparse static -lculibos -lcudart static -
lpthread -1dl1 -I <cuda-toolkit-path>/include -L <cuda-toolkit-path>/1ib64 -o
myCusparseApp

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 2

Introduction

Note that in the latter case, the library cuda is not needed. The CUDA Runtime will try
to open explicitly the cuda library if needed. In the case of a system which does not have
the CUDA driver installed, this allows the application to gracefully manage this issue
and potentially run if a CPU-only path is available.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 3

Chapter 2.
USING THE CUSPARSE API

This chapter describes how to use the cuSPARSE library API. It is not a reference for the
cuSPARSE API data types and functions; that is provided in subsequent chapters.

2.1. Thread Safety

The library is thread safe and its functions can be called from multiple host threads.

2.2. Scalar Parameters

In the cuSPARSE AP], the scalar parameters o and 8 can be passed by reference on the
host or the device.

The few functions that return a scalar result, such as doti () and nnz (), return the
resulting value by reference on the host or the device. Even though these functions
return immediately, similarly to those that return matrix and vector results, the scalar
result is not ready until execution of the routine on the GPU completes. This requires
proper synchronization be used when reading the result from the host.

This feature allows the cuSPARSE library functions to execute completely
asynchronously using streams, even when a and f are generated by a previous kernel.
This situation arises, for example, when the library is used to implement iterative
methods for the solution of linear systems and eigenvalue problems [3].

2.3. Parallelism with Streams

If the application performs several small independent computations, or if it makes data
transfers in parallel with the computation, CUDA streams can be used to overlap these
tasks.

The application can conceptually associate a stream with each task. To achieve the
overlap of computation between the tasks, the developer should create CUDA streams
using the function cudaStreamCreate () and set the stream to be used by each

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 4

Using the cuSPARSE API

individual cuSPARSE library routine by calling cusparseSetStream() just before
calling the actual cuSPARSE routine. Then, computations performed in separate streams
would be overlapped automatically on the GPU, when possible. This approach is
especially useful when the computation performed by a single task is relatively small
and is not enough to fill the GPU with work, or when there is a data transfer that can be
performed in parallel with the computation.

When streams are used, we recommend using the new cuSPARSE API with scalar
parameters and results passed by reference in the device memory to achieve maximum
computational overlap.

Although a developer can create many streams, in practice it is not possible to have
more than 16 concurrent kernels executing at the same time.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 5

Chapter 3.
CUSPARSE INDEXING AND DATA FORMATS

The cuSPARSE library supports dense and sparse vector, and dense and sparse matrix
formats.

3.1. Index Base Format

The library supports zero- and one-based indexing. The index base is selected through
the cusparseIndexBase_t type, which is passed as a standalone parameter or as a
field in the matrix descriptor cusparseMatDescr_t type.

3.2. Vector Formats

This section describes dense and sparse vector formats.

3.2.1. Dense Format

Dense vectors are represented with a single data array that is stored linearly in memory,
such as the following 7 x 1 dense vector.

[1.0 0.0 0.0 2.0 3.0 0.0 4.0]

(This vector is referenced again in the next section.)

3.2.2. Sparse Format

Sparse vectors are represented with two arrays.

» The data array has the nonzero values from the equivalent array in dense format.

» The integer index array has the positions of the corresponding nonzero values in the
equivalent array in dense format.

For example, the dense vector in section 3.2.1 can be stored as a sparse vector with one-
based indexing.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 6

CUSPARSE Indexing and Data Formats

[1.0 2.0 3.0 4.0]
[1 4 5 7]

It can also be stored as a sparse vector with zero-based indexing.

[1.0 2.0 3.0 4.0]
[0 3 4 6]

In each example, the top row is the data array and the bottom row is the index array;,

and it is assumed that the indices are provided in increasing order and that each index
appears only once.

3.3. Matrix Formats

Dense and several sparse formats for matrices are discussed in this section.

3.3.1. Dense Format

The dense matrix X is assumed to be stored in column-major format in memory and is
represented by the following parameters.

m (integer) | The number of rows in the matrix.
n (integer) | The number of columns in the matrix.
1dx (integer) | The leading dimension of X, which must be greater than or equal to m. If

1dx is greater than m, then X represents a sub-matrix of a larger matrix
stored in memory

X (pointer) | Points to the data array containing the matrix elements. It is assumed
that enough storage is allocated for x to hold all of the matrix elements
and that cuSPARSE library functions may access values outside of the
sub-matrix, but will never overwrite them.

For example, mxn dense matrix X with leading dimension 1dX can be stored with one-
based indexing as shown.

X1 X2 o Xy
X221 X2 0 Xop
Xm,1 Xm,Z v Xm,n
Xidx1 Xidx2 Xidxn

Its elements are arranged linearly in memory in the order below.

[X11 X210 Xm1 = Xxa 0 Xin Xon 0 Xmp 0 Xigxn]

This format and notation are similar to those used in the NVIDIA CUDA cuBLAS library.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 7

CUSPARSE Indexing and Data Formats

3.3.2. Coordinate Format (COO)

The mxn sparse matrix A is represented in COO format by the following parameters.

nnz (integer) | The number of nonzero elements in the matrix.

cooValA (pointer) | Points to the data array of length nnz that holds all nonzero values of A
in row-major format.

cooRowIndA (pointer) | Points to the integer array of length nnz that contains the row indices
of the corresponding elements in array coovala.

cooColIndA (pointer) | Points to the integer array of length nnz that contains the column
indices of the corresponding elements in array coovala.

A sparse matrix in COO format is assumed to be stored in row-major format: the index
arrays are first sorted by row indices and then within the same row by compressed
column indices. It is assumed that each pair of row and column indices appears only
once.

For example, consider the following 4 x 5 matrix A.

1.0 4.0 0.0 0.0 0.0
0.0 2.0 3.0 0.0 0.0
5.0 0.0 0.0 7.0 8.0
0.0 0.0 9.0 0.0 6.0

It is stored in COQO format with zero-based indexing this way.

cooValA = [1.0 4.0 2.0 3.0 5.0 7.0 8.0 9.0 6.0]
cooRowindA=[0 0 1 1 2 2 2 3 3]
cooCollndA=[0 1 1 2 0 3 4 2 4]

In the COO format with one-based indexing, it is stored as shown.

cooValA = [1.0 4.0 2.0 3.0 5.0 7.0 8.0 9.0 6.0]
cooRowindA=[1 1 2 2 3 3 3 4 4]
cooCollndA=[1 2 2 3 1 4 5 3 5]

3.3.3. Compressed Sparse Row Format (CSR)

The only way the CSR differs from the COO format is that the array containing the row
indices is compressed in CSR format. The mxn sparse matrix A is represented in CSR
format by the following parameters.

nnz (integer) | The number of nonzero elements in the matrix.

csrVala (pointer) | Points to the data array of length nnz that holds all nonzero values of A
in row-major format.

csrRowPtrA (pointer) | Points to the integer array of length m+1 that holds indices into the
arrays csrColIndA and csrValA. The first m entries of this array
contain the indices of the first nonzero element in the ith row for
i=i,...,m, while the last entry contains nnz+csrRowPtraA (0). In
general, csrRowPtrA (0) is 0 or 1 for zero- and one-based indexing,
respectively.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 8

CUSPARSE Indexing and Data Formats

csrColIndA (pointer) | Points to the integer array of length nnz that contains the column
indices of the corresponding elements in array csrvala.

Sparse matrices in CSR format are assumed to be stored in row-major CSR format, in
other words, the index arrays are first sorted by row indices and then within the same
row by column indices. It is assumed that each pair of row and column indices appears
only once.

Consider again the 4 x Smatrixa.

1.0 4.0 0.0 0.0 0.0
0.0 2.0 3.0 0.0 0.0
5.0 0.0 0.0 7.0 8.0
0.0 0.0 9.0 0.0 6.0

It is stored in CSR format with zero-based indexing as shown.

csrValA = [1.0 4.0 2.0 3.0 5.0 7.0 8.0 9.0 6.0]
csrRowPtrA=[0 2 4 7 9]
csrColindA=[0 1 1 2 0 3 4 2 4]

This is how it is stored in CSR format with one-based indexing.

csrvalA = [1.0 4.0 2.0 3.0 5.0 7.0 8.0 9.0 6.0]
csrRowPtrA=[1 3 5 8 10]
csrColindA=[1 2 2 3 1 4 5 3 5]

3.3.4. Compressed Sparse Column Format (CSC)

The CSC format is different from the COO format in two ways: the matrix is stored in
column-major format, and the array containing the column indices is compressed in CSC
format. The mxn matrix A is represented in CSC format by the following parameters.

nnz (integer) | The number of nonzero elements in the matrix.

cscVala (pointer) | Points to the data array of length nnz that holds all nonzero values of A
in column-major format.

cscRowIndA (pointer) | Points to the integer array of length nnz that contains the row indices
of the corresponding elements in array cscvala.

cscColPtrA (pointer) | Points to the integer array of length n+1 that holds indices into the
arrays cscRowIndA and cscvalA. The first n entries of this array
contain the indices of the first nonzero element in the ith row for
i=i,...,n, while the last entry contains nnz+cscColPtrA(0). In
general, cscColPtrA (0) is 0 or 1 for zero- and one-based indexing,
respectively.

The matrix A in CSR format has exactly the same memory layout as its transpose in
CSC format (and vice versa).

For example, consider once again the 4 x 5 matrix A.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 9

CUSPARSE Indexing and Data Formats

1.0 4.0 0.0 0.0 0.0
0.0 2.0 3.0 0.0 0.0
5.0 0.0 0.0 7.0 8.0
0.0 0.0 9.0 0.0 6.0

It is stored in CSC format with zero-based indexing this way.

cscValA = [1.0 5.0 4.0 2.0 3.0 9.0 7.0 8.0 6.0]
cscRowlndA=[0 2 0 1 1 3 2 2 3]
cscColPtrA=[0 2 4 6 7 9]

In CSC format with one-based indexing, this is how it is stored.

cscValA = [1.0 5.0 4.0 2.0 3.0 9.0 7.0 8.0 6.0]
cscRowlndA=[1 3 1 2 2 4 3 3 4]
cscColPtrA=[1 3 5 7 8 10]

Each pair of row and column indices appears only once.

3.3.5. Ellpack-Itpack Format (ELL)

An mxn sparse matrix A with at most k nonzero elements per row is stored in the
Ellpack-Itpack (ELL) format [2] using two dense arrays of dimension mxk. The first data
array contains the values of the nonzero elements in the matrix, while the second integer
array contains the corresponding column indices.

For example, consider the 4 x 5 matrix A.

1.0 4.0 0.0 0.0 0.0
0.0 2.0 3.0 0.0 0.0
5.0 0.0 0.0 7.0 8.0
0.0 0.0 9.0 0.0 6.0

This is how it is stored in ELL format with zero-based indexing.

data =

indices =

It is stored this way in ELL format with one-based indexing.

1.0 4.0 0.0
2.0 3.0 0.0
5.0 7.0 8.0
9.0 6.0 0.0
1 2 -1

3 -1
1 4 5
3 5 -1

data =

indices =

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 10

CUSPARSE Indexing and Data Formats

Sparse matrices in ELL format are assumed to be stored in column-major format in
memory. Also, rows with less than k nonzero elements are padded in the data and
indices arrays with zero and - 1, respectively.

The ELL format is not supported directly, but it is used to store the regular part of the
matrix in the HYB format that is described in the next section.

3.3.6. Hybrid Format (HYB)

The HYB sparse storage format is composed of a regular part, usually stored in ELL
format, and an irregular part, usually stored in COO format [1]. The ELL and COO
parts are always stored using zero-based indexing. HYB is implemented as an opaque
data format that requires the use of a conversion operation to store a matrix in it. The
conversion operation partitions the general matrix into the regular and irregular parts
automatically or according to developer-specified criteria.

For more information, please refer to the description of cusparseHybPartition t
type, as well as the description of the conversion routines dense2hyb, csc2hyb and
csr2hyb.

3.3.7. Block Compressed Sparse Row Format (BSR)

The only difference between the CSR and BSR formats is the format of the storage
element. The former stores primitive data types (single, double, cuComplex, and
cuDoubleComplex) whereas the latter stores a two-dimensional square block of
primitive data types. The dimension of the square block is blockDim. The mxn sparse

matrix A is equivalent to a block sparse matrix A, with mb =2+ blockDim — 1 1,01 yows
_ blockDim
and nb=2% blockDim — 1 block columns. If m or n is not multiple of blockDim, then zeros
blockDim

are filled into A,,.

Ais represented in BSR format by the following parameters.

blockDim (integer) | Block dimension of matrix A.

mb (integer) | The number of block rows of a.

nb (integer) | The number of block columns of a.

nnzb (integer) | The number of nonzero blocks in the matrix.

bsrvala (pointer) [Points to the data array of length nnzb « blockDim?Z that holds all
elements of nonzero blocks of A. The block elements are stored in
either column-major order or row-major order.

bsrRowPtrA (pointer) | Points to the integer array of length mb+1 that holds indices into the
arrays bsrColIndA and bsrVala. The first mb entries of this array
contain the indices of the first nonzero block in the ith block row for
i=1,...,mb, while the last entry contains nnzb+bsrRowPtrA (0). In
general, bsrRowPtrA (0) is 0 or 1 for zero- and one-based indexing,
respectively.

bsrColIndA (pointer) | Points to the integer array of length nnzb that contains the column
indices of the corresponding blocks in array bsrvala.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 11

CUSPARSE Indexing and Data Formats

As with CSR format, (row, column) indices of BSR are stored in row-major order. The
index arrays are first sorted by row indices and then within the same row by column
indices.

For example, consider again the 4x5 matrix A.

1.0 4.0 0.0 0.0 0.0
0.0 2.0 3.0 0.0 0.0
5.0 0.0 0.0 7.0 8.0
0.0 0.0 9.0 0.0 6.0

If blockDim is equal to 2, then mb is 2, nb is 3, and matrix A is split into 2x3 block matrix
A, The dimension of A, is 4x6, slightly bigger than matrix A, so zeros are filled in the last
column of A;. The element-wise view of A, is this.

1.0 4.0 0.0 0.0 0.0 0.0
0.0 2.0 3.0 0.0 0.0 0.0
5.0 0.0 0.0 7.0 8.0 0.0
0.0 0.0 9.0 0.0 6.0 0.0

Based on zero-based indexing, the block-wise view of A, can be represented as follows.

:[Aoo Aot Aoz
b~ A0 A1 Agp

The basic element of BSR is a nonzero A;; block, one that contains at least one nonzero
element of A. Five of six blocks are nonzero in A,.

40l 2} Aor=[3 olwo=[g ol an[s olan-[e o

BSR format only stores the information of nonzero blocks, including block indices (i, /)
and values A;;. Also row indices are compressed in CSR format.

bsrValA = [Ago Ao1 Ao A1 Ar2]
bsrRowPtrA = [0 2 5]
bsrColindA = [0 1 0 1 2]

There are two ways to arrange the data element of block A;;: row-major order and
column-major order. Under column-major order, the physical storage of bsrvala is this.

bsrValA=[1 0 4 2 |0 300 [5000 |[0970 |8600]

Under row-major order, the physical storage of bsrvala is this.

bsrValA=[1 4 02 |0 030 [5000 |07 90 |8060]

Similarly, in BSR format with one-based indexing and column-major order, A can be
represented by the following.

=["‘11 A A13]
b~ Ay Ay Ay

bsrValA=[1 0 4 2 |0 300 |[5000 [0970 [8600]

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 12

CUSPARSE Indexing and Data Formats

bsrRowPtrA = [1 3 6]
bsrColindA=[1 2 1 2 3]

The general BSR format has two parameters, rowBlockDim and colBlockDim.
rowBlockDim is number of rows within a block and col1BlockDim is humber of
columns within a block. If rowBlockDim=colBlockDim, general BSR format is the
same as BSR format. If rowBlockDim=colBlockDim=1, general BSR format is the
same as CSR format. The conversion routine gebsr2gebsr is used to do conversion
among CSR, BSR and general BSR.

In the cuSPARSE Library, the storage format of blocks in BSR format can be column-
major or row-major, independently of the base index. However, if the developer uses
BSR format from the Math Kernel Library (MKL) and wants to directly interface with
the cuSPARSE Library, then cusparseDirection t CUSPARSE DIRECTION COLUMN
should be used if the base index is one; otherwise, cusparseDirection_t
CUSPARSE_DIRECTION_ROW should be used.

3.3.8. Extended BSR Format (BSRX)

BSRX is the same as the BSR format, but the array bsrRowPtrA is separated into two
parts. The first nonzero block of each row is still specified by the array bsrRowPtra,
which is the same as in BSR, but the position next to the last nonzero block of each row is
specified by the array bsrEndPtrA. Briefly, BSRX format is simply like a 4-vector variant
of BSR format.

Matrix A is represented in BSRX format by the following parameters.

blockDim (integer) | Block dimension of matrix a.

mb (integer) | The number of block rows of A.

nb (integer) | The number of block columns of a.

nnzb (integer) | number of nonzero blocks in the matrix A.

bsrvala (pointer) [Points to the data array of length nnzb « blockDim?2 that holds all the
elements of the nonzero blocks of A. The block elements are stored in
either column-major order or row-major order.

bsrRowPtrA (pointer) | Points to the integer array of length mb that holds indices into the arrays
bsrColIndA and bsrVala; bsrRowPtrA (i) is the position of the first
nonzero block of the ith block row in bsrColInda and bsrvalA.

bsrEndPtrA (pointer) | Points to the integer array of length mb that holds indices into the arrays
bsrColIndA and bsrVala; bsrRowPtrA (i) is the position next to the
last nonzero block of the ith block row in bsrColInda and bsrvala.

bsrColIndA (pointer) | Points to the integer array of length nnzb that contains the column
indices of the corresponding blocks in array bsrvala.

A simple conversion between BSR and BSRX can be done as follows. Suppose the
developer has a 2x3 block sparse matrix A, represented as shown.

Ago Aot Aoz]
Alg Aq A

Ap=

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 13

CUSPARSE Indexing and Data Formats

Assume it has this BSR format.

bsrValA of BSR = [Ago Aot Ao A1 Arz]
bsrRowPtrAof BSR = [0 2 5]
bsrColindAof BSR=[0 1 0 1 2]

The bsrRowPtrA of the BSRX format is simply the first two elements of the bsrRowPtrA
BSR format. The bsrEndPtrA of BSRX format is the last two elements of the
bsrRowPtra of BSR format.

bsrRowPtrA of BSRX = [0 2]
bsrEndPtrA of BSRX = [2 5]

The advantage of the BSRX format is that the developer can specify a submatrix in
the original BSR format by modifying bsrRowPtrA and bsrEndPtrA while keeping
bsrColIndA and bsrValA unchanged.

For example, to create another block matrix A= [8 A(?l 8] that is slightly different

from A, the developer can keep bsrColIndA and bsrVala, but reconstruct A by
properly setting of bsrRowPtrA and bsrEndPtrA. The following 4-vector characterizes
A

bsrValA of A = [Aoo Ao1 Ao A1r Ar2]
bsrColindAof A= [0 1 0 1 2]
bsrRowPtrA of A = [0 3]
bsrEndPtrAof A = [0 4]

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 14

Chapter 4.
CUSPARSE TYPES REFERENCE

4.1. Data types

The £loat, double, cuComplex, and cuDoubleComplex data types are supported. The
first two are standard C data types, while the last two are exported from cuComplex.h.

4.2. cusparseAction_t

This type indicates whether the operation is performed only on indices or on data and
indices.

Value Meaning

CUSPARSE_ACTION_ SYMBOLIC the operation is performed only on indices.

CUSPARSE_ACTION NUMERIC the operation is performed on data and indices.

4.3. cusparseDirection_t

This type indicates whether the elements of a dense matrix should be parsed by rows or
by columns (assuming column-major storage in memory of the dense matrix) in function
cusparse[S|DIC|Z]nnz. Besides storage format of blocks in BSR format is also controlled

by this type.

Value Meaning

CUSPARSE DIRECTION_ROW

the matrix should be parsed by rows.

CUSPARSE DIRECTION_ COLUMN

the matrix should be parsed by columns.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 15

CUSPARSE Types Reference

4.4, cusparseHandle_t

This is a pointer type to an opaque cuSPARSE context, which the user must initialize
by calling prior to calling cusparseCreate () any other library function. The handle
created and returned by cusparseCreate () must be passed to every cuSPARSE
function.

4.5. cusparseHybMat_t

This is a pointer type to an opaque structure holding the matrix in HYB format, which is
created by cusparseCreateHybMat and destroyed by cusparseDestroyHybMat.

4.5.1. cusparseHybPartition_t

This type indicates how to perform the partitioning of the matrix into regular (ELL) and
irregular (COO) parts of the HYB format.

The partitioning is performed during the conversion of the matrix from a dense or
sparse format into the HYB format and is governed by the following rules. When
CUSPARSE_HYB_PARTITION_ AUTO is selected, the cuSPARSE library automatically
decides how much data to put into the regular and irregular parts of the HYB format.
When CUSPARSE_HYB_PARTITION_ USER is selected, the width of the regular part of the
HYB format should be spec1f1ed by the caller. When CUSPARSE_HYB PARTITION MAX
is selected, the width of the regular part of the HYB format equals to the maximum
number of non-zero elements per row, in other words, the entire matrix is stored in the
regular part of the HYB format.

The default is to let the library automatically decide how to split the data.

Value Meaning

CUSPARSE_HYB PARTITION AUTO the automatic partitioning is selected (default).
CUSPARSE_HYB_PARTITION USER the user specified treshold is used.
CUSPARSE_HYB_PARTITION MAX the data is stored in ELL format.

4.6. cusparseMatDescr_t

This structure is used to describe the shape and properties of a matrix.

typedef struct {
cusparseMatrixType t MatrixType;
cusparseFillMode t FillMode;
cusparseDiagType t DiagType;
cusparselIndexBase t IndexBase;

} cusparseMatDescr t;

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 16

CUSPARSE Types Reference

4.6.1. cusparseDiagType_t

This type indicates if the matrix diagonal entries are unity. The diagonal elements are
always assumed to be present, but if CUSPARSE_DIAG_TYPE UNIT is passed to an API
routine, then the routine assumes that all diagonal entries are unity and will not read or
modify those entries. Note that in this case the routine assumes the diagonal entries are
equal to one, regardless of what those entries are actually set to in memory.

Value Meaning
CUSPARSE_DIAG _TYPE NON UNIT the matrix diagonal has non-unit elements.
CUSPARSE_DIAG TYPE UNIT the matrix diagonal has unit elements.

4.6.2. cusparseFillMode_t

This type indicates if the lower or upper part of a matrix is stored in sparse storage.

Value Meaning
CUSPARSE_FILL MODE_LOWER the lower triangular part is stored.
CUSPARSE_FILL MODE_UPPER the upper triangular part is stored.

4.6.3. cusparselndexBase_t

This type indicates if the base of the matrix indices is zero or one.

Value Meaning
CUSPARSE_INDEX BASE ZERO the base index is zero.
CUSPARSE_INDEX BASE_ONE the base index is one.

4.6.4. cusparseMatrixType_t

This type indicates the type of matrix stored in sparse storage. Notice that for symmetric,
Hermitian and triangular matrices only their lower or upper part is assumed to be
stored.

The whole idea of matrix type and fill mode is to keep minimum storage for symmetric/
Hermitian matrix, and also to take advantage of symmetric property on SpMV

(Sparse Matrix Vector multiplication). To compute y=A*x when A is symmetric and
only lower triangular part is stored, two steps are needed. First step is to compute

y= (L+D) *x and second step is to compute y=L*T*x + y. Given the fact that the
transpose operation y=LAT*x is 10x slower than non-transpose version y=L*x, the
symmetric property does not show up any performance gain. It is better for the user

to extend the symmetric matrix to a general matrix and apply y=A*x with matrix type
CUSPARSE_MATRIX TYPE GENERAL.

In general, SpMYV, preconditioners (incomplete Cholesky or incomplete LU) and
triangular solver are combined together in iterative solvers, for example PCG and

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 17

CUSPARSE Types Reference

GMRES. If the user always uses general matrix (instead of symmetric matrix), there
is no need to support other than general matrix in preconditioners. Therefore the
new routines, [bsr|csr]sv2 (triangular solver), [bsr|ecsr]ilu02 (incomplete
LU) and [bsr|esr]ic02 (incomplete Cholesky), only support matrix type
CUSPARSE_MATRIX TYPE GENERAL.

Value Meaning
CUSPARSE_MATRIX TYPE GENERAL the matrix is general.
CUSPARSE_MATRIX TYPE_SYMMETRIC the matrix is symmetric.
CUSPARSE_MATRIX TYPE HERMITIAN the matrix is Hermitian.
CUSPARSE_MATRIX TYPE TRIANGULAR the matrix is triangular.

4.7. cusparseOperation_t

This type indicates which operations need to be performed with the sparse matrix.

Value Meaning
CUSPARSE_OPERATION NON_TRANSPOSE the non-transpose operation is selected.
CUSPARSE_OPERATION TRANSPOSE the transpose operation is selected.

CUSPARSE_OPERATION CONJUGATE_TRANSPOSE
the conjugate transpose operation is selected.

4.8. cusparsePointerMode_t

This type indicates whether the scalar values are passed by reference on the host or
device. It is important to point out that if several scalar values are passed by reference
in the function call, all of them will conform to the same single pointer mode. The
pointer mode can be set and retrieved using cusparseSetPointerMode () and
cusparseGetPointerMode () routines, respectively.

Value Meaning
CUSPARSE_POINTER MODE HOST the scalars are passed by reference on the host.
CUSPARSE_POINTER_MODE_DEVICE the scalars are passed by reference on the device.

4.9. cusparseSolvePolicy_t

This type indicates whether level information is generated and used in esrsv2,
csric02, csrilu02, bsrsv2, bsric02 and bsrilu02.

Value Meaning

CUSPARSE_SOLVE POLICY NO LEVEL no level information is generated and used.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 18

CUSPARSE Types Reference

Value Meaning

CUSPARSE_SOLVE_POLICY USE_LEVEL generate and use level information.

4.10. cusparseSolveAnalysisinfo_t

This is a pointer type to an opaque structure holding the information collected in the
analysis phase of the solution of the sparse triangular linear system. It is expected to be
passed unchanged to the solution phase of the sparse triangular linear system.

4.11. cusparseSolveAnalysisinfo_t

This is a pointer type to an opaque structure holding the information collected in the
analysis phase of the solution of the sparse triangular linear system. It is expected to be
passed unchanged to the solution phase of the sparse triangular linear system.

4.12. csrsv2info_t

This is a pointer type to an opaque structure holding the information used in
csrsv2 bufferSize(), csrsv2_analysis(), and csrsv2_solve().

4.13. csricO2Info_t

This is a pointer type to an opaque structure holding the information used in
csric02 bufferSize(), csric02_analysis(), and csric02().

4.14. csriluO2Info_t

This is a pointer type to an opaque structure holding the information used in
csrilu02_ bufferSize(), csrilu02_analysis(), and esrilu02 ().

4.15. bsrsv2info t

This is a pointer type to an opaque structure holding the information used in
bsrsv2 bufferSize(), bsrsv2_analysis(), and bsrsv2_solve().

4.16. bsrsm2info_t

This is a pointer type to an opaque structure holding the information used in
bsrsm2 bufferSize(), bsrsm2_analysis(), and bsrsm2_ solve().

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 19

CUSPARSE Types Reference

4.17. bsricO2Info_t

This is a pointer type to an opaque structure holding the information used in
bsric02 bufferSize (), bsric02_analysis(), and bsric02().

4.18. bsrilu02Info_t

This is a pointer type to an opaque structure holding the information used in
bsrilu02 bufferSize(),bsrilu02_analysis(), and bsrilu02 ().

4.19. csrgemm2info_t

This is a pointer type to an opaque structure holding the information used in
csrgemm2 bufferSizeExt(), and csrgemm2 ().

4.20. cusparseStatus_t

This is a status type returned by the library functions and it can have the following
values.

CUSPARSE_STATUS_SUCCESS
The operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

The cuSPARSE library was not initialized. This is usually caused by the
lack of a prior call, an error in the CUDA Runtime API called by the
cuSPARSE routine, or an error in the hardware setup.

To correct: call cusparseCreate () prior to the function call; and
check that the hardware, an appropriate version of the driver, and the
CUSPARSE library are correctly installed.

CUSPARSE_STATUS ALLOC FAILED
Resource allocation failed inside the cuSPARSE library. This is usually
caused by a cudaMalloc () failure.

To correct: prior to the function call, deallocate previously allocated
memory as much as possible.

CUSPARSE_STATUS_INVALID VALUE
An unsupported value or parameter was passed to the function (a
negative vector size, for example).

To correct: ensure that all the parameters being passed have valid
values.

CUSPARSE_STATUS_ARCH MISMATCH
The function requires a feature absent from the device architecture;
usually caused by the lack of support for atomic operations or double
precision.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 20

CUSPARSE Types Reference

To correct: compile and run the application on a device with
appropriate compute capability, which is 1.1 for 32-bit atomic
operations and 1.3 for double precision.

CUSPARSE_STATUS_ MAPPING ERROR
An access to GPU memory space failed, which is usually caused by a
failure to bind a texture.

To correct: prior to the function call, unbind any previously bound
textures.

CUSPARSE_STATUS_EXECUTION_FAILED

The GPU program failed to execute. This is often caused by a launch
failure of the kernel on the GPU, which can be caused by multiple
reasons.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSPARSE library are correctly installed.

CUSPARSE STATUS_ INTERNAL ERROR

An internal cuSPARSE operation failed. This error is usually caused by a
cudaMemcpyAsync () failure.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSPARSE library are correctly installed. Also, check
that the memory passed as a parameter to the routine is not being
deallocated prior to the routine’s completion.

CUSPARSE_STATUS MATRIX TYPE NOT SUPPORTED
The matrix type is not supported by this function. This is usually caused
by passing an invalid matrix descriptor to the function.

To correct: check that the fields in cusparseMatDescr_t descraA
were set correctly.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 21

Chapter 5.
CUSPARSE HELPER FUNCTION REFERENCE

The cuSPARSE helper functions are described in this section.

5.1. cusparseCreate()

cusparseStatus_t
cusparseCreate (cusparseHandle t *handle)

This function initializes the cuSPARSE library and creates a handle on the cuSPARSE
context. It must be called before any other cuSPARSE API function is invoked. It
allocates hardware resources necessary for accessing the GPU.

Output

handle the pointer to the handle to the cuSPARSE context.

Status Returned

CUSPARSE_STATUS_SUCCESS the initialization succeeded.
CUSPARSE_STATUS_NOT INITIALIZED the CUDA Runtime initialization failed.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_ARCH MISMATCH the device compute capability (CC) is less than

1.1. The CC of at least 1.1 is required.

5.2. cusparseCreateSolveAnalysisinfo()

cusparseStatus t
cusparseCreateSolveAnalysisInfo (cusparseSolveAnalysisInfo t *info)

This function creates and initializes the solve and analysis structure to default values.
Input

info the pointer to the solve and analysis structure.

Status Returned

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 22

CUSPARSE Helper Function Reference

CUSPARSE STATUS_SUCCESS

the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

5.3. cusparseCreateHybMat()

cusparseStatus_t

cusparseCreateHybMat (cusparseHybMat t *hybA)

This function creates and initializes the hybA opaque data structure.

Input

hybA

the pointer to the hybrid format storage structure.

Status Returned

CUSPARSE STATUS_SUCCESS

the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

5.4. cusparseCreateMatDescr()

cusparseStatus_t

cusparseCreateMatDescr (cusparseMatDescr t *descrA)

This function initializes the matrix descriptor. It sets the fields MatrixType
and IndexBase to the default values CUSPARSE_MATRIX TYPE GENERAL and
CUSPARSE_INDEX BASE ZERO, respectively, while leaving other fields uninitialized.

Input

descrA

the pointer to the matrix descriptor.

Status Returned

CUSPARSE STATUS_SUCCESS

the descriptor was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

5.5. cusparseCreateSolveAnalysisinfo()

cusparseStatus_t

cusparseCreateSolveAnalysisInfo (cusparseSolveAnalysisInfo t *info)

This function creates and initializes the solve and analysis structure to default values.

Input

info

the pointer to the solve and analysis structure.

Status Returned

CUSPARSE STATUS_SUCCESS

the structure was initialized successfully.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 23

CUSPARSE Helper Function Reference

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

5.6. cusparseDestroy()

cusparseStatus_t

cusparseDestroy (cusparseHandle t handle)

This function releases CPU-side resources used by the cuSPARSE library. The release of
GPU-side resources may be deferred until the application shuts down.

Input

handle

the handle to the cuSPARSE context.

Status Returned

CUSPARSE_STATUS_SUCCESS

the shutdown succeeded.

CUSPARSE STATUS_NOT_ INITIALIZED

the library was not initialized.

5.7. cusparseDestroySolveAnalysisinfo()

cusparseStatus_t

cusparseDestroySolveAnalysisInfo (cusparseSolveAnalysisInfo t info)

This function destroys and releases any memory required by the structure.

Input

info

the solve and analysis structure.

Status Returened

CUSPARSE_STATUS_SUCCESS

the resources were released successfully.

5.8. cusparseDestroyHybMat()

cusparseStatus_t

cusparseDestroyHybMat (cusparseHybMat t hybA)

This function destroys and releases any memory required by the hyba structure.

Input

hybA

the hybrid format storage structure.

Status Returned

CUSPARSE_STATUS_SUCCESS

the resources were released successfully.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 24

CUSPARSE Helper Function Reference

5.9. cusparseDestroyMatDescr()

cusparseStatus_t
cusparseDestroyMatDescr (cusparseMatDescr t descrh)

This function releases the memory allocated for the matrix descriptor.

Input
descrA the matrix descriptor.
Status Returned
CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.10. cusparseDestroySolveAnalysisinfo()

cusparseStatus t
cusparseDestroySolveAnalysisInfo (cusparseSolveAnalysisInfo t info)

This function destroys and releases any memory required by the structure.

Input

info the solve and analysis structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.11. cusparseGetLevellnfo()

cusparseStatus_ t

cusparseGetLevelInfo (cusparseHandle t handle,
cusparseSolveAnalysisInfo t info,
int *nlevels,
int **levelPtr,
int **levelInd)

This function returns the number of levels and the assignment of rows into the levels
computed by either the csrsv_analysis, csrsm_analysis or hybsv_analysis routines.

Input

handle handle to the cuSPARSE library context.

info the pointer to the solve and analysis structure.
Output

nlevels number of levels.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 25

CUSPARSE Helper Function Reference

levelPtr integer array of nlevels+1 elements that contains
the start of every level and the end of the last
level plus one.

levelInd integer array of m (number of rows in the matrix)
elements that contains the row indices belonging
to every level.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library or the solve analysis structure was not
initialized.

5.12. cusparseGetMatDiagType()

cusparseDiagType t
cusparseGetMatDiagType (const cusparseMatDescr t descrA)

This function returns the DiagType field of the matrix descriptor descraA.
Input

descra the matrix descriptor.

Returned

One of the enumerated diagType types.

5.13. cusparseGetMatFillMode()

cusparseFillMode t
cusparseGetMatFillMode (const cusparseMatDescr t descrA)

This function returns the FillMode field of the matrix descriptor descraA.
Input

descrA the matrix descriptor.

Returned

One of the enumerated fillMode types.

5.14. cusparseGetMatindexBase()

cusparselndexBase t
cusparseGetMatIndexBase (const cusparseMatDescr t descrA)

This function returns the IndexBase field of the matrix descriptor descrA.
Input

descrA the matrix descriptor.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 26

CUSPARSE Helper Function Reference

Returned

One of the enumerated indexBase types.

5.15. cusparseGetMatType()

cusparseMatrixType t
cusparseGetMatType (const cusparseMatDescr t descrA)

This function returns the MatrixType field of the matrix descriptor descraA.
Input

descrA the matrix descriptor.

Returned

One of the enumerated matrix types.

5.16. cusparseGetPointerMode()

cusparseStatus_t
cusparseGetPointerMode (cusparseHandlet handle,
cusparsePointerMode t *mode)

This function obtains the pointer mode used by the cuSPARSE library. Please see the
section on the cusparsePointerMode_t type for more details.

Input

handle the handle to the cuSPARSE context.
Output

mode One of the enumerated pointer mode types.

Status Returned

CUSPARSE_STATUS_SUCCESS the pointer mode was returned successfully.

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.

5.17. cusparseGetVersion()

cusparseStatus_ t
cusparseGetVersion (cusparseHandle t handle, int *version)

This function returns the version number of the cuSPARSE library.
Input

handle the handle to the cuSPARSE context.

Output

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 27

CUSPARSE Helper Function Reference

version the version number of the library.

Status Returned

CUSPARSE_STATUS_SUCCESS the version was returned successfully.

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.

5.18. cusparseSetMatDiagType()

cusparseStatus_t
cusparseSetMatDiagType (cusparseMatDescr t descrA,
cusparseDiagType t diagType)

This function sets the DiagType field of the matrix descriptor descra.

Input

diagType One of the enumerated diagType types.
Output

descrA the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the field DiagType was set successfully.

CUSPARSE_STATUS_INVALID VALUE An invalid diagType parameter was passed.

5.19. cusparseSetMatFillMode()

cusparseStatus t
cusparseSetMatFillMode (cusparseMatDescr t descrA,
cusparseFillMode t fillMode)

This function sets the FillMode field of the matrix descriptor descra.

Input

£illMode One of the enumerated fillMode types.
Output

descrA the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the FillMode field was set successfully.

CUSPARSE_STATUS_INVALID VALUE An invalid £i11Mode parameter was passed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 28

CUSPARSE Helper Function Reference

5.20. cusparseSetMatindexBase()

cusparseStatus_t
cusparseSetMatIndexBase (cusparseMatDescr t descra,
cusparselndexBase t base)

This function sets the IndexBase field of the matrix descriptor descrA.

Input

base One of the enumerated indexBase types.
Output

descrA the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the IndexBase field was set successfully.

CUSPARSE_STATUS_INVALID VALUE An invalid base parameter was passed.

5.21. cusparseSetMatType()

cusparseStatus_ t
cusparseSetMatType (cusparseMatDescr t descrA, cusparseMatrixType t type)

This function sets the MatrixType field of the matrix descriptor descraA.

Input

type One of the enumerated matrix types.
Output

descrA the matrix descriptor.

Status Returned

CUSPARSE_STATUS_SUCCESS the MatrixType field was set successfully.

CUSPARSE_STATUS_INVALID VALUE An invalid type parameter was passed.

5.22. cusparseSetPointerMode()

cusparseStatus_t
cusparseSetPointerMode (cusparseHandle t handle,
cusparsePointerMode t mode)

This function sets the pointer mode used by the cuSPARSE library. The default is
for the values to be passed by reference on the host. Please see the section on the
cublasPointerMode_t type for more details.

Input

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 29

CUSPARSE Helper Function Reference

handle the handle to the cuSPARSE context.

mode One of the enumerated pointer mode types.

Status Returned

CUSPARSE_STATUS_SUCCESS the pointer mode was set successfully.

CUSPARSE_STATUS_INVALID VALUE the library was not initialized.

5.23. cusparseSetStream()

cusparseStatus_t
cusparseSetStream(cusparseHandle t handle, cudaStream t streamId)

This function sets the stream to be used by the cuSPARSE library to execute its routines.

Input
handle the handle to the cuSPARSE context.
streamId the stream to be used by the library.

Status Returned

CUSPARSE_STATUS_SUCCESS the stream was set successfully.

CUSPARSE_STATUS_INVALID VALUE the library was not initialized.

5.24. cusparseCreateCsrsv2info()

cusparseStatus_t
cusparseCreateCsrsv2Info (csrsv2Info t *info);

This function creates and initializes the solve and analysis structure of csrsv2 to default
values.

Input
info the pointer to the solve and analysis structure of
csrsv2.
Status Returned
CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.25. cusparseDestroyCsrsv2info()

cusparseStatus t
cusparseDestroyCsrsv2Info (csrsv2Info t info);

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 30

CUSPARSE Helper Function Reference

This function destroys and releases any memory required by the structure.

Input

info

the solve (csrsv2_solve) and analysis
(csrsv2_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS

the resources were released successfully.

5.26. cusparseCreateCsricO2Info()

cusparseStatus t

cusparseCreateEsricOZInfo (csric02Info_t *info);

This function creates and initializes the solve and analysis structure of incomplete

Cholesky to default values.
Input

info

the pointer to the solve and analysis structure of
incomplete Cholesky.

Status Returned

CUSPARSE STATUS_SUCCESS

the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

5.27. cusparseDestroyCsric02Info()

cusparseStatus t

cusparseDestroyCsric02Info (csric02Info_t info);

This function destroys and releases any memory required by the structure.

Input

info

the solve (csric02_solve) and analysis
(csric02_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS

the resources were released successfully.

5.28. cusparseCreateCsrilu02Info()

cusparseStatus_t

cusparseCreateCsrilu02Info(csrilu02Info t *info);

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 31

CUSPARSE Helper Function Reference

This function creates and initializes the solve and analysis structure of incomplete LU to

default values.
Input

info

the pointer to the solve and analysis structure of
incomplete LU.

Status Returned

CUSPARSE_STATUS_SUCCESS

the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

5.29. cusparseDestroyCsrilu02info()

cusparseStatus t

cusparseDestro?CsriluOZInfo (csrilu02Info_t info);

This function destroys and releases any memory required by the structure.

Input

info

the solve (csrilu02_solve) and analysis
(csrilu02_analysis) structure.

Status Returened

CUSPARSE STATUS_SUCCESS

the resources were released successfully.

5.30. cusparseCreateBsrsv2Info()

cusparseStatus_t

cusparseCreateBsrsv2Info (bsrsv2Info t *info);

This function creates and initializes the solve and analysis structure of bsrsv2 to default

values.
Input

info

the pointer to the solve and analysis structure of
bsrsv2.

Status Returned

CUSPARSE_STATUS_SUCCESS

the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 32

CUSPARSE Helper Function Reference

5.31. cusparseDestroyBsrsv2info()

cusparseStatus t

cusparseDestro?BsrstInfo (bsrsv2Info t info);

This function destroys and releases any memory required by the structure.

Input

info

the solve (bsrsv2_solve) and analysis
(bsrsv2_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS

the resources were released successfully.

5.32. cusparseCreateBsrsm2Info()

cusparseStatus_t

cusparseCreateBsrsm2Info (bsrsm2Info t *info);

This function creates and initializes the solve and analysis structure of bsrsm?2 to default

values.
Input

info

the pointer to the solve and analysis structure of
bsrsm2.

Status Returned

CUSPARSE STATUS_SUCCESS

the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

5.33. cusparseDestroyBsrsm2Info()

cusparseStatus_t

cusparseDestroyBsrsm2Info (bsrsm2Info t info);

This function destroys and releases any memory required by the structure.

Input

info

the solve (bsrsm2_solve) and analysis
(bsrsm2_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS

the resources were released successfully.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 33

CUSPARSE Helper Function Reference

5.34. cusparseCreateBsric02Info()

cusparseStatus t
cusparseCreateBsric02Info (bsric02Info t *info);

This function creates and initializes the solve and analysis structure of block incomplete
Cholesky to default values.

Input

info the pointer to the solve and analysis structure of
block incomplete Cholesky.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.35. cusparseDestroyBsric02Info()
cusparseStatus_t

cusparseDestroyBsric02Info (bsric02Info t info);

This function destroys and releases any memory required by the structure.

Input

info the solve (bsric02_solve) and analysis
(bsric02_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.36. cusparseCreateBsrilu02info()

cusparseStatus_t
cusparseCreateBsrilul02Info (bsrilu02Info t *info);

This function creates and initializes the solve and analysis structure of block incomplete
LU to default values.

Input
info the pointer to the solve and analysis structure of
block incomplete LU.
Status Returned

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 34

CUSPARSE Helper Function Reference

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.37. cusparseDestroyBsrilu02Info()

cusparseStatus_t
cusparseDestroyBsrilu02Info (bsrilu02Info t info);

This function destroys and releases any memory required by the structure.

Input

info the solve (bsrilu02_solve) and analysis
(bsrilu02_analysis) structure.

Status Returened

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

5.38. cusparseCreateCsrgemm2Iinfo()

cusparseStatus_t
cusparseCreateCsrgemm2Info (csrgemm2Info t *info);

This function creates and initializes analysis structure of general sparse matrix-matrix
multiplication.

Input

info the pointer to the analysis structure of general
sparse matrix-matrix multiplication.

Status Returned

CUSPARSE_STATUS_SUCCESS the structure was initialized successfully.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

5.39. cusparseDestroyCsrgemm2info()

cusparseStatus_t
cusparseDestroyCsrgemm2Info (csrgemm2Info t info);

This function destroys and releases any memory required by the structure.

Input

info opaque structure of csrgemm2.

Status Returened

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 35

CUSPARSE Helper Function Reference

CUSPARSE_STATUS_SUCCESS the resources were released successfully.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 36

Chapter 6.
CUSPARSE LEVEL 1 FUNCTION REFERENCE

This chapter describes sparse linear algebra functions that perform operations between
dense and sparse vectors.

6.1. cusparse<t>axpyi()

cusparseStatus t
cusparseSaxpyi (cusparseHandle t handle, int nnz,

const float *alpha,
const float *xVal, const int *xInd,
float *y, cusparselndexBase t idxBase)

cusparseStatus_t
cusparseDaxpyi (cusparseHandle t handle, int nnz,

const double *alpha,
const double *xVal, const int *xInd,
double *y, cusparselndexBase t idxBase)

cusparseStatus t
cusparseCaxpyi (cusparseHandle t handle, int nnz,

const cuComplex *alpha,
const cuComplex *xVal, const int *xInd,
cuComplex *y, cusparselIndexBase t idxBase)

cusparseStatus_t

cusparseZaxpyi (cusparseHandle t handle, int nnz,
const cuDoubleComplex *alpha,
const cuDoubleComplex *xVal, const int *xInd,
cuDoubleComplex *y, cusparselndexBase t idxBase)

This function multiplies the vector x in sparse format by the constant a and adds the
result to the vector y in dense format. This operation can be written as

y=y+axx
In other words,
for i=0 to nnz-1
y[xInd[i]-idxBase] = y[xInd[i]-idxBase] + alpha*xVal([i]

This function requires no extra storage. It is executed asynchronously with respect to the
host, and it may return control to the application on the host before the result is ready.

Input

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 37

cUSPARSE Level 1 Function Reference

handle handle to the cuSPARSE library context.
nnz number of elements in vector x.
alpha <type> scalar used for multiplication.
xVal <type> vector with nnz nonzero values of vector x.
xInd integer vector with nnz indices of the nonzero
values of vector x.
y <type> vector in dense format.
idxBase CUSPARSE_INDEX BASE_ZERO Or
CUSPARSE_INDEX BASE ONE.
Output
y <type> updated vector in dense format (that is
unchanged if nnz == 0).
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE the idxBase is neither

CUSPARSE_INDEX_BASE_ZERO nor
CUSPARSE_INDEX BASE_ONE.

CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

6.2. cusparse<t>doti()

cusparseStatus_ t
cusparseSdoti (cusparseHandle t handle, int nnz,

const float *xVal,
const int *xInd, const float Yy
float *resultDevHostPtr,

cusparselndexBase t idxBase)

cusparseStatus t
cusparseDdoti (cusparseHandle t handle, int nnz,

const double *xVal,
const int *xInd, const double “37,
double *resultDevHostPtr,

cusparselndexBase t idxBase)

cusparseStatus_t
cusparseCdoti (cusparseHandle t handle, int nnz,

const cuComplex *xVal,
const int *xInd, const cuComplex *y,
cuComplex *resultDevHostPtr,

cusparselndexBase t idxBase)

cusparseStatus_ t
cusparseZdoti (cusparseHandle t handle, int nnz, const

www.nvidia.com
CUSPARSE Library

cuDoubleComplex *xVal,

const int *xInd, const cuDoubleComplex *y,
cuDoubleComplex *resultDevHostPtr,
cusparselIndexBase t idxBase)

DU-06709-001_v7.5 | 38

cUSPARSE Level 1 Function Reference

This function returns the dot product of a vector x in sparse format and vector y in dense

format. This operation can be written as

In other words,

for i=0 to nnz-1

result=yTx

resultDevHostPtr += xVal[i]*y[xInd[i-idxBase]]

This function requires some temporary extra storage that is allocated internally. It
is executed asynchronously with respect to the host and may return control to the
application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
nnz number of elements in vector x.
xVal <type> vector with nnz nonzero values of vector x.
xInd integer vector with nnz indices of the nonzero
values of vector x.
y <type> vector in dense format.
resultDevHostPtr pointer to the location of the result in the device
or host memory.
idxBase CUSPARSE_INDEX BASE_ZERO Or
CUSPARSE_INDEX BASE ONE.
Output
resultDevHostPtr scalar result in the device or host memory (that is

zero if nnz == 0).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the reduction buffer could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

the idxBase is neither
CUSPARSE_INDEX BASE_ZERO nor
CUSPARSE_INDEX BASE ONE.

CUSPARSE_STATUS_ARCH_MISMATCH

the device does not support double precision.

CUSPARSE STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 39

cUSPARSE Level 1 Function Reference

6.3. cusparse<t>dotci()

cusparseStatus_t
cusparseCdotci (cusparseHandle t handle, int nnz,

const cuComplex *xVal,
const int *xInd, const cuComplex Y,
cuComplex *resultDevHostPtr, cusparselndexBase t

idxBase)
cusparseStatus_t
cusparsezdotci (cusparseHandle t handle, int nnz,
const cuDoubleComplex *xVal,
const int *xInd, const cuDoubleComplex *y,
cuDoubleComplex *resultDevHostPtr, cusparselIndexBase t
idxBase)

This function returns the dot product of a complex conjugate of vector x in sparse format
and vector y in dense format. This operation can be written as

result = xHy

In other words,

for i=0 to nnz-1
resultDevHostPtr += xVal[i]*y[xInd[i-idxBase]]

This function requires some temporary extra storage that is allocated internally. It
is executed asynchronously with respect to the host and may return control to the
application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
nnz number of elements in vector x.
xVal <type> vector with nnz nonzero values of vector x.
xInd integer vector with nnz indices of the nonzero
values of vector x.
y <type> vector in dense format.
resultDevHostPtr pointer to the location of the result in the device
or host memory.
idxBase CUSPARSE_INDEX BASE_ZERO Or
CUSPARSE_INDEX BASE_ONE.
Output
resultDevHostPtr scalar result in the device or host memory (that is
zero if nnz == 0).
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the reduction buffer could not be allocated.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 40

cUSPARSE Level 1 Function Reference

CUSPARSE_STATUS_INVALID VALUE the idxBase is neither
CUSPARSE_INDEX BASE_ZERO Nnor
CUSPARSE_INDEX BASE_ONE.

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

6.4. cusparse<t>gthr()

cusparseStatus_ t

cusparseSgthr (cusparseHandle t handle, int
const float Y,
float *xVal, const
cusparselndexBase t idxBase)

cusparseStatus_t

cusparseDgthr (cusparseHandle t handle, int
const double BN
double *xVal, const
cusparselndexBase t idxBase)

cusparseStatus t

cusparseCgthr (cusparseHandle t handle, int
const cuComplex Wy
cuComplex *xVal, const
cusparselIndexBase t idxBase)

cusparseStatus_t

cusparseZgthr (cusparseHandle t handle, int
const cuDoubleComplex *y,
cuDoubleComplex *xVal, const
cusparselndexBase t idxBase)

nnz,

int *xInd,

nnz,

int *xInd,

nnz,

int *xInd,

nnz,

int *xInd,

This function gathers the elements of the vector y listed in the index array xInd into the

data array xval.

This function requires no extra storage. It is executed asynchronously with respect to the
host and it may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
nnz number of elements in vector x.
y <type> vector in dense format (of
size2max (xInd) -idxBase+1).
xInd integer vector with nnz indices of the nonzero
values of vector x.
idxBase CUSPARSE_INDEX BASE_ZERO Or
CUSPARSE_INDEX BASE_ONE.
Output
xVal <type> vector with nnz nonzero values that were
gathered from vector y (that is unchanged if nnz
==)

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 41

cUSPARSE Level 1 Function Reference

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE the idxBase is neither

CUSPARSE_INDEX BASE_ ZERO nor
CUSPARSE_INDEX BASE ONE.

CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

6.5. cusparse<t>gthrz()

cusparseStatus t

cusparseSgthrz (cusparseHandle t handle, int nnz, float B
float *xVal, const int *xInd,
cusparselndexBase t idxBase)

cusparseStatus t

cusparseDgthrz (cusparseHandle t handle, int nnz, double BN
double *xVal, const int *xInd,
cusparselIndexBase t idxBase)

cusparseStatus_ t

cusparseCgthrz (cusparseHandle t handle, int nnz, cuComplex W,
cuComplex *xVal, const int *xInd,
cusparselndexBase t idxBase)

cusparseStatus_t

cusparseZgthrz (cusparseHandle t handle, int nnz, cuDoubleComplex *y,
cuDoubleComplex *xVal, const int *xInd,
cusparselIndexBase t idxBase)

This function gathers the elements of the vector y listed in the index array xInd into the
data array xval. Also, it zeros out the gathered elements in the vector y.

This function requires no extra storage. It is executed asynchronously with respect to the
host, and it may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
nnz number of elements in vector x.
y <type> vector in dense format (of
size2max (xInd) -idxBase+1).
xInd integer vector with nnz indices of the nonzero
values of vector x.
idxBase CUSPARSE_INDEX BASE_ZERO Or
CUSPARSE_INDEX BASE_ONE.
Output
xVal <type> vector with nnz nonzero values that were
gathered from vector y (that is unchanged if nnz
==)‘

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 42

cUSPARSE Level 1 Function Reference

y <type> vector in dense format with elements
indexed by xInd set to zero (it is unchanged if nnz

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE the idxBase is neither

CUSPARSE_INDEX BASE_ZERO nor
CUSPARSE_INDEX BASE_ ONE.

CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

6.6. cusparse<t>roti()

cusparseStatus_ t

cusparseSroti (cusparseHandle t handle, int nnz, float *xVal,

const int *xInd,
float *y, const float *c,

cusparselndexBase t idxBase)

cusparseStatus_t

const float *s,

cusparseDroti (cusparseHandle t handle, int nnz, double *xVal,

const int *xInd,
double *y, const double *c,

cusparselIndexBase t idxBase)

This function applies the Givens rotation matrix
c s
G= (-5 c)

to sparse x and dense y vectors. In other words,

for i=0 to nnz-1
y[xInd[i]-idxBase]

c * y[xInd[i]-idxBase]

const double *s,

- s*xVall[i]

x[1] = c * xVall[i] + s * y[xInd[i]-idxBase]
Input

handle handle to the cuSPARSE library context.

nnz number of elements in vector x.

xVal <type> vector with nnz nonzero values of vector x.

xInd integer vector with nnz indices of the nonzero
values of vector x.

y <type> vector in dense format.

c cosine element of the rotation matrix.

s sine element of the rotation matrix.

idxBase CUSPARSE_INDEX BASE_ZERO Or
CUSPARSE_INDEX BASE_ONE.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 43

cUSPARSE Level 1 Function Reference

Output
xVal <type> updated vector in sparse format (that is
unchanged if nnz == 0).
y <type> updated vector in dense format (that is

unchanged if nnz == 0).

Status Returned

CUSPARSE STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE

the idxBase is neither
CUSPARSE_INDEX BASE_ZERO nor
CUSPARSE_INDEX BASE_ONE.

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

6.7. cusparse<t>sctr()

cusparseStatus t

cusparseSsctr (cusparseHandle t handle, int nnz,

const float

const int *xInd,

cusparselIndexBase t idxBase)

cusparseStatus_t

cusparseDsctr (cusparseHandle t handle, int nnz,

const double

const int *xInd, double

cusparselndexBase t idxBase)

cusparseStatus_t

cusparseCsctr (cusparseHandle t handle, int nnz,

const cuComplex
const int *xInd,

*xVal,
*
Y
*xVal,
*
Yr
*xVal,
cuComplex “Yy

cusparselndexBase t idxBase)

cusparseStatus t

cusparseZsctr (cusparseHandle t handle, int nnz,
const cuDoubleComplex *xVal,

const int *xInd,

cuDoubleComplex *vy,

cusparselndexBase t idxBase)

This function scatters the elements of the vector x in sparse format into the vector y in
dense format. It modifies only the elements of y whose indices are listed in the array

xInd.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
nnz number of elements in vector x.
xVal <type> vector with nnz nonzero values of vector x.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 44

cUSPARSE Level 1 Function Reference

xInd integer vector with nnz indices of the nonzero
values of vector x.

y <type> dense vector (of size2max (xInd) -
idxBase+1).

idxBase CUSPARSE_INDEX BASE_ZERO Or

CUSPARSE_INDEX BASE_ ONE.

Output

y <type> vector with nnz nonzero values that were
scattered from vector x (that is unchanged if nnz

= 0)

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE the idxBase is neither

CUSPARSE_INDEX BASE_ ZERO nor
CUSPARSE_INDEX BASE ONE..

CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 45

Chapter 7.
CUSPARSE LEVEL 2 FUNCTION REFERENCE

This chapter describes the sparse linear algebra functions that perform operations
between sparse matrices and dense vectors.

In particular, the solution of sparse triangular linear systems is implemented in two
phases. First, during the analysis phase, the sparse triangular matrix is analyzed

to determine the dependencies between its elements by calling the appropriate
csrsv_analysis () function. The analysis is specific to the sparsity pattern of the given
matrix and to the selected cusparseOperation_t type. The information from the
analysis phase is stored in the parameter of type cusparseSolveAnalysisInfo_t that
has been initialized previously with a call to cusparseCreateSolveAnalysisInfo().

Second, during the solve phase, the given sparse triangular linear system is solved using
the information stored in the cusparseSolveAnalysisInfo_t parameter by calling
the appropriate esrsv_solve () function. The solve phase may be performed multiple
times with different right-hand sides, while the analysis phase needs to be performed
only once. This is especially useful when a sparse triangular linear system must be
solved for a set of different right-hand sides one at a time, while its coefficient matrix
remains the same.

Finally, once all the solves have completed, the opaque data structure pointed to
by the cusparseSolveAnalysisInfo_t parameter can be released by calling
cusparseDestroySolveAnalysisInfo (). For more information please refer to [3].

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 46

cUSPARSE Level 2 Function Reference

7.1. cusparse<t>bsrmv()

cusparseStatus_t
cusparseSbsrmv (cusparseHandle t handle, cusparseDirection t dir,
cusparseOperation t trans, int mb, int nb, int nnzb,
const float *alpha, const cusparseMatDescr t descr,
const float *bsrVal, const int *bsrRowPtr, const int *bsrCollInd,
int DblockDim, const float *x,
const float *beta, float *y)
cusparseStatus_t
cusparseDbsrmv (cusparseHandle t handle, cusparseDirection t dir,
cusparseOperation t trans, int mb, int nb, int nnzb,
const double *alpha, const cusparseMatDescr t descr,
const double *bsrVal, const int *bsrRowPtr, const int *bsrColInd,
int DblockDim, const double *x,
const double *beta, double *y)
cusparseStatus_t
cusparseCbsrmv (cusparseHandle t handle, cusparseDirection t dir,
cusparseOperation t trans, int mb, int nb, int nnzb,
const cuComplex *alpha, const cusparseMatDescr t descr,
const cuComplex *bsrVal, const int *bsrRowPtr, const int *bsrColInd,
int DblockDim, const cuComplex *x,
const cuComplex *beta, cuComplex *y)
cusparseStatus_t
cusparseZbsrmv (cusparseHandle t handle, cusparseDirection t dir,
cusparseOperation t trans, int mb, int nb, int nnzb,
const cuDoubleComplex *alpha, const cusparseMatDescr t descr,
const cuDoubleComplex *bsrVal, const int *bsrRowPtr, const int
*bsrColInd,
int DblockDim, const cuDoubleComplex *x,
const cuDoubleComplex *beta, cuDoubleComplex *y)

This function performs the matrix-vector operation

y=ax+op(A)«x+Bxy

where A is an (mb * blockDim) x (nb = blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrval, bsrRowPtr, and bsrColInd); x and y are vectors;
a and f are scalars; and
A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE
op(A) = AT if trans == CUSPARSE_OPERATION_TRANSPOSE
AP if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

Several comments on bsrmv ():
» Only CUSPARSE_OPERATION NON_ TRANSPOSE is supported, that is

y=axAxX+Bxy
» Only CUSPARSE_MATRIX TYPE_GENERAL is supported.

» The size of vector x should be (nb = blockDim) at least, and the size of vector
y should be (mb * blockDim) at least; otherwise, the kernel may return
CUSPARSE_STATUS_EXECUTION_ FAILED because of an out-of-bounds array.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 47

cUSPARSE Level 2 Function Reference

For example, suppose the user has a CSR format and wants to try bsrmv (), the
following code demonstrates how to use esr2bsr () conversion and bsrmv ()
multiplication in single precision.

// Suppose that A is m x n sparse matrix represented by CSR format,
// hx is a host vector of size n, and hy is also a host vector of size m.
// m and n are not multiple of blockDim.
// step 1l: transform CSR to BSR with column-major order
int base, nnz;
cusparseDirection t dirA = CUSPARSE DIRECTION COLUMN;
int mb = (m + blockDim-1)/blockDim;
int nb = (n + blockDim-1)/blockDim;
cudaMalloc ((void**) &§bsrRowPtrC, sizeof (int) * (mb+1));
cusparseXcsr2bsrNnz (handle, dirA, m, n,

descrA, csrRowPtrA, csrColIndA, blockDim,

descrC, bsrRowPtrC) ;
cudaMemcpy (&nnzb, bsrRowPtrC+mb, sizeof (int), cudaMemcpyDeviceToHost) ;
cudaMemcpy (&base, bsrRowPtrC, sizeof (int), cudaMemcpyDeviceToHost) ;
nnzb -= base;
cudaMalloc ((void**) &bsrColIndC, sizeof (int) *nnzb) ;
cudaMalloc ((void**) &bsrValC, sizeof (float)* (blockDim*blockDim) *nnzb) ;
cusparseScsr2bsr (handle, dirA, m, n,

descrA, csrValA, csrRowPtrA, csrColIndA, blockDim,

descrC, bsrValC, bsrRowPtrC, bsrColIndC);
// step 2: allocate vector x and vector y large enough for bsrmv
cudaMalloc ((void**) &x, sizeof (float) * (nb*blockDim)) ;
cudaMalloc ((void**) &y, sizeof (float)* (mb*blockDim)) ;
cudaMemcpy (x, hx, sizeof (float)*n, cudaMemcpyHostToDevice);
cudaMemcpy (y, hy, sizeof (float)*m, cudaMemcpyHostToDevice) ;
// step 3: perform bsrmv
cusparseSbsrmv (handle, dirA, transA, mb, nb, alpha, descrC, bsrValC, bsrRowPtrC,
bsrColIndC, blockDim, x, beta, y):

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ ROW Or
CUSPARSE_DIRECTION COLUMN.

trans the operation op(4). Only
CUSPARSE_OPERATION NON_TRANSPOSE is
supported.

mb number of block rows of matrix A.

nb number of block columns of matrix A.

nnzb number of nonzero blocks of matrix A.

alpha <type> scalar used for multiplication.

descr the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

bsrVal <type> array of nnz (= csrRowPtrA (mb) -
csrRowPtrA (0)) nonzero blocks of matrix A.

bsrRowPtr integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 48

cUSPARSE Level 2 Function Reference

bsrColInd integer array of nnz (= csrRowPtrA (mb) -
csrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

x <type> vector of nb « blockDim elements.

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

y <type> vector of mb « blockDim elements.

Output
y <type> updated vector.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were

passed (m,n,nnz<0, trans !=
CUSPARSE_OPERATION NON_TRANSPOSE,
blockDim <1, dir is not row-major or column-
major, or IndexBase of descr is not base-0 or
base-1).

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 49

cUSPARSE Level 2 Function Reference

7.2. cusparse<t>bsrxmv()

cusparseStatus t

cusparseSbsrxmv (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dir,
cusparseOperation t trans,
int sizeOfMask,

int mb,

int nb,

int nnzb,

const float *alpha,

const cusparseMatDescr t descr,
const float *bsrVal,

const int *bsrMaskPtr,
const int *bsrRowPtr,
const int *bsrEndPtr,
const int *bsrColInd,

int blockDim,

const float *x,

const float *beta,

float *y)

cusparseDbsrxmv (cusparseHandle t handle,

cusparseStatus t

cusparseDirection t dir,
cusparseOperation t trans,
int sizeOfMask,

int mb,

int nb,

int nnzb,

const double *alpha,

const cusparseMatDescr t descr,
const double *bsrVal,
const int *bsrMaskPtr,
const int *bsrRowPtr,
const int *bsrEndPtr,
const int *bsrColInd,

int blockDim,

const double *x,

const double *beta,

double *y)

cusparsersrme(cusparseHandle_t handle,

cusparseStatus t

cusparseDirection t dir,
cusparseOperation t trans,
int sizeOfMask,

int mb,

int nb,

int nnzb,

const cuComplex *alpha,
const cusparseMatDescr t descr,
const cuComplex *bsrVal,
const int *bsrMaskPtr,
const int *bsrRowPtr,
const int *bsrEndPtr,
const int *bsrColInd,

int blockDim,

const cuComplex *x,

const cuComplex *beta,
cuComplex *vy)

cusparsestrme(cusparseHandle t handle,

cusparseDirection t dir,
cusparseOperation t trans,
int sizeOfMask,

-t mb .

cUSPARSE Level 2 Function Reference

This function performs a bsrmv and a mask operation

y(mask) = (a « op(4) « x + B « y)(mask)

where A is an (mb * blockDim) x (nb * blockDim) sparse matrix that is defined in BSRX
storage format by the four arrays bsrvVal, bsrRowPtr, bsrEndPtr, and bsrColInd); x
and y are vectors; a and f are scalars; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4) = AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

The mask operation is defined by array bsrMaskPtr which contains updated block row
indices of y. If row i is not specified in bsrMaskPtr, then bsrxmv () does not touch row
block i of A and y.

For example, consider the 2 x 3 block matrix A:

A1 A 0]
Ay Ay A

and its one-based BSR format (three vector form) is

bsrVal = [A11 A1y Ay A Azl
bsrRowPtr = [1 3 6]
bsrColind=[1 2 1 2 3]

Suppose we want to do the following bsrmv operation on a matrix A which is slightly
different from A.

Ys

[Y2

We don’t need to create another BSR format for the new matrix 4, all that we should
do is to keep bsrval and bsrColInd unchanged, but modify bsrRowPtr and add an

additional array bsrEndPtr which points to the last nonzero elements per row of A plus
1.

Y
beta y2

+

:=alpha*(l\= [g Acz)z 8])*

X1
X2
X3

For example, the following bsrRowPtr and bsrEndPtr can represent matrix A:

bsrRowPtr = [1 4]
bsrEndPtr = [1 5]

Further we can use a mask operator (specified by array bsrMaskPtr) to update
particular block row indices of y only because y, is never changed. In this case,

bsrMaskPtr = [2] and sizeOfMask=1.

The mask operator is equivalent to the following operation:
? !
[y 2

X2 | + beta «
X

? 0?7 7 ?
:=alpha*[o Ay O]* y2]

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 51

cUSPARSE Level 2 Function Reference

If a block row is not present in the bsrMaskPtr, then no calculation is performed on that
row, and the corresponding value in y is unmodified. The question mark "?" is used to
inidcate row blocks not in bsrMaskPtr.

In this case, first row block is not present in bsrMaskPtr, so bsrRowPtr[0] and
bsrEndPtr[0] are not touched also.

bsrRowPtr = [? 4]
bsrEndPtr = [? 5]

A Couple of comments on bsrxmv () :

» Only CUSPARSE_OPERATION NON_ TRANSPOSE and
CUSPARSE MATRIX TYPE GENERAL are supported.

» Parameters bsrMaskPtr, bsrRowPtr, bsrEndPtr and bsrColInd are consistent
with base index, either one-based or zero-based. The above example is one-based.

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ ROW OF
CUSPARSE_DIRECTION_ COLUMN.

trans the operation op(4). Only
CUSPARSE_OPERATION NON_TRANSPOSE is
supported.

sizeOfMask number of updated block rows of y.

mb number of block rows of matrix A.

nb number of block columns of matrix A.

nnzb number of nonzero blocks of matrix A.

alpha <type> scalar used for multiplication.

descr the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

bsrVal <type> array of nnz nonzero blocks of matrix A.

bsrMaskPtr integer array of sizeOfMask elements that
contains the indices corresponding to updated
block rows.

bsrRowPtr integer array of mb elements that contains the
start of every block row.

bsrEndPtr integer array of mb elements that contains the end
of the every block row plus one.

bsrColInd integer array of nnzb column indices of the
nonzero blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 52

cUSPARSE Level 2 Function Reference

x <type> vector of nb « blockDim elements.

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

y <type> vector of mb « blockDim elements.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were

passed (m,n,nnz<0, trans !'=
CUSPARSE_OPERATION NON_TRANSPOSE,
blockDim <1, dir is not row-major or column-
major, or IndexBase of descr is not base-0 or

base-1).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION_ FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 53

cUSPARSE Level 2 Function Reference

7.3. cusparse<t>csrmv()

cusparseStatus_t
cusparseScsrmv (cusparseHandle t handle, cusparseOperation t transA,

int m, int n, int nnz, const float *alpha,
const cusparseMatDescr t descrA,

const float *csrValA,

const int *csrRowPtrA, const int *csrColIndA,

const float *x, const float *beta,
float *vy)

cusparseStatus t
cusparseDcsrmv (cusparseHandle t handle, cusparseOperation t transA,

int m, int n, int nnz, const double *alpha,
const cusparseMatDescr t descrA,

const double *csrValA,

const int *csrRowPtrA, const int *csrColIndA,

const double *x, const double *beta,
double *y)

cusparseStatus_t
cusparseCcsrmv (cusparseHandle t handle, cusparseOperation t transA,

int m, int n, int nnz, const cuComplex *alpha,
const cusparseMatDescr t descrA,

const cuComplex *csrValA,

const int *csrRowPtrA, const int *csrColIndA,

const cuComplex *x, const cuComplex *beta,
cuComplex *y)

cusparseStatus_ t

cusparsezZcsrmv (cusparseHandle t handle, cusparseOperation t transA,
int m, int n, int nnz, const cuDoubleComplex *alpha,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA, const int *csrCollIndA,
const cuDoubleComplex *x, const cuDoubleComplex *beta,
cuDoubleComplex *vy)

This function performs the matrix-vector operation

y=ax«op(A)«x+Bxy

A is an mxn sparse matrix that is defined in CSR storage format by the three arrays
csrVald, csrRowPtrA, and esrColIndA); x and y are vectors; a and [are scalars; and
A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4) = AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

When using the (conjugate) transpose of a general matrix or a Hermitian/symmetric
matrix, this routine may produce slightly different results during different runs with
the same input parameters. For these matrix types it uses atomic operations to compute
the final result, consequently many threads may be adding floating point numbers to
the same memory location without any specific ordering, which may produce slightly
different results for each run.

If exactly the same output is required for any input when multiplying by the transpose
of a general matrix, the following procedure can be used:

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 54

cUSPARSE Level 2 Function Reference

1. Convert the matrix from CSR to CSC format using one of the esr2esc () functions.
Notice that by interchanging the rows and columns of the result you are implicitly
transposing the matrix.

2. Call the esrmv () function with the cusparseOperation_t parameter set to
CUSPARSE_OPERATION NON_TRANSPOSE and with the interchanged rows and columns
of the matrix stored in CSC format. This (implicitly) multiplies the vector by the
transpose of the matrix in the original CSR format.

This function requires no extra storage for the general matrices when operation
CUSPARSE_OPERATION NON_TRANSPOSE is selected. It requires some extra storage for
Herm1t1an/symmetr1c matrices and for the general matrices when an operation different
than CUSPARSE_OPERATION NON_TRANSPOSE is selected. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.

Input

handle handle to the cuSPARSE library context.

trans the operation op(A).

m number of rows of matrix A.

n number of columns of matrix A.

nnz number of nonzero elements of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL,
CUSPARSE_MATRIX TYPE SYMMETRIC,
and CUSPARSE_MATRIX TYPE HERMITIAN.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix a.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

x <type> vector of n elements if op(4)= A, and m
elements if op(4) = AT or op(4) = AH

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

y <type> vector of m elements if op(4)=A4, and n
elements if op(4) = AT or op(4) = AH

Output
y <type> updated vector.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 55

cUSPARSE Level 2 Function Reference

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,n,nnz<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision

(compute capability (c.c.) >= 1.3 required),
symmetric/Hermitian matrix (c.c. >= 1.2
required), or transpose operation (c.c. >= 1.1
required).

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 56

/.4. cusparse<t>gemvi()

cusparseStatus_t

cUSPARSE Level 2 Function Reference

cusparseSgemvi (cusparseHandle t handle, cusparseOperation t transA,

int m, int n, const float

const float *A,

int lda, int nnz,

const float

const int

const float

float

cusparselndexBase t

void
cusparseStatus_t

*alpha,

*X,
*xInd,
*beta,
*Y,
idxBase,
*pBuffer)

cusparseDgemvi (cusparseHandle t handle, cusparseOperation t transA,

int m, int n, const double

const double *A,

int lda, int nnz,

const double

const int

const double

double

cusparselndexBase t

void
cusparseStatus t

*alpha,

*X,
*xInd,
*beta,
*Y,
idxBase,
*pBuffer)

cusparseCgemvi (cusparseHandle t handle, cusparseOperation t transA,

int m, int n, const cuComplex

const cuComplex *A,
int lda, int nnz,
const cuComplex
const int
const cuComplex
cuComplex
cusparselndexBase t
void
cusparseStatus t

*alpha,

*X,
*xInd,
*beta,
*Y,
idxBase,
*pBuffer)

cusparseCgemvi (cusparseHandle t handle, cusparseOperation t transA,

int m, int n, const cuDoubleComplex

*alpha,

const cuDoubleComplex *A,

int lda, int nnz,

const cuDoubleComplex

const int

const cuDoubleComplex

cuDoubleComplex
cusparselndexBase t
void

*X,
*xInd,
*beta,
*Y,
idxBase,
*pBuffer)

This function performs the matrix-vector operation

y=ax0op(A)«Xx+Bxy

Ais an mxn dense matrix and a sparse vector x that is defined in a sparse storage format
by the two arrays xVal, xInd of length nnz, and y is a dense vector; a and 3 are scalars;

and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(A)={ AT

if trans == CUSPARSE_OPERATION_TRANSPOSE

A if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 57

cUSPARSE Level 2 Function Reference

To simplify the implementation, we have not (yet) optimized the transpose multiple
case. We recommend the following for users interested in this case.

1. Convert the matrix from CSR to CSC format using one of the esr2esc () functions.
Notice that by interchanging the rows and columns of the result you are implicitly
transposing the matrix.

2. Call the gemvi () function with the cusparseOperation_t parameter set to
CUSPARSE_OPERATION NON_TRANSPOSE and with the interchanged rows and columns
of the matrix stored in CSC format. This (implicitly) multiplies the vector by the
transpose of the matrix in the original CSR format.

This function requires no extra storage for the general matrices when operation
CUSPARSE_OPERATION NON_ TRANSPOSE is selected. It requires some extra storage for
Herm1t1an/syrnmetr1c matrices and for the general matrices when an operation different
than CUSPARSE OPERATION NON_ TRANSPOSE is selected. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.

Input
handle handle to the cuSPARSE library context.
trans the operation op(A).
m number of rows of matrix A.
n number of columns of matrix a.
alpha <type> scalar used for multiplication.
A the pointer to dense matrix A.
lda size of the leading dimension of A.
nnz number of nonzero elements of vector x.
x <type> sparse vector of nnz elements of size n if
op(4) = 4, and size m if op(4)= AT or op(4) = A"
xInd Indices of non-zero values in x
beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.
y <type> dense vector of m elements if op(4)= A, and
n elements if op(4) = AT or op(4) = At
idxBase 0 or 1, for 0 based or 1 based indexing,
respectively
pBuffer working space buffer, of size given by
Xgemvi_getBufferSize ()
Output
y <type> updated dense vector.
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 58

cUSPARSE Level 2 Function Reference

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m,n,nnz<0).

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision
(compute capability (c.c.) >= 1.3 required),
symmetric/Hermitian matrix (c.c. >= 1.2
required), or transpose operation (c.c. >= 1.1
required).

CUSPARSE_STATUS INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT SUPPORTED

the matrix type is not supported.

7.5. cusparse<t>gemvi_bufferSize()

cusparseStatus t

cusparseSgemvi:bufferSize(cusparseHandle_t handle,
cusparseOperation t transa,

int
int
int
int

m,
n,
nnz,

cusparseStatus t

*pBufferSize)

cusparseDgemvi:bufferSize(cusparseHandle_t handle,
cusparseOperation t transa,

int
int
int
int

m,
n,
nnz,

cusparseStatus t

*pBufferSize)

cusparsngemvi:bufferSize(cusparseHandle_t handle,
cusparseOperation t transa,

int
int
int
int

m,
n,
nnz,

cusparseStatus_t

*pBufferSize)

cusparseZgemvi bufferSize (cusparseHandle t handle,
cusparseOperation t transA,

int
int
int
int

m,
n,
nnz,

*pBufferSize)

This function returns size of buffer used in gemvi ()

Aisan (m)x(n) dense matrix.

if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

A

op(4)= AITJ if trans == CUSPARSE_OPERATION_TRANSPOSE
A

Input

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 59

cUSPARSE Level 2 Function Reference

handle handle to the cuSPARSE library context.

transA the operation op (2) .

m number of rows of matrix A.

n number of columns of matrix ¥.

nnz number of nonzero entries of vector x multiplying
A.

Output

pBufferSize number of elements needed the buffer used in

gemvi ().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m, n, nnz<=0)

CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_ TYPE_NOT_ SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 60

cUSPARSE Level 2 Function Reference

7.6. cusparse<t>bsrsv2_bufferSize()

cusparseStatus t

cusparseSbsrsv2 bufferSize (cusparseHandle t handle,

cusparseStatus t

cusparseDirection t dirA,
cusparseOperation t transAh,
int mb, -

int nnzb,

const cusparseMatDescr t descrA,
float *bsrvVala, N
const int *bsrRowPtrA,
const int *bsrColIndA,

int blockDim,

bsrsv2Info t info,

int *pBufferSizelInBytes);

cusparseDbsrsv2 bufferSize (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,
cusparseOperation t transA,
int mb, -

int nnzb,

const cusparseMatDescr t descrA,
double *bsrValA,

const int *bsrRowPtrA,
const int *bsrColIndA,

int blockDim,

bsrsv2Info t info,

int *pBufferSizelInBytes);

cusparseCbsrsv2 bufferSize (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,
cusparseOperation t transa,
int mb,

int nnzb,

const cusparseMatDescr t descrA,
cuComplex *bsrValA,

const int *bsrRowPtrA,
const int *bsrColIndA,

int blockDim,

bsrsv2Info t info,

int *pBufferSizeInBytes);

cusparseZbsrsv2 bufferSize (cusparseHandle t handle,

www.nvidia.com
CUSPARSE Library

cusparseDirection t dirA,
cusparseOperation t transA,
int mb,

int nnzb,

const cusparseMatDescr t descrA,
cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,

int blockDim,

bsrsv2Info t info,

int *pBufferSizelInBytes);

DU-06709-001_v7.5 | 61

cUSPARSE Level 2 Function Reference

This function returns size of the buffer used in bsrsv2, a new sparse triangular linear
system op (A) *y =a x.

Aisan (mb*blockDim)x (mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrvValAa, bsrRowPtrA, and bsrColIndA); x and y are the
right-hand-side and the solution vectors; a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4)= AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

Although there are six combinations in terms of parameter trans and the upper (lower)
triangular part of A, bsrsv2_bufferSize () returns the maximum size buffer among
these combinations. The buffer size depends on the dimensions mb, blockDim, and

the number of nonzero blocks of the matrix nnzb. If the user changes the matrix, it is
necessary to call bsrsv2_bufferSize () again to have the correct buffer size; otherwise
a segmentation fault may occur.

Input

handle handle to the cuSPARSE library context.

dira storage format of blocks, either
CUSPARSE_DIRECTION ROW Or
CUSPARSE_DIRECTION COLUMN.

transA the operation op(A).

mb number of block rows of matrix A.

nnzb number of nonzero blocks of matrix a.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE UNIT and
CUSPARSE_DIAG_TYPE NON_UNIT.

bsrVala <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix a.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A; must be larger
than zero.

Output

info record of internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in the
bsrsv2_analysis() and bsrsv2_solve().

Status Returned

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 62

cUSPARSE Level 2 Function Reference

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (mb, nnzb<=0),
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 63

cUSPARSE Level 2 Function Reference

7.7. cusparse<t>bsrsv2_analysis()

cusparseStatus t

cusparseSbsrsv2 analysis (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,
cusparseOperation t transA,
int mb,

int nnzb,

const cusparseMatDescr t descrA,
const float *bsrValAa,

const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsrsv2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseDbsrsv2 analysis (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,
cusparseOperation t transA,
int mb,

int nnzb,

const cusparseMatDescr t descrA,
const double *bsrValA,

const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsrsv2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseCbsrsv2 analysis (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,
cusparseOperation t transA,
int mb,

int nnzb,

const cusparseMatDescr t descrA,
const cuComplex *bsrValA,
const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsrsv2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseZbsrsv2 analysis (cusparseHandle t handle,

CUSPARSE Library

cusparseDirection t dirA,
cusparseOperation t transA,

int mb,

int nnzb,

const cusparseMatDescr t descrA,
const cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsrsv2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

DU-06709-001_v7.5 | 64

cUSPARSE Level 2 Function Reference

This function performs the analysis phase of bsrsv2, a new sparse triangular linear
system op (A) *y =a x.

Aisan (mb*blockDim)x (mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrvValAa, bsrRowPtrA, and bsrColIndA); x and y are the
right-hand side and the solution vectors; a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4)= AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

The block of BSR format is of size blockDim*blockDim, stored as column-

major or row-major as determined by parameter dira, which is either

CUSPARSE DIRECTION_ COLUMN or CUSPARSE DIRECTION_ ROW. The matrix type must
be CUSPARSE_MATRIX TYPE GENERAL, and the fill mode and diagonal type are ignored.

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a buffer size returned by bsrsv2_bufferSize (). The address of
pBuffer must be multiple of 128 bytes. If it is not, CUSPARSE_STATUS_INVALID VALUE
is returned.

Function bsrsv2_analysis () reports a structural zero and computes level
information, which stored in the opaque structure info. The level information can
extract more parallelism for a triangular solver. However bsrsv2_solve () can be done
without level information. To disable level information, the user needs to specity the
policy of the triangular solver as CUSPARSE_SOLVE_POLICY NO_LEVEL.

Function bsrsv2_analysis () always reports the first structural zero, even when
parameter policy is CUSPARSE_SOLVE_POLICY NO LEVEL. No structural zero is
reported if CUSPARSE_DIAG TYPE UNIT is specified, even if block A (j,j) is missing
for some j. The user needs to call cusparseXbsrsv2_zeroPivot () to know where the
structural zero is.

It is the user's choice whether to call bsrsv2_solve () if bsrsv2_analysis () reports
a structural zero. In this case, the user can still call bsrsv2_solve (), which will return
a numerical zero at the same position as a structural zero. However the result x is
meaningless.

Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ ROW Or
CUSPARSE_DIRECTION_ COLUMN.

transA the operation op(A).

mb number of block rows of matrix A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE _MATRIX TYPE GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG TYPE UNIT and
CUSPARSE_DIAG TYPE NON_UNIT.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 65

cUSPARSE Level 2 Function Reference

bsrvalaA <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix a.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

info structure initialized using
cusparseCreateBsrsv2Info ().

policy the supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE POLICY USE_LEVEL.

pBuffer buffer allocated by the user, the size is return by
bsrsv2 bufferSize().

Output
info structure filled with information collected during

the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (mb, nnzb<=0).

CUSPARSE STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 66

cUSPARSE Level 2 Function Reference

7.8. cusparse<t>bsrsv2_solve()

cusparseStatus t
cusparseSbsrsv2 solve (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transa,
int mb,
int nnzb,
const float *alpha,
const cusparseMatDescr t descra,
const float *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrsv2Info t info,
const float *x,
float *y,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t
cusparseDbsrsv2 solve (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transa,
int mb,
int nnzb,
const double *alpha,
const cusparseMatDescr t descra,
const double *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrsv2Info t info,
const double *x,
double *y,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t
cusparseCbsrsv2 solve (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transa,
int mb,
int nnzb,
const cuComplex *alpha,
const cusparseMatDescr t descrA,
const cuComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrsv2Info t info,
const cuComplex *x,
cuComplex *vy,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t
cusparseZbsrsv2 solve (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transa,
int mb,
int nnzb,
const cuDoubleComplex *alpha,
const cusparseMatDescr t descrA,
~anat c11D01h]l eComp] o *ha+alh

cUSPARSE Level 2 Function Reference

This function performs the solve phase of bsrsv2, a new sparse triangular linear system
op (A) *y =ax.

Aisan (mb*blockDim)x (mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrvValAa, bsrRowPtrA, and bsrColIndA); x and y are the
right-hand-side and the solution vectors; a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE
op(A) = AT if trans == CUSPARSE_OPERATION_TRANSPOSE

AP if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

The block in BSR format is of size blockDim*blockDim, stored as column-

major or row-major as determined by parameter dira, which is either

CUSPARSE DIRECTION_ COLUMN or CUSPARSE DIRECTION_ ROW. The matrix type must
be CUSPARSE_MATRIX TYPE GENERAL, and the fill mode and diagonal type are ignored.
Function bsrsv02_solve () can support an arbitrary blockDim.

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires a buffer size returned by bsrsv2_bufferSize (). The address of
pBuffer must be multiple of 128 bytes. If it is not, CUSPARSE_STATUS_INVALID VALUE
is returned.

Although bsrsv2_solve () can be done without level information, the user

still needs to be aware of consistency. If bsrsv2_analysis () is called with

policy CUSPARSE_SOLVE_POLICY USE LEVEL, bsrsv2_solve () can be run

with or without levels. On the other hand if bsrsv2_analysis () is called

with CUSPARSE_SOLVE_POLICY NO_LEVEL, bsrsv2_solve () can only accept
CUSPARSE_SOLVE_POLICY NO_LEVEL; otherwise, CUSPARSE_STATUS_INVALID VALUE
is returned.

The level information may not improve the performance, but may spend extra

time doing analysis. For example, a tridiagonal matrix has no parallelism.

In this case, CUSPARSE_SOLVE_POLICY NO_LEVEL performs better than
CUSPARSE_SOLVE_ POLICY USE LEVEL. If the user has an iterative solver, the best
approach is to do bsrsv2_analysis () with CUSPARSE SOLVE POLICY USE LEVEL
once. Then do bsrsv2_solve () with CUSPARSE SOLVE_POLICY NO_LEVEL in the first
run, and with CUSPARSE_SOLVE_POLICY USE LEVEL in \ the second run, and pick the
fastest one to perform the remaining iterations.

Function bsrsv02_solve () has the same behavior as csrsv02_solve (). That
is, bsr2csr (bsrsv02 (A)) = csrsv02 (bsr2csr (A)). The numerical zero of
csrsv02_solve () means there exists some zero A(j, j). The numerical zero of
bsrsv02_solve () means there exists some block A(j,j) that is not invertible.

Function bsrsv2_solve () reports the first numerical zero, including a
structural zero. No numerical zero is reported if CUSPARSE DIAG_TYPE UNIT
is specified, even if A (j, j) is not invertible for some j. The user needs to call
cusparseXbsrsv2_zeroPivot () to know where the numerical zero is.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 68

cUSPARSE Level 2 Function Reference

For example, suppose L is a lower triangular matrix with unit diagonal, then the
following code solves L*y=x by level information.

// Suppose that L is m x m sparse matrix represented by BSR format,
// The number of block rows/columns is mb, and

// the number of nonzero blocks is nnzb.

// L is lower triangular with unit diagonal.

// Assumption:

// - dimension of matrix L is m(=mb*blockDim),

// - matrix L has nnz (=nnzb*blockDim*blockDim) nonzero elements,

// - handle is already created by cusparseCreate(),

1 = (d_bsrRowPtr, d bsrColInd, d bsrVal) is BSR of L on device memory,
// - d_x is right hand side vector on device memory.

// - d y is solution vector on device memory.

// - d x and d_y are of size m.

cusparseMatDescr t descr = 0;

bsrsv2Info t info = 0;

int pBufferSize;

void *pBuffer = 0;

int structural zero;

int numerical zero;

const double alpha = 1.;

const cusparseSolvePolicy t policy = CUSPARSE SOLVE POLICY USE LEVEL;
const cusparseOperation t trans = CUSPARSE OPERATION NON TRANSPOSE;
const cusparseDirection t dir = CUSPARSE DIRECTION COLUMN;

// step 1l: create a descriptor which contains
// - matrix L is base-1

// - matrix L is lower triangular
// - matrix L has unit diagonal, specified by parameter CUSPARSE DIAG TYPE UNIT
// (L may not have all diagonal elements.)

cusparseCreateMatDescr (&descr) ;
cusparseSetMatIndexBase (descr, CUSPARSE INDEX BASE ONE) ;
cusparseSetMatFillMode (descr, CUSPARSE FILL MODE LOWER) ;
cusparseSetMatDiagType (descr, CUSPARSE DIAG TYPE UNIT) ;

// step 2: create a empty info structure
cusparseCreateBsrsv2Info (&info) ;

// step 3: query how much memory used in bsrsv2, and allocate the buffer
cusparseDbsrsv2 bufferSize (handle, dir, trans, mb, nnzb, descr,
d bsrVal, d bsrRowPtr, d bsrColInd, blockDim, &pBufferSize);

// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.
cudaMalloc ((void**) &pBuffer, pBufferSize);

// step 4: perform analysis

cusparseDbsrsv2 analysis(handle, dir, trans, mb, nnzb, descr,
d bsrval, d bsrRowPtr, d bsrColInd, blockDim,
info, policy, pBuffer);

// L has unit diagonal, so no structural zero is reported.

status = cusparseXbsrsv2 zeroPivot (handle, info, &structural zero);
if (CUSPARSE STATUS ZERO PIVOT == status) {
printf ("L (%d, %d) is missing\n", structural zero, structural zero);

}

// step 5: solve L*y = x
cusparseDbsrsv2 solve (handle, dir, trans, mb, nnzb, &alpha, descr,
d bsrval, d bsrRowPtr, d bsrColInd, blockDim, info,
d x, d y, policy, pBuffer);
// L has unit diagonal, so no numerical zero is reported.
status = cusparseXbsrsv2 zeroPivot (handle, info, &numerical zero);
if (CUSPARSE STATUS ZERO PIVOT == status) {
printf ("L (%d,%d) is zero\n", numerical zero, numerical zero);

}

// step 6: free resources
cudaFree (pBuffer) ;
cusparseDestroyBsrsv2Info (info) ;
cusparseDestroyMatDescr (descr) ;
cusparseDestroy (handle) ;

CUSPARSE Library DU-06709-001_v7.5 | 69

cUSPARSE Level 2 Function Reference

Input
handle handle to the cuSPARSE library context.
dira storage format of blocks, either
CUSPARSE_DIRECTION_ ROW OF
CUSPARSE_DIRECTION COLUMN.
transA the operation op(A).
mb number of block rows and block columns of matrix
A.
alpha <type> scalar used for multiplication.
descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE UNIT and
CUSPARSE_DIAG_TYPE NON_UNIT.
bsrVala <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix a.
bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.
bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix a.
blockDim block dimension of sparse matrix A, larger than
zero.
info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).
x <type> right-hand-side vector of size m.
policy the supported policies are
CUSPARSE_SOLVE_POLICY_NO_LEVEL and
CUSPARSE_SOLVE_POLICY_ USE_LEVEL.
pBuffer buffer allocated by the user, the size is returned
by bsrsv2_bufferSize().
Output
y <type> solution vector of size m.
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID_ VALUE invalid parameters were passed (mb, nnzb<=0).
CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.
CUSPARSE_STATUS_MAPPING_ERROR the texture binding failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 70

cUSPARSE Level 2 Function Reference

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

7.9. cusparseXbsrsv2_zeroPivot()

cusparseStatus_t
cusparseXbsrsv2 zeroPivot (cusparseHandle t handle,

bsrsv2Info t info,

int *position);
If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A(j,]) is either structural zero or numerical zero (singular block). Otherwise
position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXbsrsv2_zeroPivot () is a blocking call. It calls
cudaDeviceSynchronize () to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set the proper
mode with cusparseSetPointerMode ().

Input
handle handle to the cuSPARSE library context.
info info contains a structural zero or numerical zero
if the user already called bsrsv2_analysis () or
bsrsv2_solve().
Output
position if no structural or numerical zero, position is -1;

otherwise if A (j,3) is missing or u(j, j) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE info is not valid.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 71

cUSPARSE Level 2 Function Reference

7.10. cusparse<t>csrsv_analysis()

cusparseStatus t

cusparseScsrsv_analysis (cusparseHandle t handle,

cusparseStatus_t

cusparseOperation t transA,

int m,

int nnz,

const cusparseMatDescr t descrA,
const float *csrValAa,

const int *csrRowPtrA,

const int *csrColIndA,
cusparseSolveAnalysisInfo t info)

cusparseDcsrsv_analysis (cusparseHandle t handle,

cusparseStatus_t

cusparseOperation t transA,

int m,

int nnz,

const cusparseMatDescr t descrA,
const double *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,
cusparseSolveAnalysisInfo t info)

cusparseCcsrsv_analysis (cusparseHandle t handle,

cusparseStatus_t

cusparseOperation t transA,

int m,

int nnz,

const cusparseMatDescr t descrA,
const cuComplex *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,
cusparseSolveAnalysisInfo t info)

cusparseZcsrsv_analysis (cusparseHandle t handle,

cusparseOperation t transA,

int m, -

int nnz,

const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,

const int *csrColIndA,
cusparseSolveAnalysisInfo t info)

This function performs the analysis phase of the solution of a sparse triangular linear

system

op(A)xy=a=x

where A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndR); x and y are the right-hand-side and the
solution vectors; a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4) = AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 72

cUSPARSE Level 2 Function Reference

The routine csrsv_analysis supports analysis phase of csrsv_solve, csric0 and
esrilu0. The user has to be careful of which routine is called after csrsv_analysis.
The matrix descriptor must be the same for esrsv_analysis and its subsequent call to
csrsv_solve, csric0 and esrilu0.

For csrsv_solve, the matrix type must be CUSPARSE MATRIX TYPE TRIANGULAR or
CUSPARSE MATRIX TYPE GENERAL.

For esrilu0, the matrix type must be CUSPARSE_MATRIX TYPE GENERAL.

For csric0, the matrix type must be CUSPARSE MATRIX TYPE SYMMETRIC Or
CUSPARSE MATRIX TYPE HERMITIAN.

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a significant amount of extra storage that is proportional to the
matrix size. It is executed asynchronously with respect to the host and may return
control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

trans the operation op(4)

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX TYPE_ TRIANGULAR
and CUSPARSE_MATRIX TYPE_GENERAL
for csrsv_solve,
CUSPARSE_MATRIX TYPE SYMMETRIC and
CUSPARSE_MATRIX TYPE HERMITIAN for
csric0, CUSPARSE_MATRIX TYPE GENERAL
for esrilu0, while the supported diagonal
types are CUSPARSE_DIAG_TYPE UNIT and
CUSPARSE_DIAG_TYPE NON_UNIT.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

info structure initialized using
cusparseCreateSolveAnalysisInfo.

Output

info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 73

Status Returned

cUSPARSE Level 2 Function Reference

CUSPARSE STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m, nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH

the device does not support double precision.

CUSPARSE STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

7.11. cusparse<t>csrsv_solve()

cusparseStatus_t

cusparseScsrsv_solve (cusparseHandle t handle,
cusparseOperation t transA,

int m,

const float

*alpha,

const cusparseMatDescr t descrA,

const float

const int *csrRowPtrA,

*csrValA,
const int *csrColIndA,

cusparseSolveAnalysisInfo t info,

const float
cusparseStatus t

*x, float *y)

cusparseDcsrsv_solve (cusparseHandle t handle,
cusparseOperation t transA,

int m,

const double

*alpha,

const cusparseMatDescr t descrA,

const double

const int *csrRowPtrA,

*csrValA,
const int *csrColIndA,

cusparseSolveAnalysisInfo t info,

const double
cusparseStatus_t

*x, double *y7)

cusparseCcsrsv_solve (cusparseHandle t handle,
cusparseOperation t transa,

int m,

const cuComplex

*alpha,

const cusparseMatDescr t descrA,

const cuComplex

const int *csrRowPtrA,

*csrValA,
const int *csrColIndA,

cusparseSolveAnalysisInfo t info,

const cuComplex
cusparseStatus t

*x, cuComplex *y)

cusparseZcsrsv_solve (cusparseHandle t handle,
cusparseOperation t transA,

int m,

const cuDoubleComplex *alpha,

const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,

cusparseSolveAnalysisInfo t info,

const cuDoubleComplex *x,

cuDoubleComplex *y)

This function performs the solve phase of the solution of a sparse triangular linear

system

Op(A)*y=G*X

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 74

cUSPARSE Level 2 Function Reference

where A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are the right-hand-side and the

solution vectors; a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE
op(4)= AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

This function may be executed multiple times for a given matrix and a particular

operation type.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

trans the operation op(4)

m number of rows and columns of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX TYPE_ TRIANGULAR
and CUSPARSE_MATRIX TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE UNIT and
CUSPARSE_DIAG_TYPE NON_UNIT.

csrVala <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

X <type> right-hand-side vector of size m.

Output
y <type> solution vector of size m.

Status Returned

CUSPARSE STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m<0).

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE STATUS_ MAPPING ERROR

the texture binding failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 75

cUSPARSE Level 2 Function Reference

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

7.12. cusparse<t>csrsv2_bufferSize()

cusparseStatus_t

cusparseScsrsv2 bufferSize (cusparseHandle t handle,

cusparseStatus t

cusparseOperation t transA,

int m,

int nnz,

const cusparseMatDescr t descrA,
float *csrvalAa, N

const int *csrRowPtrA,

const int *csrColIndA,
csrsv2Info t info,

int *pBufferSizelInBytes);

cusparseDcsrsv2 bufferSize (cusparseHandle t handle,

cusparseStatus_ t

cusparseOperation t transA,

int m,

int nnz,

const cusparseMatDescr t descrA,
double *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,
csrsv2Info t info,

int *pBufferSizeInBytes);

cusparseCcsrsv2 bufferSize (cusparseHandle t handle,

cusparseStatus t

cusparseOperation t transA,

int m, N

int nnz,

const cusparseMatDescr t descrA,
cuComplex *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,
csrsv2Info t info,

int *pBufferSizelInBytes);

cusparseZcsrsv2 bufferSize (cusparseHandle t handle,

www.nvidia.com
CUSPARSE Library

cusparseOperation t transA,

int m, B

int nnz,

const cusparseMatDescr t descrA,
cuDoubleComplex *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,
csrsv2Info t info,

int *pBufferSizeInBytes);

DU-06709-001_v7.5 | 76

cUSPARSE Level 2 Function Reference

This function returns the size of the buffer used in esrsv2, a new sparse triangular

linear system op (A) *y = a x.

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are the right-hand-side and the

solution vectors; «a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE
op(4)= AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

Although there are six combinations in terms of the parameter trans and the upper
(lower) triangular part of A, ecsrsv2_bufferSize () returns the maximum size buffer
of these combinations. The buffer size depends on the dimension and the number of
nonzero elements of the matrix. If the user changes the matrix, it is necessary to call
csrsv2_bufferSize () again to have the correct buffer size; otherwise, a segmentation

fault may occur.

Input

handle handle to the cuSPARSE library context.

transA the operation op(A).

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE UNIT and
CUSPARSE_DIAG TYPE NON_UNIT.

csrVala <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

Output

info record of internal states based on different
algorithms.

pBufferSizelInBytes number of bytes of the buffer used in the

csrsv2_analysis and csrsv2_solve.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m,nnz<=0), base
index isnot 0 or 1.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 77

cUSPARSE Level 2 Function Reference

CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 78

cUSPARSE Level 2 Function Reference

7.13. cusparse<t>csrsv2_analysis()

cusparseStatus t
cusparseScsrsv2 analysis (cusparseHandle t handle,
cusparseOperation t transa,
int m,
int nnz,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrsv2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseDcsrsv2 analysis (cusparseHandle t handle,
cusparseOperation t transA,
int m,
int nnz,
const cusparseMatDescr t descra,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrsv2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_ t
cusparseCcsrsv2 analysis (cusparseHandle t handle,
cusparseOperation t transa,
int m,
int nnz,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrsv2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseZcsrsv2 analysis (cusparseHandle t handle,
cusparseOperation t transA,
int m,
int nnz,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrsv2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

This function performs the analysis phase of csrsv2, a new sparse triangular linear

system op (A) *y =a x.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 79

cUSPARSE Level 2 Function Reference

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are the right-hand-side and the
solution vectors; a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE
op(A)={ A" if trans == CUSPARSE_OPERATION_TRANSPOSE

A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a buffer size returned by esrsv2_bufferSize (). The address of
pBuffer must be multiple of 128 bytes. If it is not, CUSPARSE_STATUS _INVALID VALUE
is returned.

Function esrsv2_analysis () reports a structural zero and computes level information
that is stored in opaque structure info. The level information can extract more
parallelism for a triangular solver. However csrsv2_solve () can be done without
level information. To disable level information, the user needs to specify the policy of the
triangular solver as CUSPARSE_SOLVE_POLICY NO_LEVEL.

Function esrsv2_analysis () always reports the first structural zero, even if the
policy is CUSPARSE_SOLVE_POLICY NO_ LEVEL. No structural zero is reported if
CUSPARSE DIAG _TYPE UNIT is specified, evenif A(j, j) is missing for some j. The
user needs to call cusparseXcsrsv2_ zeroPivot () to know where the structural zero
is.

It is the user's choice whether to call csrsv2_solve() if csrsv2_analysis () reports
a structural zero. In this case, the user can still call csrsv2_solve () which will return
a numerical zero in the same position as the structural zero. However the result x is
meaningless.

Input

handle handle to the cuSPARSE library context.

transA the operation op(A).

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG TYPE UNIT and
CUSPARSE_DIAG TYPE NON_UNIT.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix a.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 80

cUSPARSE Level 2 Function Reference

info structure initialized using
cusparseCreateCsrsv2Info ().

policy The supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.

pBuffer buffer allocated by the user, the size is returned
by esrsv2_bufferSize().

Output
info structure filled with information collected during

the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m, nnz<=0).

CUSPARSE_STATUS_ARCH_MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 81

cUSPARSE Level 2 Function

7.14. cusparse<t>csrsv2_solve()

cusparseStatus t
cusparseScsrsv2 solve (cusparseHandle t handle,
cusparseOperation t transa,
int m,
int nnz,
const float *alpha,
const cusparseMatDescr t descra,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrsv2Info t info,
const float *x,
float *y,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseDcsrsv2 solve (cusparseHandle t handle,
cusparseOperation t transa,
int m,
int nnz,
const double *alpha,
const cusparseMatDescr t descra,
const double *csrVvValAa,
const int *csrRowPtrA,
const int *csrColIndA,
csrsv2Info t info,
const double *x,
double *vy,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t
cusparseCcsrsv2 solve (cusparseHandle t handle,
cusparseOperation t transA,
int m,
int nnz,
const cuComplex *alpha,
const cusparseMatDescr t descra,
const cuComplex *csrValAh,
const int *csrRowPtrA,
const int *csrColIndA,
csrsv2Info t info,
const cuComplex *x,
cuComplex *vy,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseZcsrsv2_ solve (cusparseHandle t handle,
cusparseOperation t transa,
int m,
int nnz,
const cuDoubleComplex *alpha,
const cusparseMatDescr t descra,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrsv2Info t info,
const cuDoubleComplex *x,
cuDoubleComplex *vy,
cusparseSolvePolicy t policy,
701d *NR11ifFfer) - -

Reference

cUSPARSE Level 2 Function Reference

This function performs the solve phase of csrsv2, a new sparse triangular linear system
op (A) *y =ax.

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA); x and y are the right-hand-side and the
solution vectors; «a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4)= AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires the buffer size returned by csrsv2_buffersSize().
The address of pBuffer must be multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_ VALUE is returned.

Although esrsv2_solve () can be done without level information, the user

still needs to be aware of consistency. If csrsv2_analysis () is called with

policy CUSPARSE SOLVE_POLICY USE LEVEL, csrsv2_solve () can be run

with or without levels. On the contrary, if csrsv2_analysis () is called with
CUSPARSE_SOLVE_POLICY NO LEVEL, csrsv2_solve () can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL,‘ otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

The level information may not improve the performance but spend extra

time doing analysis. For example, a tridiagonal matrix has no parallelism.

In this case, CUSPARSE_SOLVE_POLICY_ NO_LEVEL performs better than
CUSPARSE_SOLVE_POLICY USE_LEVEL. If the user has an iterative solver, the best
approach is to do csrsv2_analysis () with CUSPARSE_SOLVE_POLICY USE_LEVEL
once. Then do esrsv2_solve () with CUSPARSE_SOLVE_POLICY NO_LEVEL in the first
run and with CUSPARSE_SOLVE_POLICY USE_LEVEL in the second run, picking faster
one to perform the remaining iterations.

Function esrsv2_solve () reports the first numerical zero, including a structural zero.
If status is 0, no numerical zero was found. Furthermore, no numerical zero is reported
if CUSPARSE DIAG _TYPE UNIT is specified, even if A(j,j) is zero for some j. The user
needs to call ¢ cusparseXcsrsv2_zeroPivot () to know where the numerical zero is.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 83

cUSPARSE Level 2 Function Reference

For example, suppose L is a lower triangular matrix with unit diagonal, the following
code solves L*y=x by level information.

// Suppose that L is m x m sparse matrix represented by CSR format,
// L is lower triangular with unit diagonal.
// Assumption:

// - dimension of matrix L is m,

// - matrix L has nnz number zero elements,

// - handle is already created by cusparseCreate(),

// - (d_csrRowPtr, d csrColInd, d csrVal) is CSR of L on device memory,
// - d x is right hand side vector on device memory,

// - d y is solution vector on device memory.

cusparseMatDescr t descr = 0;

csrsv2Info t info = 0;

int pBufferSize;

void *pBuffer = 0;

int structural zero;

int numerical zero;

const double alpha = 1.;

const cusparseSolvePolicy t policy = CUSPARSE SOLVE POLICY USE LEVEL;
const cusparseOperation t trans = CUSPARSE OPERATION NON TRANSPOSE;

// step 1: create a descriptor which contains
// - matrix L is base-1

// - matrix L is lower triangular
// - matrix L has unit diagonal, specified by parameter CUSPARSE DIAG TYPE UNIT
// (L may not have all diagonal elements.)

cusparseCreateMatDescr (&descr) ;
cusparseSetMatIndexBase (descr, CUSPARSE INDEX BASE ONE) ;
cusparseSetMatFillMode (descr, CUSPARSE FILL MODE_ LOWER) ;
cusparseSetMatDiagType (descr, CUSPARSE DIAG TYPE UNIT);

// step 2: create a empty info structure
cusparseCreateCsrsv2Info (&info) ;

// step 3: query how much memory used in csrsv2, and allocate the buffer
cusparseDcsrsv2 bufferSize (handle, trans, m, nnz, descr,

d csrval, d csrRowPtr, d csrCollInd, &pBufferSize);
// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.
cudaMalloc ((void**) &pBuffer, pBufferSize);

// step 4: perform analysis
cusparseDcsrsv2 analysis(handle, trans, m, nnz, descr,

d csrval, d csrRowPtr, d csrColInd,

info, policy, pBuffer);
// L has unit diagonal, so no structural zero is reported.
status = cusparseXcsrsv2 zeroPivot (handle, info, &structural zero);
if (CUSPARSE STATUS ZERO PIVOT == status) {

printf ("L (%d, %d) is missing\n", structural zero, structural zero);

}

// step 5: solve L*y = x
cusparseDcsrsv2 solve (handle, trans, m, nnz, &alpha, descr,
d csrvVal, d csrRowPtr, d csrColInd, info,
d x, d y, policy, pBuffer);
// L has unit diagonal, so no numerical zero is reported.
status = cusparseXcsrsv2 zeroPivot (handle, info, &numerical zero);
if (CUSPARSE STATUS ZERO_ PIVOT == status) {
printf ("L (%d,%d) is zero\n", numerical zero, numerical zero);

}

// step 6: free resources
cudaFree (pBuffer) ;
cusparseDestroyCsrsv2Info (info) ;
cusparseDestroyMatDescr (descr) ;
cusparseDestroy (handle) ;

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 84

cUSPARSE Level 2 Function Reference

Input

handle handle to the cuSPARSE library context.

transA the operation op(A).

m number of rows and columns of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE_ UNIT and
CUSPARSE_DIAG_TYPE NON_UNIT.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

X <type> right-hand-side vector of size m.

policy The supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.

pBuffer buffer allocated by the user, the size is return by
csrsv2_bufferSize.

Output
y <type> solution vector of size m.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m, nnz<=0).

CUSPARSE_STATUS_ARCH_MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE STATUS_MAPPING ERROR

the texture binding failed.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 85

cUSPARSE Level 2 Function Reference

7.15. cusparseXcsrsv2_zeroPivot()

cusparseStatus_t

cusparseXcsrsv2 zeroPivot (cusparseHandle t handle,
csrsv2Info t info,
int *position);

If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A(3,3) has either a structural zero or a numerical zero. Otherwise position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXcsrsv2_zeroPivot () is a blocking call. It calls
cudaDeviceSynchronize () to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set the proper

mode with cusparseSetPointerMode ().

Input
handle handle to the cuSPARSE library context.
info info contains structural zero or numerical zero if
the user already called csrsv2_analysis () or
csrsv2_solve().
Output
position if no structural or numerical zero, position is -1;
otherwise, if A(3,3) is missing or u(j,3j) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_ NOT INITIALIZED

the library was not initialized.

CUSPARSE STATUS_INVALID VALUE

info is not valid.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 86

cUSPARSE Level 2 Function Reference

7.16. cusparse<t>hybmv()

cusparseStatus_t
cusparseShybmv (cusparseHandle t handle, cusparseOperation t transA,
const float *alpha,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA, const float 5%,
const float *beta, float *y)
cusparseStatus_t
cusparseDhybmv (cusparseHandle t handle, cusparseOperation t transA,
const double *alpha,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA, const double WK
const double *beta, double *y)
cusparseStatus t
cusparseChybmv (cusparseHandle t handle, cusparseOperation t transA,
const cuComplex *alpha,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA, const cuComplex R
const cuComplex *beta, cuComplex *y)
cusparseStatus_t
cusparsezZhybmv (cusparseHandle t handle, cusparseOperation t transA,
const cuDoubleComplex *alpha,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA, const cuDoubleComplex *x,
const cuDoubleComplex *beta, cuDoubleComplex *y)

This function performs the matrix-vector operation
y=axop(A)«x+Bxy

A is an mxn sparse matrix that is defined in the HYB storage format by an opaque data
structure hyba, x and y are vectors, a and j are scalars, and

op(A)= {A if transA == CUSPARSE_OPERATION_NON_TRANSPOSE
Notice that currently only op(A) = A is supported.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

transA the operation op(4) (currently only op(4)=A is
supported).

m number of rows of matrix A.

n number of columns of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL.

hyba the matrix A in HYB storage format.

x <type> vector of n elements.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 87

cUSPARSE Level 2 Function Reference

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.
y <type> vector of m elements.
Output
y <type> updated vector.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

the internally stored HYB format parameters are
invalid.

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE STATUS_MATRIX TYPE NOT SUPPORTED

the matrix type is not supported.

7.17. cusparse<t>hybsv_analysis()

cusparseStatus t

cusparseShybsv:analysis (cusparseHandle t handle,
cusparseOperation t transA,
const cusparseMatDescr t descrA,
cusparseHybMat t hybA,
cusparseSolveAnalysisInfo t info)

cusparseStatus_ t

cusparseDhybsv_analysis (cusparseHandle t handle,
cusparseOperation t transA,
const cusparseMatDescr t descrA,
cusparseHybMat t hybA,
cusparseSolveAnalysisInfo t info)

cusparseStatus t

cusparseChybsv:analysis (cusparseHandle t handle,
cusparseOperation t transA,
const cusparseMatDescr t descrA,
cusparseHybMat t hybA,
cusparseSolveAnalysisInfo t info)

cusparseStatus_t

cusparsezhybsv_analysis (cusparseHandle t handle,
cusparseOperation t transA,
const cusparseMatDescr t descrAh,
cusparseHybMat t hybA,
cusparseSolveAnalysisInfo t info)

This function performs the analysis phase of the solution of a sparse triangular linear

system

Op(A) xy=axXx

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 88

cUSPARSE Level 2 Function Reference

A is an mxm sparse matrix that is defined in HYB storage format by an opaque data
structure hyba, x and y are the right-hand-side and the solution vectors, a is a scalar,
and

op(A)= {A if transA == CUSPARSE_OPERATION_NON_TRANSPOSE
Notice that currently only op(A) = A is supported.

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a significant amount of extra storage that is proportional to the
matrix size. It is executed asynchronously with respect to the host and may return
control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
transA the operation op(4) (currently only op(4)=A is
supported).
descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_ TYPE_TRIANGULAR and
diagonal type USPARSE DIAG_TYPE_NON UNIT.
hybA the matrix & in HYB storage format.
info structure initialized using
cusparseCreateSolveAnalysisInfo().
Output
info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE the internally stored HYB format parameters are
invalid.
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 89

cUSPARSE Level 2 Function Reference

7.18. cusparse<t>hybsv_solve()

cusparseStatus_t
cusparseShybsv solve (cusparseHandle t handle,
cusparseOperation t transA,
const float *alpha,
const cusparseMatDescr t descrA,
cusparseHybMat t hybA,
cusparseSolveAnalysisInfo t info,
const float *x, float *y)
cusparseStatus t
cusparsebDhybsv solve (cusparseHandle t handle,
cusparseOperation t transA,
const double *alpha,
const cusparseMatDescr t descrA,
cusparseHybMat t hybA,
cusparseSolveAnalysisInfo t info,
const double *x, double *y)
cusparseStatus_t
cusparseChybsv solve (cusparseHandle t handle,
cusparseOperation t transa,
const cuComplex *alpha,
const cusparseMatDescr t descrA,
cusparseHybMat t hybA,
cusparseSolveAnalysisInfo t info,
const cuComplex *x, cuComplex *y)
cusparseStatus_ t
cusparseZhybsv solve (cusparseHandle t handle,
cusparseOperation t transa,
const cuDoubleComplex *alpha,
const cusparseMatDescr t descrA,
cusparseHybMat t hybA,
cusparseSolveAnalysisInfo t info,
const cuDoubleComplex *x, cuDoubleComplex *y)

This function performs the solve phase of the solution of a sparse triangular linear
system:

op(A) xy=a=X

A is an mxm sparse matrix that is defined in HYB storage format by an opaque data
structure hyba, x and y are the right-hand-side and the solution vectors, a is a scalar,
and

op(A)= {A if transA == CUSPARSE_OPERATION_NON_TRANSPOSE
Notice that currently only op(A) = A is supported.

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 90

cUSPARSE Level 2 Function Reference

transA the operation op(4) (currently only op(4)= A is
supported).

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix a.
The supported matrix type is
CUSPARSE_MATRIX TYPE TRIANGULAR and the
diagonal type is CUSPARSE_DIAG_TYPE NON_UNIT.

hyba the matrix A in HYB storage format.

info structure with information collected during the
analysis phase (that should be passed to the solve
phase unchanged).

x <type> right-hand-side vector of size m.

Output
y <type> solution vector of size m.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE STATUS_INVALID VALUE

the internally stored hyb format parameters are
invalid.

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_MAPPING_ERROR

the texture binding failed.

CUSPARSE_STATUS_ EXECUTION_ FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 91

Chapter 8.
CUSPARSE LEVEL 3 FUNCTION REFERENCE

This chapter describes sparse linear algebra functions that perform operations between
sparse and (usually tall) dense matrices.

In particular, the solution of sparse triangular linear systems with multiple right-
hand sides is implemented in two phases. First, during the analysis phase, the sparse
triangular matrix is analyzed to determine the dependencies between its elements
by calling the appropriate csrsm_analysis () function. The analysis is specific to
the sparsity pattern of the given matrix and to the selected cusparseOperation_t
type. The information from the analysis phase is stored in the parameter of type
cusparseSolveAnalysisInfo_t that has been initialized previously with a call to
cusparseCreateSolveAnalysisInfo().

Second, during the solve phase, the given sparse triangular linear system is solved using
the information stored in the cusparseSolveAnalysisInfo_t parameter by calling
the appropriate csrsm_solve () function. The solve phase may be performed multiple
times with different multiple right-hand sides, while the analysis phase needs to be
performed only once. This is especially useful when a sparse triangular linear system
must be solved for different sets of multiple right-hand sides one at a time, while its
coefficient matrix remains the same.

Finally, once all the solves have completed, the opaque data structure pointed to
by the cusparseSolveAnalysisInfo_t parameter can be released by calling
cusparseDestroySolveAnalysisInfo (). For more information please refer to [3].

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 92

8.1. cusparse<t>csrmm()

cusparseStatus_t
cusparseScsrmm (cusparseHandle t handle,
cusparseOperation t transA,
int m,
int n,
int k,
int nnz,
const float *alpha,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const float *B,
int 1db,
const float *beta,
float *C,
int 1ldc)
cusparseStatus_t
cusparseDcsrmm (cusparseHandle t handle,
cusparseOperation t transA,
int m, -
int n,
int k,
int nnz,
const double *alpha,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const double *B,
int 1db,
const double *beta,
double *C,
int 1ldc)
cusparseStatus_ t
cusparseCcsrmm(cusparseHandle t handle,
cusparseOperation t transA,
int m, -
int n,
int k,
int nnz,
const cuComplex *alpha,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuComplex *B,
int 1db,
const cuComplex *beta,
cuComplex *C,
int 1ldc)
cusparseStatus_t
cusparsezcsrmm(cusparseHandle t handle,
cusparseOperation t transA,
int m,
int n,
int k,
int nnz,
const cuDoubleComplex *alpha,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
concetr c11Do1ibleComplexy *R

cUSPARSE Level 3 Function Reference

cUSPARSE Level 3 Function Reference

This function performs one of the following matrix-matrix operations:

C=G*OP(A)*B+B*C

A is an mxk sparse matrix that is defined in CSR storage format by the three arrays
csrVald, csrRowPtrA, and ecsrColIndA); B and C are dense matrices; a and 3 are
scalars; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4) = AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

When using the (conjugate) transpose of a general matrix or a Hermitian/symmetric
matrix, this routine may produce slightly different results with the same input
parameters during different runs of this function. For these matrix types it uses atomic
operations to compute the final result; consequently, many threads may be adding
floating point numbers to the same memory location without any specific ordering,
which may produce slightly different results for each run.

If exactly the same output is required for any input when multiplying by the transpose
of a general matrix, the following procedure can be used:

1. Convert the matrix from CSR to CSC format using one of the esr2esc () functions.
Notice that by interchanging the rows and columns of the result you are implicitly
transposing the matrix.

2. Call the esrmm () function with the cusparseOperation_t parameter set to
CUSPARSE_OPERATION NON_TRANSPOSE and with the interchanged rows and columns
of the matrix stored in CSC format. This (implicitly) multiplies the vector by the
transpose of the matrix in the original CSR format.

This function requires no extra storage for the general matrices when operation
CUSPARSE_OPERATION NON_TRANSPOSE is selected. It requires some extra storage for
Herm1t1an/symmetr1c matrices and for the general matrices when an operation different
from CUSPARSE_OPERATION NON_TRANSPOSE is selected. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.

Input

handle handle to the cuSPARSE library context.

transA the operation op(A)

m number of rows of sparse matrix A.

n number of columns of dense matrices B and c.

k number of columns of sparse matrix a.

nnz number of nonzero elements of sparse matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX TYPE GENERAL,
CUSPARSE_MATRIX TYPE SYMMETRIC,
and CUSPARSE_MATRIX TYPE_ HERMITIAN.
Also, the supported index bases are

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 94

cUSPARSE Level 3 Function Reference

CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix a.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -

csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

B array of dimensions (1db, n).

1db leading dimension of B. It must be at least
max (1, k) if op(4)= A and at least max (1, m)
otherwise.

beta <type> scalar used for multiplication. If beta is
zero, ¢ does not have to be a valid input.

c array of dimensions (1dc, n).

ldc leading dimension of C. It must be at least
max (1, m) if op(4)= A and at least max (1, k)
otherwise.

Output
c <type> updated array of dimensions (1dc, n).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m, n, k, nnz<0
or 1db and 1dc are incorrect).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 95

cUSPARSE Level 3 Function Reference

8.2. cusparse<t>csrmma2()

cusparseStatus_t

cusparseScsrmm2 (cusparseHandle t handle,
cusparseOperation t transA,
cusparseOperation t transB,
int m,
int n,
int k,
int nnz,
const float *alpha,
const cusparseMatDescr t descrA,
const float *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
const float 18,
int 1db,
const float *beta,
float #C,
int ldc)
cusparseStatus_t
cusparseDcsrmm2 (cusparseHandle t handle,
cusparseOperation t transA,
cusparseOperation t transB,
int m,
int n,
int k,
int nnz,
const double *alpha,
const cusparseMatDescr t descrAh,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const double 18,
int 1db,
const double *beta,
double *Cp
int ldc)
cusparseStatus_t
cusparseCcsrmm2 (cusparseHandle t handle,
cusparseOperation t transAa,
cusparseOperation t transB,
int m,
int n,
int k,
int nnz,
const cuComplex *alpha,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuComplex w18,
int 1db,
const cuComplex *beta,
cuComplex “C,
int 1ldc)
cusparseStatus_t
cusparsezcsrmm? (cusparseHandle t handle,
cusparseOperation t transA,
cusparseOperation t transB,
int m,
int n,
int k,
int nnz,
const cuDoubleComplex *alpha,

concet cl1eparceMatrDeccr + deccotrA

cUSPARSE Level 3 Function Reference

This function performs one of the following matrix-matrix operations:

C=a~op(A)+op(B)+ 8+ C

A is an mxk sparse matrix that is defined in CSR storage format by the three arrays
csrVald, csrRowPtrA, and ecsrColIndA); B and C are dense matrices; a and 3 are
scalars; and

A if transA == CUSPARSE_OPERATION_NON_TRANSPOSE
op(4) = A" if transA == CUSPARSE_OPERATION_TRANSPOSE
A" if transA == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

and

B if transB == CUSPARSE_OPERATION_NON_TRANSPOSE
op(B) = B! if transB == CUSPARSE_OPERATION_TRANSPOSE

B! not supported

If op (B) =B, cusparse<t>csrmm2 () is the same as cusparse<t>csrmm();
otherwise, only op (A) =A is supported and the matrix type must be
CUSPARSE_MATRIX_TYPE_GENERAL.

The motivation of transpose (B) is to improve the memory access of matrix B. The
computational pattern of A*transpose (B) with matrix B in column-major order is
equivalent to A*B with matrix B in row-major order.

In practice, no operation in iterative solver or eigenvalue solver uses A*transpose (B).
However we can perform A*transpose (transpose (B)) which is the same as A*B.
For example, suppose A is m*k, B is k*n and C is m*n, the following code shows usage of
cusparseDcsrmm ().

// A is m*k, B is k*n and C is m*n
const int 1ldb B = k; // leading dimension of B
const int 1ldc = m; // leading dimension of C
// perform C:=alpha*A*B + beta*C
cusparseSetMatType (descrA, CUSPARSE MATRIX TYPE GENERAL);
cusparseDcsrmm (cusparse handle,
CUSPARSE OPERATION NON TRANSPOSE,
m, n, k, nnz, alpha,
descrA, csrValA, csrRowPtrA, csrColIndA,
B, 1ldb B,
beta, C, 1ldc);

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 97

cUSPARSE Level 3 Function Reference

Instead of using A*B, our proposal is to transpose B to Bt first by calling
cublas<t>geam(), then to perform A*transpose (Bt).

// step 1l: Bt :=
double *Bt;
const int 1ldb Bt = n; // leading dimension of Bt
cudaMalloc ((void**) &Bt, sizeof (double)*1ldb Bt*k);
double one = 1.0;
double zero = 0.0;
cublasSetPointerMode (cublas handle, CUBLAS POINTER MODE HOST) ;
cublasDgeam (cublas handle, CUBLAS OP T, CUBLAS OP T,

n, k, &one, B, int 1ldb B, &zero, B, int 1ldb B, Bt, 1ldb Bt);

transpose (B)

// step 2: perform C:=alpha*A*transpose (Bt) + beta*C
cusparseDcsrmm2 (cusparse handle,
CUSPARSE OPERATION NON TRANSPOSE,

CUSPARSE OPERATION TRANSPOSE

m, n, k, nnz, alpha,

descrA, csrValA, csrRowPtrA, csrColIndA,
Bt, 1ldb Bt,

beta, C, 1ldc);

Remark 1: cublas<t>geam() and cusparse<t>csrmm2 () are memory bound.
The complexity of cublas<t>geam() is 2*n*k, and the minimum complexity of

cusparse<t>csrmm2 () is about (nnz + nnz*n + 2*m*n).If nnz per column (=nnz/
k) is large, it is worth paying the extra cost on transposition because A*transpose (B)
may be 2x faster than A*B if the sparsity pattern of A is not good.

Remark 2: A*transpose (B) is only supported on compute capability 2.0 and above.

Input

handle handle to the cuSPARSE library context.

transA the operation op(A)

transB the operation op(B)

m number of rows of sparse matrix A.

n number of columns of dense matrix op(B) and c.

k number of columns of sparse matrix A.

nnz number of nonzero elements of sparse matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
types is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix a.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 98

cUSPARSE Level 3 Function Reference

B array of dimensions (1db, n) if op (B)=B and
(1db, k) otherwise.
1db leading dimension of B. If op (B) =B, it must be at
least max (1, k) if op(4)= A and at least max (1, m)
otherwise. If op (B) !=B, it must be at least
max (1, n).
beta <type> scalar used for multiplication. If beta is
zero, ¢ does not have to be a valid input.
c array of dimensions (1dc, n).
ldc leading dimension of c. It must be at least
max (1, m) if op(4)= A and at least max (1, k)
otherwise.
Output
c <type> updated array of dimensions (1dc, n).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m, n, k, nnz<0
or 1db and 1dc are incorrect).

CUSPARSE_STATUS_ARCH MISMATCH

if op (B) =B, the device does not support double
precision or if op (B) =transpose (B) the device is
below compute capability 2.0.

CUSPARSE_STATUS_ EXECUTION_ FAILED

the function failed to launch on the GPU.

CUSPARSE STATUS_INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT SUPPORTED

only CUSPARSE_MATRIX_TYPE GENERAL is
supported otherwise.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 99

cUSPARSE Level 3 Function Reference

8.3. cusparse<t>csrsm_analysis()

cusparseStatus_t
cusparseScsrsm_analysis (cusparseHandle t handle,
cusparseOperation t transA,
int m, int nnz,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
cusparseSolveAnalysisInfo t info)
cusparseStatus t
cusparseDcsrsm _analysis (cusparseHandle t handle,
cusparseOperation t transA,
int m, int nnz,
const cusparseMatDescr t descrAh,
const double *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
cusparseSolveAnalysisInfo t info)
cusparseStatus_t
cusparseCcsrsm_analysis (cusparseHandle t handle,
cusparseOperation t transA,
int m, int nnz,
const cusparseMatDescr t descrA,
const cuComplex *csrValAh,
const int *csrRowPtrA, const int *csrColIndA,
cusparseSolveAnalysisInfo t info)
cusparseStatus_ t
cusparsezZcsrsm_analysis (cusparseHandle t handle,
cusparseOperation t transA,
int m, int nnz,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
cusparseSolveAnalysisInfo t info)

This function performs the analysis phase of the solution of a sparse triangular linear
system

op(4)+Y=axX

with multiple right-hand sides, where A is an mxm sparse matrix that is defined in CSR
storage format by the three arrays csrvalA, csrRowPtrA, and csrColIndA; X and Y are
the right-hand-side and the solution dense matrices; a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE
op(A) = AT if trans == CUSPARSE_OPERATION_TRANSPOSE

AP if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires a significant amount of extra storage that is proportional to the
matrix size. It is executed asynchronously with respect to the host and may return
control to the application on the host before the result is ready.

Input

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 100

cUSPARSE Level 3 Function Reference

handle handle to the cuSPARSE library context.

transA the operation op(A).

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX TYPE_ TRIANGULAR
and CUSPARSE_MATRIX TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE UNIT and
CUSPARSE_DIAG_TYPE NON_UNIT.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

info structure initialized using
cusparseCreateSolveAnalysisInfo().

Output
info structure filled with information collected during

the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m, nnz<0).

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_ FAILED

the function failed to launch on the GPU.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE STATUS_MATRIX TYPE NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 101

cUSPARSE Level 3 Function Reference

8.4. cusparse<t>csrsm_solve()

cusparseStatus_t
cusparseScsrsm_solve (cusparseHandle t handle,
cusparseOperation t transA,
int m, int n, const float *alpha,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
cusparseSolveAnalysisInfo t info,
const float *X, int 1dx,
float *Y, int 1dy)
cusparseStatus_t
cusparseDcsrsm_solve (cusparseHandle t handle,
cusparseOperation t transA,
int m, int n, const double *alpha,
const cusparseMatDescr t descrA,
const double *csrValAh,
const int *csrRowPtrA, const int *csrColIndA,
cusparseSolveAnalysisInfo t info,
const double *X, int 1dx,
double *Y, int 1dy)
cusparseStatus_t
cusparseCcsrsm_solve (cusparseHandle t handle,
cusparseOperation t transA,
int m, int n, const cuComplex *alpha,
const cusparseMatDescr t descrA,
const cuComplex *csrValAh,
const int *csrRowPtrA, const int *csrColIndA,
cusparseSolveAnalysisInfo t info,
const cuComplex *X, int 1ldx,
cuComplex *Y, int 1dy)
cusparseStatus t
cusparseZcsrsm_solve (cusparseHandle t handle,
cusparseOperation t transa,
int m, int n, const cuDoubleComplex *alpha,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
cusparseSolveAnalysisInfo t info,
const cuDoubleComplex *X, int 1ldx,
cuDoubleComplex *Y, int 1dy)

This function performs the solve phase of the solution of a sparse triangular linear
system

OP(A)*Y:G*X

with multiple right-hand sides, where A is an mxn sparse matrix that is defined in CSR
storage format by the three arrays csrvala, csrRowPtra, and csrColIndA); X and Y
are the right-hand-side and the solution dense matrices; « is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4)= AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 102

cUSPARSE Level 3 Function Reference

This function may be executed multiple times for a given matrix and a particular

operation type.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

transA the operation op (a) .

m number of rows and columns of matrix A.

n number of columns of matrix X and Y.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX TYPE_TRIANGULAR
and CUSPARSE_MATRIX TYPE GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE UNIT and
CUSPARSE_DIAG_TYPE NON_UNIT.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

info structure with information collected during the
analysis phase (that should be passed to the solve
phase unchanged).

X <type> right-hand-side array of dimensions (1dx,
n).

1ldx leading dimension of x (that is > max (1, m)).

Output
Y <type> solution array of dimensions (1dy, n).
1ldy leading dimension of Y (that is > max (1, m)).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_ NOT INITIALIZED

the library was not initialized.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (m<0).

CUSPARSE STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_ MAPPING_ERROR

the texture binding failed.

CUSPARSE_STATUS_ EXECUTION_ FAILED

the function failed to launch on the GPU.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 103

cUSPARSE Level 3 Function Reference

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 104

cUSPARSE Level 3 Function Reference

8.5. cusparse<t>bsrmm()

cusparseStatus t
cusparseSbsrmm (cusparseHandle t handle,

cusparseDirection t dirA,
cusparseOperation t transa,
cusparseOperation t transB,
int mb,

int n,

int kb,

int nnzb,

const float *alpha,

const cusparseMatDescr t descrA,
const float *bsrValA,

const int *bsrRowPtrA,
const int *bsrColIndA,
const int blockDim,

const float *B,

const int 1ldb,

const float *beta,

float *C,

int 1ldc)

cusparseStatus t
cusparseDbsrmm (cusparseHandle t handle,

cusparseDirection t dira,
cusparseOperation t transa,
cusparseOperation t transB,
int mb, B

int n,

int kb,

int nnzb,

const double *alpha,

const cusparseMatDescr t descrA,
const double *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
const int blockDim,

const double *B,

const int 1db,

const double *beta,

double *C,

int 1ldc)

cusparseStatus_t
cusparseCbsrmm (cusparseHandle t handle,

cusparseDirection t dirA,
cusparseOperation t transA,
cusparseOperation t transB,
int mb, -

int n,

int kb,

int nnzb,

const cuComplex *alpha,
const cusparseMatDescr t descrA,
const cuComplex *bsrValAh,
const int *bsrRowPtrA,
const int *bsrColIndA,
const int blockDim,

const cuComplex *B,

const int 1ldb,

const cuComplex *beta,
cuComplex *C,

int 1ldc)

cUSPARSE Level 3 Function Reference

This function performs one of the following matrix-matrix operations:

C=a~op(A)+op(B)+ 8+ C

A is an mbxkb sparse matrix that is defined in BSR storage format by the three arrays
bsrVala, bsrRowPtrA, and bsrColIndA; B and C are dense matrices; « and 3 are
scalars; and

A if transA == CUSPARSE_OPERATION_NON_TRANSPOSE
op(A) = AT if transA == CUSPARSE_OPERATION_TRANSPOSE (not supported)
A" if transA == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE (not supported)

and

B if transB == CUSPARSE_OPERATION_NON_TRANSPOSE
op(B)= B" if transB == CUSPARSE_OPERATION_TRANSPOSE
B if transB == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE (not supported)

The matrix type must be CUSPARSE_MATRIX TYPE_ GENERAL.

The motivation of transpose (B) is to improve memory access of matrix B. The
computational pattern of A*transpose (B) with matrix B in column-major order is
equivalent to A*B with matrix B in row-major order.

In practice, no operation in an iterative solver or eigenvalue solver uses

A*transpose (B) . However, we can perform A*transpose (transpose (B)) which is
the same as A*B. For example, suppose A is mb*kb, B is k*n and C is m*n, the following
code shows usage of cusparseDbsrmm ().

// A is mb*kb, B is k*n and C is m*n
const int m = mb*blockSize;
const int k = kb*blockSize;
const int 1ldb B = k; // leading dimension of B
const int 1ldc = m; // leading dimension of C
// perform C:=alpha*A*B + beta*C
cusparseSetMatType (descrA, CUSPARSE MATRIX TYPE GENERAL);
cusparseDbsrmm (cusparse handle,
CUSPARSE DIRECTION COLUMN,
CUSPARSE_OPERATION NON TRANSPOSE,
CUSPARSE OPERATION NON TRANSPOSE,
mb, n, kb, nnzb, alpha,
descrA, bsrValA, bsrRowPtrA, bsrColIndA, blockSize,
B, 1db B,
beta, C, 1ldc);

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 106

cUSPARSE Level 3 Function Reference

Instead of using A*B, our proposal is to transpose B to Bt by first calling
cublas<t>geam(), and then to perform A*transpose (Bt).

// step 1l: Bt

const int m
const int k
double *Bt;
const int 1ldb Bt = n;
cudaMalloc ((void**) &Bt,
double one
double zero

:= transpose (B)

mb*blockSize;
= kb*blockSize;

// leading dimension of Bt
sizeof (double) *1db Bt*k);
=1.0;
= 0.0;

cublasSetPointerMode (cublas handle, CUBLAS POINTER MODE HOST) ;
cublasDgeam (cublas handle, CUBLAS OP T, CUBLAS OP T,
n, k, &one, B, int 1ldb B, &zero, B, int 1ldb B, Bt, 1ldb Bt);

// step 2:

perform C:=alpha*A*transpose (Bt)

+ beta*C

cusparseDbsrmm (cusparse handle,

CUSPARSE_DIRECTION COLUMN,

CUSPARSE OPERATION NON TRANSPOSE,

CUSPARSE OPERATION TRANSPOSE,

mb, n, kb, nnzb, alpha,

descrA, bsrValA, bsrRowPtrA, bsrColIndA, blockSize,
Bt, 1ldb Bt,

beta, C, 1ldc);

Function bsrmm () is only supported on compute capability 2.0 and above.

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW Or
CUSPARSE_DIRECTION_ COLUMN.

transA the operation op (3) .

transB the operation op (B).

mb number of block rows of sparse matrix A.

n number of columns of dense matrix op (B) and A.

kb number of block columns of sparse matrix Aa.

nnzb number of non-zero blocks of sparse matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

bsrValA <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix a.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColInda integer array of nnzb (= bsrRowPtrA (mb) -

bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 107

cUSPARSE Level 3 Function Reference

blockDim block dimension of sparse matrix &, larger than
zero.

B array of dimensions (1db, n) if op (B)=B and
(1db, k) otherwise.

1db leading dimension of B. If op (B) =B, it must be at
least max (1, k) If op (B) !'= B, it must be at least
max(1l, n).

beta <type> scalar used for multiplication. If beta is
zero, ¢ does not have to be a valid input.

c array of dimensions (1dc, n).

ldc leading dimension of c. It must be at least
max (1, m) if op (A)=A and at least max (1, k)
otherwise.

Output
c <type> updated array of dimensions (1dc, n).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

Either invalid parameters were passed (mb, n,
kb, nnzb<0; or 1db and ldc are incorrect).

Either invalid or unsupported operations
were passed (op (a) is different from
CUSPARSE_OPERATION_NON_TRANSPOSE,
or op (B) is different from
CUSPARSE_OPERATION_NON_TRANSPOSE or
CUSPARSE_OPERATION_TRANSPOSE).

CUSPARSE STATUS_ARCH MISMATCH

if device is below compute capability 2.0.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS MATRIX TYPE NOT_ SUPPORTED

only CUSPARSE_MATRIX TYPE GENERAL is
supported otherwise.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 108

cUSPARSE Level 3 Function Reference

8.6. cusparse<t>bsrsm2_bufferSize()

cusparseStatus t
cusparseSbsrsm2 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transa,
cusparseOperation t transX,
int mb,
int n,
int nnzb,
const cusparseMatDescr t descrA,
float *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrsm2Info t info,
int *pBufferSizelInBytes)

cusparseStatus_t
cusparseDbsrsm2 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transA,
cusparseOperation t transX,
int mb,
int n,
int nnzb,
const cusparseMatDescr t descrA,
double *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrsm2Info t info,
int *pBufferSizelInBytes)

cusparseStatus t
cusparseCbsrsm2 bufferSize (cusparseHandle t handle,
cusparseDirection t dira,
cusparseOperation t transa,
cusparseOperation t transX,
int mb,
int n,
int nnzb,
const cusparseMatDescr t descrA,
cuComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrsm2Info t info,
int *pBufferSizeInBytes)

cusparseStatus_t
cusparseZbsrsm2 bufferSize (cusparseHandle t handle,
cusparseDirection_ t dirA,
cusparseOperation t transA,
cusparseOperation t transX,
int mb,
int n,
int nnzb,
const cusparseMatDescr t descrA,
cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrsm2Info t info,
fAt *PR1IIFFerCs caTnRutaa)

cUSPARSE Level 3 Function Reference

This function returns size of buffer used in bsrsm2 (), a new sparse triangular linear
system op (A) *Y = a op (X).

Aisan (mb*blockDim)x (mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrvValAa, bsrRowPtrA, and bsrColIndA); X and Y are the
right-hand-side and the solution matrices; a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4)= AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

Although there are six combinations in terms of parameter trans and the upper (and
lower) triangular part of A, bsrsm2_bufferSize () returns the maximum size of the
buffer among these combinations. The buffer size depends on dimension mb,blockDim
and the number of nonzeros of the matrix, nnzb. If the user changes the matrix, it is
necessary to call bsrsm2_bufferSize () again to get the correct buffer size, otherwise a
segmentation fault may occur.

Input

handle handle to the cuSPARSE library context.

dira storage format of blocks, either
CUSPARSE_DIRECTION ROW Or
CUSPARSE_DIRECTION COLUMN.

transA the operation op (a) .

transX the operation op (X) .

mb number of block rows of matrix A.

n number of columns of matrix Y and op (X) .

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE UNIT and
CUSPARSE_DIAG_TYPE NON_UNIT.

bsrValA <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix a.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix a; larger than
zero.

Output

info record internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in
bsrsm2_ analysis() and bsrsm2_solve().

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 110

cUSPARSE Level 3 Function Reference

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (mb, n,
nnzb<=0); base index is not 0 or 1.

CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 111

cUSPARSE Level 3 Function Reference

8.7. cusparse<t>bsrsm2_analysis()

cusparseStatus t
cusparseSbsrsm2 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transA,
cusparseOperation t transXY,
int mb,
int n,
int nnzb,
const cusparseMatDescr t descra,
const float *bsrVal,
const int *bsrRowPtr,
const int *bsrColInd,
int blockDim,
bsrsm2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer) B

cusparseStatus_t
cusparseDbsrsm2 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transa,
cusparseOperation t transXY,
int mb, -
int n,
int nnzb,
const cusparseMatDescr t descrA,
const double *bsrVal,
const int *bsrRowPtr,
const int *bsrColInd,
int blockDim,
bsrsm2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer) B

cusparseStatus_t
cusparseCbsrsm2 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transA,
cusparseOperation t transXy,
int mb, B
int n,
int nnzb,
const cusparseMatDescr t descrA,
const cuComplex *bsrvVal,
const int *bsrRowPtr,
const int *bsrColInd,
int blockDim,
bsrsm2Info t info,
cusparseSolvePolicy t policy,
void *pBuffer)

cusparseStatus t
cusparseZbsrsm2 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
cusparseOperation t transA,
cusparseOperation t transXY,
int mb,
int n,
int nnzb,
const cusparseMatDescr t descrA,
const cuDoubleComplex *bsrVal,
const int *bsrRowPtr,
conaet 1int *berCol Tnd .

cUSPARSE Level 3 Function Reference

This function performs the analysis phase of bsrsm2 (), a new sparse triangular linear
system op (A) *op (Y) = a op(X).

Aisan (mb*blockDim)x (mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrvValAa, bsrRowPtrA, and bsrColIndA); X and Y are the
right-hand-side and the solution matrices; a is a scalar; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4)= {AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

and
if transXY == CUSPARSE_OPERATION_NON_TRANSPOSE

X
op(X)= X" if transX == CUSPARSE_OPERATION_TRANSPOSE
X" if transX == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE (not supported)

and op (X) and op (Y) are equal.

The block of BSR format is of size blockDim*blockDim, stored in column-

major or row-major as determined by parameter dira, which is either
CUSPARSE_DIRECTION_ ROW or CUSPARSE_DIRECTION_ COLUMN. The matrix type must
be CUSPARSE_MATRIX TYPE GENERAL, and the fill mode and diagonal type are ignored.

It is expected that this function will be executed only once for a given matrix and a
particular operation type.

This function requires the buffer size returned by bsrsm2_bufferSize (). The address
of pBuffer must be multiple of 128 bytes. If not, CUSPARSE_STATUS_INVALID_ VALUE is
returned.

Function bsrsm2_analysis () reports a structural zero and computes the level
information stored in opaque structure info. The level information can extract more
parallelism during a triangular solver. However bsrsm2_solve () can be done without
level information. To disable level information, the user needs to specify the policy of the
triangular solver as CUSPARSE_SOLVE_POLICY NO_ LEVEL.

Function bsrsm2_analysis () always reports the first structural zero, even if the
parameter policy is CUSPARSE SOLVE_POLICY NO_LEVEL. Besides, no structural zero
is reported if CUSPARSE_DIAG_TYPE UNIT is spec1f1ed even if block A(j, j) is missing
for some j. The user must call cusparseXbsrsm2_query_ zero_pivot () to know
where the structural zero is.

Even when bsrsm2_analysis () reports a structural zero, the user can still call
asynchronously bsrsm2_solve (). In this case, the solve will return a numerical zero in
the same position as the structural zero but this result X is meaningless.

Input
handle handle to the cuSPARSE library context.
dirA storage format of blocks, either
CUSPARSE_DIRECTION_ ROW Or
CUSPARSE_DIRECTION COLUMN.
transA the operation op (a).
transXyY the operation op (X) and op (Y).

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 113

cUSPARSE Level 3 Function Reference

mb number of block rows of matrix A.

n number of columns of matrix Y and op (X) .

nnzb number of non-zero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE MATRIX TYPE_ GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG TYPE UNIT and
CUSPARSE_DIAG TYPE NON_UNIT.

bsrvala <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix a.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix a; larger than
zero.

info structure initialized using
cusparseCreateBsrsm2Info.

policy The supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.

pBuffer buffer allocated by the user; the size is return by
bsrsm2_bufferSize().

Output
info structure filled with information collected during

the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

Either invalid parameters were passed (mb, n,
nnzb<=0).

Either invalid or unsupported operations were
passed (op (X) and op (Y) are different from
CUSPARSE_OPERATION_NON_TRANSPOSE or
CUSPARSE_OPERATION_TRANSPOSE).

CUSPARSE_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 114

cUSPARSE Level 3 Function Reference

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 115

8.8. cusparse<t>bsrsm2_solve()

cusparseStatus t

cUSPARSE Level 3 Function Reference

cusparseSbsrsm2 solve (cusparseHandle t handle,

cusparseStatus t

cusparseDirection t dirA,
cusparseOperation t transa,
cusparseOperation t transXY,
int mb,

int n,

int nnzb,

const float *alpha,

const cusparseMatDescr t descrA,
const float *bsrVal,

const int *bsrRowPtr,

const int *bsrColInd,

int blockDim,

bsrsm2Info t info,

const float *X,

int 1ldx,

float *Y,

int 1dy,
cusparseSolvePolicy t policy,
void *pBuffer)

cusparseDbsrsm2 solve (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,
cusparseOperation t transa,
cusparseOperation t transXY,
int mb,

int n,

int nnzb,

const double *alpha,

const cusparseMatDescr t descrA,
const double *bsrVal,

const int *bsrRowPtr,

const int *bsrColInd,

int blockDim,

bsrsm2Info t info,

const double *X,

int 1ldx,

double *Y,

int 1ldy,
cusparseSolvePolicy t policy,
void *pBuffer)

cusparseCbsrsm2 solve (cusparseHandle t handle,

cusparseDirection t dirA,
cusparseOperation t transa,
cusparseOperation t transXY,
int mb,

int n,

int nnzb,

const cuComplex *alpha,
const cusparseMatDescr t descrA,
const cuComplex *bsrVal,
const int *bsrRowPtr,

const int *bsrCollInd,

int blockDim,

bsrsm2Info t info,

const cuComplex *X,

int 1dx,

cuComplex *Y,

“nt 1dxw .

cUSPARSE Level 3 Function Reference

This function performs the solve phase of the solution of a sparse triangular linear
system:

op(4) < op(Y) = a «op(X)

Aisan (mb*blockDim)x (mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrvalA, bsrRowPtrA, and bsrColIndA); X and Y are the
right-hand-side and the solution matrices; a is a scalar, and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE
op(A)= {AT if trans == CUSPARSE_OPERATION_TRANSPOSE

AP if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

and
X if transX == CUSPARSE_OPERATION_NON_TRANSPOSE

opX)=¢ X T if transX == CUSPARSE_OPERATION_TRANSPOSE
X" not supported

Only op (&) =A is supported.

op (X) and op (¥) must be performed in the same way. In other words, if op (X) =X,
op (Y) =Y.

The block of BSR format is of size blockDim*blockDim, stored as column-

major or row-major as determined by parameter dira, which is either
CUSPARSE_DIRECTION ROW or CUSPARSE_DIRECTION_ COLUMN. The matrix type must
be CUSPARSE_MATRIX TYPE GENERAL, and the fill mode and diagonal type are ignored.
Function bsrsm02_solve () can support an arbitrary blockDim.

This function may be executed multiple times for a given matrix and a particular
operation type.

This function requires the buffer size returned by bsrsm2_bufferSize ().
The address of pBuffer must be multiple of 128 bytes. If it is not,
CUSPARSE_STATUS INVALID VALUE is returned.

Although bsrsm2_solve () can be done without level information, the user

still needs to be aware of consistency. If bsrsm2_analysis () is called with

policy CUSPARSE_SOLVE_POLICY USE_LEVEL, bsrsm2_solve () can be run

with or without levels. On the other hand, if bsrsm2_analysis () is called

with CUSPARSE_SOLVE_POLICY NO_LEVEL, bsrsm2_solve () can only accept
CUSPARSE_SOLVE_POLICY NO_LEVEL; otherwise, CUSPARSE_STATUS_INVALID VALUE
is returned.

Function bsrsm02_solve () has the same behavior as bsrsv02_solve(),
reporting the first numerical zero, including a structural zero. The user must call
cusparseXbsrsm2_query zero pivot() to know where the numerical zero is.

The motivation of transpose (X) is to improve the memory access of matrix X. The
computational pattern of transpose (X) with matrix X in column-major order is
equivalent to X with matrix X in row-major order.

In-place is supported and requires that X and Y point to the same memory block, and
1dx=1dy.

Input

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 117

cUSPARSE Level 3 Function Reference

handle handle to the cuSPARSE library context.

dira storage format of blocks, either
CUSPARSE_DIRECTION_ ROW Or
CUSPARSE_DIRECTION COLUMN.

transA the operation op (a).

transXyY the operation op (X) and op (Y).

mb number of block rows of matrix Aa.

n number of columns of matrix Y and op (X) .

nnzb number of non-zero blocks of matrix A.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL,
while the supported diagonal types
are CUSPARSE_DIAG_TYPE UNIT and
CUSPARSE_DIAG TYPE NON_UNIT.

bsrVala <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) non-zero blocks of matrix a.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix a; larger than
zero.

info structure initialized using
cusparseCreateBsrsm2Info().

X <type> right-hand-side array.

1dx leading dimension of X. If op (X) =X, 1dx>=k;
otherwise, 1dx>=n.

1ldy leading dimension of Y. If op (A)=A, then 1dc>=m.
If op(a) '=A, then 1dx>=k.

policy the supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE POLICY USE_LEVEL.

pBuffer buffer allocated by the user; the size is returned
by bsrsm2_bufferSize().

Output
Y <type> solution array of dimensions (1dy, n).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 118

cUSPARSE Level 3 Function Reference

CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m<0).
CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.
CUSPARSE_STATUS_MAPPING_ERROR the texture binding failed.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.
CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED| the matrix type is not supported.

8.9. cusparseXbsrsm2_zeroPivot()

cusparseStatus t
cusparseXbsrsm2 zeroPivot (cusparseHandle t handle,

bsrsm2Info t info,

int *position);
If the returned error code is CUSPARSE _STATUS_ZERO_PIVOT, position=j means
A(3j,J) is either a structural zero or a numerical zero (singular block). Otherwise
position=-1.

The position can be 0-base or 1-base, the same as the matrix.

Function cusparseXbsrsm2_zeroPivot () is a blocking call. It calls
cudaDeviceSynchronize () to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set the proper
mode with cusparseSetPointerMode ().

Input
handle handle to the cuSPARSE library context.
info info contains a structural zero or a
numerical zero if the user already called
bsrsm2 analysis() Or bsrsm2_solve().
Output
position if no structural or numerical zero, position is -1;

otherwise, if A(3,3) is missing or u(j,3j) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE info is not valid.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 119

Chapter 9.
CUSPARSE EXTRA FUNCTION REFERENCE

This chapter describes the extra routines used to manipulate sparse matrices.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 120

cuSPARSE Extra Function Reference

9.1. cusparse<t>csrgeam()

cusparseStatus t
cusparseXcsrgeamNnz (cusparseHandle t handle,
int m,
int n,
const cusparseMatDescr t descrA,
int nnzA,
const int *csrRowPtrA,
const int *csrColIndA,
const cusparseMatDescr t descrB,
int nnzB,
const int *csrRowPtrB,
const int *csrColIndB,
const cusparseMatDescr t descrC,
int *csrRowPtrC,
int *nnzTotalDevHostPtr)
cusparseStatus_t
cusparseScsrgeam (cusparseHandle t handle,
int m,
int n,
const float *alpha,
const cusparseMatDescr t descrA,
int nnzA,
const float *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
const float *beta,
const cusparseMatDescr t descrB,
int nnzB,
const float *csrValB,
const int *csrRowPtrB,
const int *csrColIndB,
const cusparseMatDescr t descrC,
float *csrValcC,
int *csrRowPtrC,
int *csrColIndC)
cusparseStatus_t
cusparseDcsrgeam (cusparseHandle t handle,
int m,
int n,
const double *alpha,
const cusparseMatDescr t descra,
int nnzA,
const double *csrValAh,
const int *csrRowPtrA,
const int *csrColIndA,
const double *beta,
const cusparseMatDescr t descrB,
int nnzB,
const double *csrValB,
const int *csrRowPtrB,
const int *csrColIndB,
const cusparseMatDescr t descrC,
double *csrvalcC,
int *csrRowPtrC,
int *csrColIndC)
cusparseStatus_t
cusparseCcsrgeam (cusparseHandle t handle,
int m,
int n,
const cuComplex *alpha,
const cusparseMatDescr t descrA,
int nnzA,
conetr c11Complexw *caerValA

cuSPARSE Extra Function Reference

This function performs following matrix-matrix operation

C=a+A+BxB

where A, B, and C are mxn sparse matrices (defined in CSR storage format by the

three arrays csrValA|csrValB|csrValC, csrRowPtrA|csrRowPtrB|csrRowPtrC,
and csrColIndA|csrColIndB|csrcolIndC respectively), and a and 3 are scalars.
Since A and B have different sparsity patterns, cuSPARSE adopts a two-step approach
to complete sparse matrix C. In the first step, the user allocates csrRowPtrC of m
+1elements and uses function cusparseXcsrgeamNnz () to determine csrRowPtrC
and the total number of nonzero elements. In the second step, the user gathers nnzC
(number of nonzero elements of matrix C) from either (nnzC=*nnzTotalDevHostPtr)
or (nnzC=csrRowPtrC (m) ~-csrRowPtrC (0)) and allocates csrValC, csrColIndC of
nnzC elements respectively, then finally calls function cusparse[S|D|C|Z]csrgeam ()
to complete matrix C.

The general procedure is as follows:

int baseC, nnzC;
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzC;
cusparseSetPointerMode (handle, CUSPARSE POINTER MODE HOST) ;
cudaMalloc ((void**) &csrRowPtrC, sizeof (int) * (m+1));
cusparseXcsrgeamNnz (handle, m, n,

descrA, nnzA, csrRowPtrA, csrColIndA,

descrB, nnzB, csrRowPtrB, csrColIndB,

descrC, csrRowPtrC, nnzTotalDevHostPtr);

if (NULL != nnzTotalDevHostPtr) {
nnzC = *nnzTotalDevHostPtr;

lelse{
cudaMemcpy (&nnzC, csrRowPtrC+m, sizeof (int), cudaMemcpyDeviceToHost) ;
cudaMemcpy (&baseC, csrRowPtrC, sizeof (int), cudaMemcpyDeviceToHost) ;
nnzC -= baseC;

}
cudaMalloc ((void**) &csrColIndC, sizeof (int) *nnzC);
cudaMalloc ((void**) &csrValC, sizeof (float) *nnzC);
cusparseScsrgeam (handle, m, n,

alpha,

descrA, nnzA,

csrValA, csrRowPtrA, csrColIndA,

beta,

descrB, nnzB,

csrValB, csrRowPtrB, csrColIndB,

descrC,

csrValC, csrRowPtrC, csrColIndC);

Several comments on csrgeam():

» The other three combinations, NT, TN, and TT, are not supported by cuSPARSE.

In order to do any one of the three, the user should use the routine esr2esc () to
convert Al Bto A”|B”.

» Only CUSPARSE MATRIX TYPE_GENERAL is supported. If either A or B is symmetric
or Hermitian, then the user must extend the matrix to a full one and reconfigure the
MatrixType field of the descriptor to CUSPARSE_MATRIX TYPE GENERAL.

» If the sparsity pattern of matrix C is known, the user can skip the call to function
cusparseXcsrgeamNnz (). For example, suppose that the user has an iterative
algorithm which would update & and B iteratively but keep the sparsity patterns.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 122

cuSPARSE Extra Function Reference

The user can call function cusparseXcsrgeamNnz () once to set up the sparsity
pattern of C, then call function cusparse[S|D|C|Z]geam() only for each iteration.

» The pointers alpha and beta must be valid.

» When alpha or beta is zero, it is not considered a special case by cuSPARSE. The
sparsity pattern of C is independent of the value of alpha and beta. If the user

wants C=0x A+ 1x B!, then esr2esc () is better than csrgeam ().

Input

handle handle to the cuSPARSE library context.

m number of rows of sparse matrix a,B,C.

n number of columns of sparse matrix a,B,C.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL only.

nnzA number of nonzero elements of sparse matrix A.

csrValA <type> array of nnzA (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix a.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnzA (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

beta <type> scalar used for multiplication. If beta is
zero, y does not have to be a valid input.

descrB the descriptor of matrix B. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL only.

nnzB number of nonzero elements of sparse matrix B.

csrValB <type> array of nnzB (= csrRowPtrB (m) -
csrRowPtrB (0)) nonzero elements of matrix B.

csrRowPtrB integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndB integer array of nnzB (= csrRowPtrB (m) -
csrRowPtrB (0)) column indices of the nonzero
elements of matrix B.

descrC the descriptor of matrix c. The supported matrix
type is CUSPARSE_MATRIX_ TYPE_GENERAL only.

Output

csrValC <type> array of nnzC (= csrRowPtrC (m) -
csrRowPtrC (0)) nonzero elements of matrix C.

csrRowPtrC integer array of m +1elements that contains the

start of every row and the end of the last row plus
one.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 123

cuSPARSE Extra Function Reference

csrColIndC integer array of nnzC (= csrRowPtrC (m) -
csrRowPtrC (0)) column indices of the nonzero
elements of matrixc.

nnzTotalDevHostPtr total number of nonzero elements in device or
host memory. It is equal to (csrRowPtrC (m) -
csrRowPtrC(0)).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,n,nnz<0,

IndexBase Of descrA,descrB,descrC is not
base-0 or base-1, or alpha or beta is nil)).

CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX TYPE NOT_SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 124

cUuSPARSE Extra Function

9.2. cusparse<t>csrgemmy()

cusparseStatus t

cusparseXcsrgemmNnz (cusparseHandle t handle,

cusparseStatus t

cusparseOperation t transA,
cusparseOperation t transB,

int m, N

int n,

int k,

const cusparseMatDescr t descrA,
const int nnzA, B

const int *csrRowPtrA,

const int *csrColIndA,

const cusparseMatDescr t descrB,
const int nnzB,

const int *csrRowPtrB,

const int *csrColIndB,

const cusparseMatDescr t descrC,
int *csrRowPtrC,

int *nnzTotalDevHostPtr)

cusparseScsrgemm (cusparseHandle t handle,

cusparseStatus_t

cusparseOperation t transa,
cusparseOperation t transB,

int m, -

int n,

int k,

const cusparseMatDescr t descrA,
const int nnzA, -

const float *csrVala,

const int *csrRowPtrA,

const int *csrColIndA,

const cusparseMatDescr t descrB,
const int nnzB,

const float *csrValB,

const int *csrRowPtrB,

const int *csrColIndB,

const cusparseMatDescr t descrC,
float *csrvalC,

const int *csrRowPtrC,

int *csrColIndC)

cusparseDcsrgemm (cusparseHandle t handle,

cusparseStatus_t

cusparseOperation t transA,
cusparseOperation t transB,

int m, -

int n,

int k,

const cusparseMatDescr t descrA,
const int nnzA, -

const double *csrValA,

const int *csrRowPtrA,

const int *csrColIndA,

const cusparseMatDescr t descrB,
const int nnzB,

const double *csrValB,

const int *csrRowPtrB,

const int *csrColIndB,

const cusparseMatDescr t descrC,
double *csrVal(C,

const int *csrRowPtrC,

int *csrColIndC)

cusparseCcsrgemm (cusparseHandle t handle,

~c1eparaeecepneration + tranceA

Reference

cuSPARSE Extra Function Reference

This function performs following matrix-matrix operation:

C=op(A) < op(B)

where op(A), op(B) and C are mxk, kxn, and mxn sparse matrices (defined in CSR storage
format by the three arrays csrvalA|csrValB|csrValC, csrRowPtrA|csrRowPtrB|
csrRowPtrC, and csrColIndA|csrColIndB|csrcolIndC respectively. The operation
is defined by

| { if trans == CUSPARSE,_ OPERATION NON_TRANSPOSE
OPA)=\ AT if trans 1= CUSPARSE_OPERATION_NON_TRANSPOSE

There are four versions, NN, NT, TN, and TT. NN stands for C=A*B, NT stands for
C=A*BT, TN stands for C = A”*B and TT stands for C= A"*A”.

The cuSPARSE library adopts a two-step approach to complete sparse matrix. In

the first step, the user allocates csrRowPtrC of m+1 elements and uses the function
cusparseXcsrgemmNnz () to determine esrRowPtrC and the total number of nonzero
elements. In the second step, the user gathers nnzC (the number of nonzero elements
of matrix C) from either (nnzC=*nnzTotalDevHostPtr) or (nnzC=csrRowPtrC (m) -
csrRowPtrC (0)) and allocates esrvalC and esrColIndC of nnzC elements
respectively, then finally calls function cusparse[S|D|C|Z]csrgemm() to complete
matrix C.

The general procedure is as follows:

int baseC, nnzC;
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzC;
cusparseSetPointerMode (handle, CUSPARSE POINTER MODE HOST) ;
cudaMalloc ((void**) &csrRowPtrC, 51zeof(1nt) (m+l))
cusparseXcsrgemmNnz (handle, transA, transB, m, n, k,
descrA, nnzA, csrRowPtrA, csrCollIndA,
descrB, nnzB, csrRowPtrB, csrColIndB,
descrC, csrRowPtrC, nnzTotalDevHostPtr);

if (NULL != nnzTotalDevHostPtr) {
nnzC = *nnzTotalDevHostPtr;

}else(
cudaMemcpy (&nnzC, csrRowPtrC+m, sizeof (int), cudaMemcpyDeviceToHost) ;
cudaMemcpy (&baseC, csrRowPtrC, sizeof (int), cudaMemcpyDeviceToHost) ;
nnzC -= baseC;

}
cudaMalloc ((void**) &csrColIndC, sizeof (int) *nnzC) ;
cudaMalloc ((void**) &csrvValC, sizeof (float) *nnzC);
cusparseScsrgemm (handle, transA, transB, m, n, Xk,

descrA, nnzA,

csrValA, csrRowPtrA, csrColIndA,

descrB, nnzB,

csrValB, csrRowPtrB, csrColIndB,

descrC,

csrValC, csrRowPtrC, csrColIndC);

Several comments on csrgemm () :

» Only the NN version is implemented. For the NT version, matrix C is converted to

B by csr2esc () and then call the NN version. The same technique applies to TN
and TT. The esr2csc () routine allocates working space implicitly; if the user needs
memory management, then the NN version is better.

» The NN version needs working space of size nnzA integers at least.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 126

cuSPARSE Extra Function Reference

» Only CUSPARSE_MATRIX TYPE_ GENERAL is supported. If either A or B is symmetric
or Hermitian, the user must extend the matrix to a full one and reconfigure the
MatrixType field descriptor to CUSPARSE_MATRIX TYPE_ GENERAL.

» Only devices of compute capability 2.0 or above are supported.

Input

handle handle to the cuSPARSE library context.

transA the operation op(A)

transB the operation op(B)

m number of rows of sparse matrix op(4) and c.

n number of columns of sparse matrix op(B) and c.

k number of columns/rows of sparse matrix op(4) /
op(B).

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL only.

nnzA number of nonzero elements of sparse matrix a.

csrVala <type> array of nnzA (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix a.

csrRowPtrA integer array of m+1elements that contains
the start of every row and the end of the
last row plus one. m=m if transa ==
CUSPARSE_OPERATION NON_TRANSPOSE,
otherwise m=k.

csrColIndA integer array of nnzA (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

descrB the descriptor of matrix B. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL only.

nnzB number of nonzero elements of sparse matrix B.

csrValB <type> array of nnzB nonzero elements of matrix
B.

csrRowPtrB integer array of k+1elements that contains
the start of every row and the end of
the last row plus one. k=k if transB ==
CUSPARSE_OPERATION NON_TRANSPOSE,
otherwise k=n

csrColIndB integer array of nnzB column indices of the
nonzero elements of matrix B.

descrC the descriptor of matrix c. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL only.

Output
csrValC <type> array of nnzC (= csrRowPtrC (m) -

csrRowPtrC (0)) nonzero elements of matrix C.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 127

cuSPARSE Extra Function Reference

csrRowPtrC integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndC integer array of nnzC (= csrRowPtrC (m) -

csrRowPtrC (0)) column indices of the nonzero
elements of matrix c.

nnzTotalDevHostPtr total number of nonzero elements in device or
host memory. It is equal to (csrRowPtrC (m) -
csrRowPtrC(0)).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID_ VALUE invalid parameters were passed (m,n, k<0;

IndexBase Of descrA,descrB,descrC is not
base-0 or base-1; or alpha or beta is nil)).

CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_ TYPE NOT_ SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 128

cusparseStatus t
cusparseScsrgemm2 bufferSizeExt (cusparseHandle t handle,

cusparseStatus t
cusparseDcsrgemm2 bufferSizeExt (cusparseHandle t handle,

cusparseStatus_t
cusparseCcsrgemm2 bufferSizeExt (cusparseHandle t handle,

cUuSPARSE Extra Function

9.3. cusparse<t>csrgemm2()

int m,

int n,

int k,

const float *alpha,

const cusparseMatDescr t descrAh,
int nnzA, -

const int *csrRowPtrA,

const int *csrColIndA,

const cusparseMatDescr t descrB,
int nnzB, -

const int *csrRowPtrB,

const int *csrColIndB,

const float *beta,

const cusparseMatDescr t descrD,
int nnzD,

const int *csrRowPtrD,

const int *csrColIndD,
csrgemm2Info t info,

size t *pBufferSizeInBytes);

int m,

int n,

int k,

const double *alpha,

const cusparseMatDescr t descrAh,
int nnzA, -

const int *csrRowPtrA,

const int *csrColIndA,

const cusparseMatDescr t descrB,
int nnzB, -

const int *csrRowPtrB,

const int *csrColIndB,

const double *beta,

const cusparseMatDescr t descrD,
int nnzD,

const int *csrRowPtrD,

const int *csrColIndD,
csrgemm2Info t info,

size t *pBufferSizelInBytes);

int m,

int n,

int k,

const cuComplex *alpha,

const cusparseMatDescr t descrA,
int nnzA, -

const int *csrRowPtrA,

const int *csrColIndA,

const cusparseMatDescr t descrB,
int nnzB, -

const int *csrRowPtrB,

const int *csrColIndB,

const cuComplex *beta,

const cusparseMatDescr t descrD,
int nnzD,

const int *csrRowPtrD,

conet 1int *ecaevrCol TndD .

Reference

cuSPARSE Extra Function Reference

This function performs following matrix-matrix operation:

C=alphaxA«B+betaxD
where A, B, D and C are mxk, kxn, mxn and mxn sparse matrices (defined in CSR storage
format by the three arrays csrvalA|csrValB|csrValD|csrValC, csrRowPtrA |

csrRowPtrB|csrRowPtrD | csrRowPtrC, and csrColIndA|csrColIndB|
csrColIndD |csrcolIndC respectively.

We provide csrgemm2 as a generalization of csrgemm. It provides more operations in
terms of alpha and beta. For example, C = -A*B+D can be done by csrgemm2.

The csrgemm2 uses alpha and beta to support the following operations:

alpha beta operation

NULL NULL invalid

NULL INULL C = beta*D, A and B are not used
'NULL NULL C = alpha*A*B, D is not used
'NULL 'NULL C = alpha*A*B + beta*D

The numerical value of alpha and beta only affects the numerical values of C, not its
sparsity pattern. For example, if alpha and beta are not zero, the sparsity pattern of C is
union of A*B and D, independent of numerical value of alpha and beta.

The following table shows different operations according to the value of m, n and k

m,n,k operation
m<0 or n <0 or k<0 invalid
misQornis0 do nothing
m >0 and n >0 and k is 0 invalid if beta is zero;
C = beta*D if beta is not zero.

m >0 and n >0 and k >0 C = beta*D if alpha is zero.
C = alpha*A*B if beta is zero.
C = alpha*A*B + beta*D if alpha and beta are not zero.

This function requires the buffer size returned by csrgemm2_bufferSizeExt ().
The address of pBuffer must be multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_ VALUE is returned.

The cuSPARSE library adopts a two-step approach to complete sparse matrix. In

the first step, the user allocates csrRowPtrC of m+1 elements and uses the function
cusparseXcsrgemm2Nnz () to determine esrRowPtrC and the total number of nonzero
elements. In the second step, the user gathers nnzC (the number of nonzero elements

of matrix C) from either (nnzC=*nnzTotalDevHostPtr) or (nnzC=csrRowPtrC (m) -
csrRowPtrC (0)) and allocates esrvalC and esrColIndC of nnzC elements
respectively, then finally calls function cusparse[S|D|C| 2] csrgemm2 () to evaluate
matrix C.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 130

cuSPARSE Extra Function Reference

The general procedure of C=-A*B+D is as follows:

// assume matrices A, B and D are ready.
int baseC, nnzC;

csrgemm2Info t info = NULL;

size t bufferSize;

void *buffer = NULL;

// nnzTotalDevHostPtr points to host memory

int *nnzTotalDevHostPtr = &nnzC;
double alpha = -1.0;
double beta = 1.0;

cusparseSetPointerMode (handle, CUSPARSE POINTER MODE HOST) ;

// step 1l: create an opaque structure
cusparseCreateCsrgemm2Info (&info) ;

// step 2: allocate buffer for csrgemm2Nnz and csrgemm?2
cusparseDcsrgemm2 bufferSizeExt (handle, m, n, k, &alpha,
descrA, nnzA, csrRowPtrA, csrColIndA,
descrB, nnzB, csrRowPtrB, csrColIndB,
descrD, nnzD, csrRowPtrD, csrColIndD,
&beta,
info,
&bufferSize);
cudaMalloc (&buffer, bufferSize);

// step 3: compute csrRowPtrC
cudaMalloc ((void**) &csrRowPtrC, sizeof (int) * (m+1));
cusparseXcsrgemm2Nnz (handle, m, n, k,
descrA, nnzA, csrRowPtrA, csrColIndA,
descrB, nnzB, csrRowPtrB, csrColIndB,
descrD, nnzD, csrRowPtrD, csrColIndD,
descrC, csrRowPtrC, nnzTotalDevHostPtr,
info, buffer);

if (NULL != nnzTotalDevHostPtr) {
nnzC = *nnzTotalDevHostPtr;
lelse{

cudaMemcpy (&nnzC, csrRowPtrC+m, sizeof (int), cudaMemcpyDeviceToHost) ;
cudaMemcpy (&baseC, csrRowPtrC, sizeof (int), cudaMemcpyDeviceToHost) ;
nnzC -= baseC;

}

// step 4: finish sparsity pattern and value of C
cudaMalloc ((void**) &csrColIndC, sizeof (int) *nnzC) ;
cudaMalloc ((void**) &csrValC, sizeof (double) *nnzC) ;
// Remark: set csrValC to null if only sparsity pattern is required.
cusparseDcsrgemm?2 (handle, m, n, k, &alpha,
descrA, nnzA, csrValA, csrRowPtrA, csrColIndA,
descrB, nnzB, csrValB, csrRowPtrB, csrColIndB,
descrD, nnzD, c¢srValD, csrRowPtrD, csrColIndD,
&beta,
descrC, csrValC, csrRowPtrC, csrColIndC,
info, buffer);

// step 5: destroy the opaque structure
cusparseDestroyCsrgemm2Info (info) ;

Several comments on csrgemm2 ():

» Only the NN version is supported. For other modes, the user has to transpose A or B
explicitly.

» Only CUSPARSE MATRIX TYPE_GENERAL is supported. If either A or B is symmetric
or Hermitian, the user must extend the matrix to a full one and reconfigure the
MatrixType field descriptor to CUSPARSE_MATRIX TYPE GENERAL.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 131

cuSPARSE Extra Function Reference

» if esrValcCis zero, only sparisty pattern of C is calculated.
» Only devices of compute capability 2.0 or above are supported.

Input

handle handle to the cuSPARSE library context.

m number of rows of sparse matrix A, b and C.

n number of columns of sparse matrix B, D and C.

k number of columns/rows of sparse matrix A / B.

alpha <type> scalar used for multiplication.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL only.

nnzA number of nonzero elements of sparse matrix a.

csrValA <type> array of nnzA nonzero elements of matrix
A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnza column indices of the
nonzero elements of matrix A.

descrB the descriptor of matrix B. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL only.

nnzB number of nonzero elements of sparse matrix B.

csrValB <type> array of nnzB nonzero elements of matrix
B.

csrRowPtrB integer array of k+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndB integer array of nnzB column indices of the
nonzero elements of matrix B.

descrD the descriptor of matrix D. The supported matrix
type is CUSPARSE_MATRIX_ TYPE_GENERAL only.

nnzD number of nonzero elements of sparse matrix D.

csrValD <type> array of nnzD nonzero elements of matrix
D.

csrRowPtrD integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndD integer array of nnzD column indices of the
nonzero elements of matrix D.

beta <type> scalar used for multiplication.

descrC the descriptor of matrix c. The supported matrix
type is CUSPARSE_MATRIX_ TYPE_GENERAL only.

info structure with information used in csrgemm2Nnz

and csrgemm2.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 132

cuSPARSE Extra Function Reference

pBuffer buffer allocated by the user; the size is returned
by csrgemm?2_bufferSizeExt.

Output

csrValcC <type> array of nnzC nonzero elements of matrix
C.

csrRowPtrC integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndC integer array of nnzC column indices of the
nonzero elements of matrix c.

pBufferSizeInBytes number of bytes of the buffer used in
csrgemm2Nnnz and csrgemm?2.

nnzTotalDevHostPtr total number of nonzero elements in device or

host memory. It is equal to (csrRowPtrC (m) -
csrRowPtrC(0)).

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,n, k<0;

IndexBase Of descrA,descrB,descrD,descrC is
not base-0 or base-1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 133

Chapter 10.
CUSPARSE PRECONDITIONERS REFERENCE

This chapter describes the routines that implement different preconditioners.

In particular, the incomplete factorizations are implemented in two phases. First,

during the analysis phase, the sparse triangular matrix is analyzed to determine the
dependencies between its elements by calling the appropriate csrsv_analysis ()
function. The analysis is specific to the sparsity pattern of the given matrix and the
selected cusparseOperation_t type. The information from the analysis phase is stored
in the parameter of type cusparseSolveAnalysisInfo_t that has been initialized
previously with a call to cusparseCreateSolveAnalysisInfo().

Second, during the numerical factorization phase, the given coefficient matrix is
factorized using the information stored in the cusparseSolveAnalysisInfo_t
parameter by calling the appropriate ecsrilu0 () or esricO () function.

The analysis phase is shared across the sparse triangular solve, and the incomplete
factorization and must be performed only once. The resulting information can be passed
to the numerical factorization and the sparse triangular solve multiple times.

Finally, once the incomplete factorization and all the sparse triangular
solves have completed, the opaque data structure pointed to by the
cusparseSolveAnalysisInfo_t parameter can be released by calling
cusparseDestroySolveAnalysisInfo ().

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 134

cuSPARSE Preconditioners Reference

10.1. cusparse<t>csric0()

cusparseStatus t
cusparseScsricO (cusparseHandle t handle,
cusparseOperation t trans,
int m,
const cusparseMatDescr t descrA,
float *csrvall,
const int *csrRowPtrA,
const int *csrColIndA,
cusparseSolveAnalysisInfo t info)
cusparseStatus_t
cusparseDcsricO (cusparseHandle t handle,
cusparseOperation t trans,
int m,
const cusparseMatDescr t descrA,
double *csrVallM,
const int *csrRowPtrA,
const int *csrColIndA,
cusparseSolveAnalysisInfo t info)
cusparseStatus t
cusparseCcsricO (cusparseHandle t handle,
cusparseOperation t trans,
int m,
const cusparseMatDescr t descrA,
cuComplex *csrVvalM,
const int *csrRowPtrA,
const int *csrColIndA,
cusparseSolveAnalysisInfo t info)
cusparseStatus_t
cusparsezZcsricO (cusparseHandle t handle,
cusparseOperation t trans,
int m,
const cusparseMatDescr t descrA,
cuDoubleComplex *csrVall,
const int *csrRowPtrA,
const int *csrColIndA,
cusparseSolveAnalysisInfo t info)

This function computes the incomplete-Cholesky factorization with 0 fill-in and no
pivoting:

op(4)=RTR

Aisanm x m Hermitian/symmetric positive definite sparse matrix that is defined in CSR
storage format by the three arrays csrvalM, csrRowPtra, and csrColIndA; and

A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE
op(A) = AT if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

Notice that only a lower or upper Hermitian/symmetric part of the matrix A is actually
stored. It is overwritten by the lower or upper triangular factors R’ and R, respectively.

A call to this routine must be preceded by a call to the csrsv_analysis () routine.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 135

cuSPARSE Preconditioners Reference

The matrix descriptor for esrsv_analysis () and esric0 () must be the same.
Otherwise, runtime error would occur.

This function requires some extra storage. It is executed asynchronously with respect to
the host and may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
trans the operation op (4).
m number of rows and columns of matrix A.
descrA the descriptor of matrix A. The supported matrix
types are CUSPARSE_MATRIX TYPE SYMMETRIC
and CUSPARSE_MATRIX TYPE HERMITIAN.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.
csrValM <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.
csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.
csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.
info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).
Output
csrvValM <type> matrix containing the incomplete-Cholesky
lower or upper triangular factor.
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.
CUSPARSE_STATUS_MATRIX TYPE_NOT_ SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 136

cuSPARSE Preconditioners Reference

10.2. cusparse<t>csric02_bufferSize()

cusparseStatus t
cusparseScsric02 bufferSize (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrAh,
float *csrVvalA,
const int *csrRowPtrA,
const int *csrColIndA,
csricO02Info t info,
int *pBufferSizeInBytes);

cusparseStatus t
cusparseDcsric02 bufferSize (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csricO02Info t info,
int *pBufferSizeInBytes)

cusparseStatus t
cusparseCcsric02 bufferSize (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrAh,
cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csricO02Info t info,
int *pBufferSizeInBytes);

cusparseStatus_ t
cusparseZcsric02 bufferSize (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
cuDoubleComplex *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
csricO2Info t info,
int *pBufferSizeInBytes) ;

This function returns size of buffer used in computing the incomplete-Cholesky
factorization with 0 fill-in and no pivoting:

A=LLH

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrVall, csrRowPtra, and esrColIndA.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 137

cuSPARSE Preconditioners Reference

The buffer size depends on dimension m and nnz, the number of nonzeros of the matrix.
If the user changes the matrix, it is necessary to call csric02_bufferSize () again to
have the correct buffer size; otherwise, a segmentation fault may occur.

Input

handle handle to the cuSPARSE library context.

m number of rows and columns of matrix A.

nnz number of nonzeros of matrix a.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix a.

Output

info record internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in

csric02_analysis() and esric02().

Status Returned

CUSPARSE STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m,nnz<=0), base
index is not O or 1.

CUSPARSE_STATUS_ARCH_MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE STATUS_MATRIX TYPE NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 138

cuSPARSE Preconditioners Reference

10.3. cusparse<t>csric02_analysis()

cusparseStatus t
cusparseScsric02 analysis (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descra,
const float *csrValAh,
const int *csrRowPtrA,
const int *csrColIndA,
csric02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseDcsric02 analysis (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
const double *csrValAh,
const int *csrRowPtrA,
const int *csrColIndA,
csric02Info_t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseCcsric02 analysis (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csric02Info_t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t
cusparseZcsric02 analysis (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descra,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csric02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

This function performs the analysis phase of the incomplete-Cholesky factorization with
0 fill-in and no pivoting:

A=LLH

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 139

cuSPARSE Preconditioners Reference

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrVall, csrRowPtra, and csrColIndA.

This function requires a buffer size returned by esric02_bufferSize (). The address
of pBuffer must be multiple of 128 bytes. If not, CUSPARSE_STATUS INVALID_ VALUE is
returned.

Function esric02_analysis () reports a structural zero and computes level
information stored in the opaque structure info. The level information can extract more
parallelism during incomplete Cholesky factorization. However esric02 () can be done
without level information. To disable level information, the user must specify the policy
of csric02_analysis() and csric02 () as CUSPARSE SOLVE_POLICY NO_LEVEL.

Function esric02_analysis () always reports the first structural zero, even
if the policy is CUSPARSE_SOLVE_POLICY_ NO_LEVEL. The user needs to call
cusparseXcsric02_zeroPivot () to know where the structural zero is.

It is the user's choice whether to call esric02 () if csric02_analysis () reports
a structural zero. In this case, the user can still call esric02 (), which will return
a numerical zero at the same position as the structural zero. However the result is
meaningless.

Input

handle handle to the cuSPARSE library context.

m number of rows and columns of matrix A.

nnz number of nonzeros of matrix a.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix a.

info structure initialized using
cusparseCreateCsric02Info ().

policy the supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE POLICY USE_LEVEL.

pBuffer buffer allocated by the user; the size is returned
by csric02_bufferSize().

Output

info number of bytes of the buffer used in

csric02_analysis() and csric02().

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 140

cuSPARSE Preconditioners Reference

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 141

cuSPARSE Preconditioners Reference

10.4. cusparse<t>csric02()

cusparseStatus t

cusparseScsric02 (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
float *csrValA valM,
const int *csrRowPtrA,
const int *csrColIndA,
csricO02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t

cusparseDcsric02 (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
double *csrValA vallM,
const int *csrRowPtrA,
const int *csrColIndA,
csric02Info_t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t

cusparseCcsric02 (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
cuComplex *csrValA valM,
const int *csrRowPtrA,
const int *csrColIndA,
csricO02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t

cusparseZcsric02 (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descra,
cuDoubleComplex *csrValA vall,
const int *csrRowPtrA,
const int *csrColIndA,
csricO02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

This function performs the solve phase of the computing the incomplete-Cholesky
factorization with 0 fill-in and no pivoting:

A=LLH

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 142

cuSPARSE Preconditioners Reference

This function requires a buffer size returned by csric02_bufferSize (). The address
of pBuffer must be a multiple of 128 bytes. If not, CUSPARSE_STATUS_INVALID_ VALUE
is returned.

Although esric02 () can be done without level information, the user still

needs to be aware of consistency. If csric02_analysis () is called with

policy CUSPARSE_SOLVE_POLICY USE_LEVEL, csric02 () can be run with

or without levels. On the other hand, if csric02_analysis () is called

with CUSPARSE_SOLVE_POLICY NO_LEVEL, csric02 () can only accept
CUSPARSE_SOLVE_POLICY NO_LEVEL; otherwise, CUSPARSE_STATUS INVALID VALUE
is returned.

Function esric02 () reports the first numerical zero, including a structural zero. The
user must call cusparseXcsric02_zeroPivot () to know where the numerical zero is.

Function esric02 () only takes the lower triangular part of matrix A to perform
factorization. The matrix type must be CUSPARSE_MATRIX TYPE GENERAL, the fill mode
and diagonal type are ignored, and the strictly upper triangular part is ignored and
never touched. It does not matter if A is Hermitian or not. In other words, from the point
of view of esric02 () Ais Hermitian and only the lower triangular part is provided.

In practice, a positive definite matrix may not have incomplete cholesky
factorization. To the best of our knowledge, only matrix M can guarantee the
existence of incomplete cholesky factorization. If esric02 () failed cholesky
factorization and reported a numerical zero, it is possible that incomplete cholesky
factorization does not exist.

For example, suppose Ais arealm x mmatrix, the following code solves the
precondition system M*y = x where Mis the product of Cholesky factorization L and its
transpose.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 143

//

// Assumption:

// - handle is already created by c
// - (d_csrRowPtr, d csrColInd, d c
// - d x is right hand side vector
// - d_y is solution vector on devi
// - d z is intermediate result on
cusparseMatDescr t descr M = 0;
cusparseMatDescr t descr L = 0;

csric02Info t info_M —N0J;
csrsv2Info t info L 0;
csrsv2Info t info Lt = 0;

int pBufferSize M;
int pBufferSize L;
int pBufferSize Lt;
int pBufferSize;
void *pBuffer 0;
int structural zero;
int numerical zero;
const double alpha
const
const
const
const
const

1og

’

cusparseOperation t trans L
cusparseOperation t trans Lt

1/
//
//

step 1: create a descriptor whic
matrix M is base-1

matrix L is base-1

// matrix L is lower triangular
// matrix L has non-unit diagonal
cusparseCreateMatDescr(&descr_M);

cusparseSolvePolicy t policy |
cusparseSolvePolicy t policy
cusparseSolvePolicy t policy |

cuSPARSE Preconditioners Reference

M=LLH

Suppose that A is m x m sparse matrix represented by CSR format,

usparseCreate (),

srVal) is CSR of A on device memory,
on device memory,

ce memory.

device memory.

M = CUSPARSE_SOLVE_POLICY NO_LEVEL;
L = CUSPARSE SOLVE POLICY NO LEVEL;
Lt = CUSPARSE SOLVE POLICY USE LEVEL;

= CUSPARSE OPERATION NON TRANSPOSE;
CUSPARSE OPERATION TRANSPOSE;

h contains

cusparseSetMatIndexBase (descr M, CUSPARSE INDEX BASE ONE) ;

cusparseSetMatType (descr M, CUSPARS

cusparseCreateMatDescr(&descr_L);

E MATRIX TYPE GENERAL);

cusparseSetMatIndexBase (descr L, CUSPARSE INDEX BASE ONE) ;

cusparseSetMatType (descr L, CUSPARS
cusparseSetMatFillMode (descr L, CUS
cusparseSetMatDiagType (descr L, CUS

// step 2:

E MATRIX TYPE GENERAL);
PARSE FILL MODE LOWER) ;
PARSE _DIAG_TYPE NON_UNIT) ;

create a empty info structure

// we need one info for csric02 and two info's for csrsv2

cusparseCreateCsric02Info (&info M) ;
cusparseCreateCsrsv2Info (&info L) ;
cusparseCreateCsrsv2Info (&info Lt);

// step 3:
buffer
cusparseDcsric02 bufferSize (handle,
descr M, d csrVal, d csrRowPtr,
cusparseDcsrsv2 bufferSize (handle,
descr L, d csrVal, d csrRowPtr,
cusparseDcsrsv2 bufferSize (handle,
descr L, d csrVal, d csrRowPtr,

query how much memory us

pBufferSize

// pBuffer returned by cudaMalloc i
cudaMalloc ((void**) &pBuffer,

// step 4: perform analysis of incomplete
perform analysis of triangular
perform analysis of triangular
// The lower triangular part of M has the

1/
//

max (bufferSize M, max(pBufferSize I,

ed in csric02 and csrsv2, and allocate the
m, nnz,

d csrColInd, info M,
trans L, m, nnz,

d csrColInd, info L,
trgns_Lt, m, nnz, -
d csrCollInd, info Lt, &¢pBufferSize Lt);

&bufferSize M);

&pBufferSize L);

pBufferSize Lt));

s automatically aligned to 128 bytes.

pBufferSize) ;

Cholesky on M
solve on L
solve on L'

same sparsity pattern as L, so

// we can do analysis of csric02 and csrsv2 simultaneously.

cusparseDcsric02 analysis (handle, m, nnz, descr M,

d csrval, d csrRowPtr, d csrCol
policy M, pBuffer);
status

G~

1 /NTTV TN AT MTT AR FATTA TN TN TTTAAM

cusparseXcsric(02 zeroPivot (handle,

Ind, info M,

info M, é&structural zero);

T

cuSPARSE Preconditioners Reference

Input
handle handle to the cuSPARSE library context.
m number of rows and columns of matrix A.
nnz number of nonzeros of matrix A.
descrA the descriptor of matrix A. The supported matrix

type is CUSPARSE MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrValA valM

<type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix a.

csrRowPtrA

integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA

integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

info

structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

policy

the supported policies are
CUSPARSE_SOLVE POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.

pBuffer

buffer allocated by the user; the size is returned
by esric02_bufferSize().

Output

csrValA valM

<type> matrix containing the incomplete-Cholesky
lower triangular factor.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 145

cuSPARSE Preconditioners Reference

10.5. cusparseXcsric02_zeroPivot()

cusparseStatus_t
cusparseXcsric02 zeroPivot (cusparseHandle t handle,
csric02Info t info,
int *position);
If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A (J,3) has either a structural zero or a numerical zero; otherwise, position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXcsric02_zeroPivot () is a blocking call. It calls
cudaDeviceSynchronize () to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set proper
mode with cusparseSetPointerMode ().

Input
handle handle to the cuSPARSE library context.
info info contains structural zero or numerical zero if
the user already called esric02_analysis () or
csric02().
Output
position if no structural or numerical zero, position is -1;
otherwise, if A(3,3) is missing or L. (3, 3) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID_ VALUE info is not valid.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 146

cuSPARSE Preconditioners Reference

10.6. cusparse<t>csrilu0()

cusparseStatus t
cusparseScsrilul (cusparseHandle t handle,
cusparseOperation t trans,
int m, -
const cusparseMatDescr t descrA,
float *csrVall,
const int *csrRowPtrA,
const int *csrColIndA,
cusparseSolveAnalysisInfo t info)
cusparseStatus_t
cusparseDcsrilul (cusparseHandle t handle,
cusparseOperation t trans,
int m,
const cusparseMatDescr t descrA,
double *csrValM,
const int *csrRowPtrA,
const int *csrColIndA,
cusparseSolveAnalysisInfo t info)
cusparseStatus t
cusparseCcsrilul (cusparseHandle t handle,
cusparseOperation t trans,
int m, -
const cusparseMatDescr t descrA,
cuComplex *csrVvVall,
const int *csrRowPtrA,
const int *csrColIndA,
cusparseSolveAnalysisInfo t info)
cusparseStatus_t
cusparseZcsrilul (cusparseHandle t handle,
cusparseOperation t trans,
int m, B
const cusparseMatDescr t descrA,
cuDoubleComplex *csrVallM,
const int *csrRowPtrA,
const int *csrColIndA,
cusparseSolveAnalysisInfo t info)

This function computes the incomplete-LU factorization with 0 fill-in and no pivoting;

op(A) = LU

Aisanm x msparse matrix that is defined in CSR storage format by the three arrays
csrValM, csrRowPtrA, and esrColIndA; and
A if trans == CUSPARSE_OPERATION_NON_TRANSPOSE

op(4) = A" if trans == CUSPARSE_OPERATION_TRANSPOSE
A" if trans == CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE

Notice that the diagonal of lower triangular factor L is unitary and need not be stored.
Therefore, the input matrix is overwritten with the resulting lower and upper triangular
factors L and U, respectively.

A call to this routine must be preceded by a call to the csrsv_analysis () routine.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 147

cuSPARSE Preconditioners Reference

The matrix descriptor for esrsv_analysis () and esrilu0 () must be the same.
Otherwise, runtime error would occur.

This function requires some extra storage. It is executed asynchronously with respect to
the host and may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
trans the operation op (4).
m number of rows and columns of matrix A.
descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.
csrValM <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.
csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.
csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.
info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).
Output
csrvValM <type> matrix containing the incomplete-LU lower
and upper triangular factors.
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.
CUSPARSE_STATUS_MATRIX TYPE_NOT_ SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 148

cuSPARSE Preconditioners Reference

10.7. cusparse<t>csrilu02_numericBoost()

cusparseStatus t
cusparseScsrilu02 numericBoost (cusparseHandle t handle,
csrilu02Info t info,
int enable boost,
double *tol,
float *boost val);

cusparseStatus t
cusparseDcsrilu02 numericBoost (cusparseHandle t handle,
csrilul02Info t info,
int enable boost,
double *tol,
double *boost val);

cusparseStatus t
cusparseCcsrilu02 numericBoost (cusparseHandle t handle,
csrilul02Info t info,
int enable boost,
double *tol,
cuComplex *boost val);

cusparseStatus t
cusparsezZcsrilu02 numericBoost (cusparseHandle t handle,
csrilu02Info t info,
int enable boost,
double *tol,
cuDoubleComplex *boost val);

The user can use a boost value to replace a numerical value in incomplete LU
factorization. The tol is used to determine a numerical zero, and the boost_val is used
to replace a numerical zero. The behavior is

if tol >= fabs(A(j,j)), thenA(j,j)=boost_val.

To enable a boost value, the user has to set parameter enable_boost to 1 before calling
csrilu02 (). To disable a boost value, the user can call ecsrilu02_numericBoost ()
again with parameter enable_boost=0.

If enable boost=0, tol and boost_val are ignored.

Both tol and boost_val can be in the host memory or device memory. The user can set
the proper mode with cusparseSetPointerMode ().

Input
handle handle to the cuSPARSE library context.
info structure initialized using
cusparseCreateCsrilu02Info().
enable_boost disable boost by enable_boost=0; otherwise,
boost is enabled.
tol tolerance to determine a numerical zero.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 149

cuSPARSE Preconditioners Reference

boost_val boost value to replace a numerical zero.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE info or pointer mode is not valid.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

10.8. cusparse<t>csrilu02_bufferSize()

cusparseStatus_t
cusparseScsrilu02 bufferSize (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrilu02Info_t info,
int *pBufferSizeInBytes) ;

cusparseStatus_t
cusparseDcsrilu02 bufferSize (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrilu02Info_t info,
int *pBufferSizeInBytes) ;

cusparseStatus_t
cusparseCcsrilu02 bufferSize (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrilu02Info_t info,
int *pBufferSizeInBytes);

cusparseStatus_t
cusparsezZcsrilu02 bufferSize (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrilu02Info_t info,
int *pBufferSizeInBytes);

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 150

cuSPARSE Preconditioners Reference

This function returns size of the buffer used in computing the incomplete-LU
factorization with 0 fill-in and no pivoting:

A=LU
A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrVall, csrRowPtr3, and esrColIndA.

The buffer size depends on the dimension m and nnz, the number of nonzeros of the
matrix. If the user changes the matrix, it is necessary to call ecsrilu02_bufferSize ()
again to have the correct buffer size; otherwise, a segmentation fault may occur.

Input
handle handle to the cuSPARSE library context.
m number of rows and columns of matrix A.
nnz number of nonzeros of matrix a.
descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.
csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.
csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.
csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix a.
Output
info record internal states based on different
algorithms.
pBufferSizeInBytes number of bytes of the buffer used in
csrilul02_analysis() and csrilu02().
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,nnz<=0), base
index is not O or 1.
CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.
CUSPARSE_STATUS_MATRIX TYPE_NOT_SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 151

cuSPARSE Preconditioners Reference

10.9. cusparse<t>csrilu02_analysis()

cusparseStatus t
cusparseScsrilu02 analysis (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descra,
const float *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
csrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseDcsrilu02 analysis (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
const double *csrValAh,
const int *csrRowPtrA,
const int *csrColIndA,
csrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseCcsrilu02 analysis (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t
cusparseZcsrilu02 analysis (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
csrilul02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

This function performs the analysis phase of the incomplete-LU factorization with 0 fill-
in and no pivoting:

A=LU

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 152

cuSPARSE Preconditioners Reference

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays

csrVall, csrRowPtra, and csrColIndA.

This function requires the buffer size returned by esrilu02_bufferSize().
The address of pBuf fer must be a multiple of 128 bytes. If not,
CUSPARSE_STATUS_INVALID VALUE is returned.

Function esrilu02_analysis () reports a structural zero and computes level
information stored in the opaque structure info. The level information can extract more
parallelism during incomplete LU factorization; however esrilu02 () can be done
without level information. To disable level information, the user must specify the policy
of csrilu02 () as CUSPARSE_SOLVE_POLICY_NO_LEVEL.

It is the user's choice whether to call esrilu02 () if csrilu02_analysis () reports
a structural zero. In this case, the user can still call esxilu02 (), which will return
a numerical zero at the same position as the structural zero. However the result is

meaningless.
Input
handle handle to the cuSPARSE library context.
m number of rows and columns of matrix A.
nnz number of nonzeros of matrix A.
descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE _MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ ZERO and
CUSPARSE_INDEX BASE ONE.
csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.
csrRowPtrA integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.
csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.
info structure initialized using
cusparseCreateCsrilu02Info().
policy the supported policies are
CUSPARSE_SOLVE POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.
pBuffer buffer allocated by the user, the size is returned
by esrilu02_bufferSize().
Output
info structure filled with information collected during
the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 153

cuSPARSE Preconditioners Reference

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 154

cuSPARSE Preconditioners Reference

10.10. cusparse<t>csrilu02()

cusparseStatus t

cusparseScsrilul02 (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
float *csrvValA valM,
const int *csrRowPtrA,
const int *csrColIndA,
csrilul02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t

cusparseDcsrilu02 (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
double *csrValA vallM,
const int *csrRowPtrA,
const int *csrColIndA,
csrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t

cusparseCcsrilu02 (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descrA,
cuComplex *csrValA valM,
const int *csrRowPtrA,
const int *csrColIndA,
csrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t

cusparseZcsrilu02 (cusparseHandle t handle,
int m,
int nnz,
const cusparseMatDescr t descra,
cuDoubleComplex *csrValA vall,
const int *csrRowPtrA,
const int *csrColIndA,
csrilul02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

This function performs the solve phase of the incomplete-LU factorization with 0 fill-in
and no pivoting;:

A=LU

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 155

cuSPARSE Preconditioners Reference

A is an mxm sparse matrix that is defined in CSR storage format by the three arrays
csrValA valM, csrRowPtra, and csrColIndaA.

This function requires a buffer size returned by esrilu02_buffersSize (). The address
of pBuffer must be a multiple of 128 bytes. If not, CUSPARSE_STATUS_INVALID VALUE
is returned.

The matrix type must be CUSPARSE_MATRIX TYPE_GENERAL. The fill mode and
diagonal type are ignored.

Although esrilu02 () can be done without level information, the user still

needs to be aware of consistency. If csrilu02_analysis () is called with

policy CUSPARSE_SOLVE_POLICY USE_LEVEL, csrilu02 () can be run with

or without levels. On the other hand, if esrilu02_analysis () is called

with CUSPARSE_SOLVE_POLICY NO_ LEVEL, csrilu02 () can only accept
CUSPARSE_SOLVE_POLICY NO_LEVEL; otherwise, CUSPARSE_STATUS INVALID VALUE
is returned.

Function esrilu02 () reports the first numerical zero, including a structural zero. The
user must call cusparseXcsrilu02_zeroPivot () to know where the numerical zero
is.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 156

cuSPARSE Preconditioners Reference

For example, suppose A is arealm x mmatrix, the following code solves precondition

system M*y = x where Mis the product of LU factors L and U.

// Suppose that A is m x m sparse matrix represented by CSR format,

// Assumption:

// - handle is already created by cusparseCreate(),

// - (d_csrRowPtr, d csrColInd, d csrVal) is CSR of A on device memory,
// - d x is right hand side vector on device memory,

/] - d_y is solution vector on device memory.

// - d z is intermediate result on device memory.

cusparseMatDescr t descr M = 0;
cusparseMatDescr t descr L
cusparseMatDescr t descr U=
csrilu02Info t info M = 0;
csrsv2Info t info L = 0;
csrsv2Info t info U = 0;
int pBufferSize M;

int pBufferSize L;

int pBufferSize U;

int pBufferSize;

void *pBuffer = 0;

int structural zero;

int numerical zero;

const double alpha = 1.;

Il
o o
~ ~.

const
const
const
const
const

// st

cusparseSolvePolicy t policy M
cusparseSolvePolicy t policy L
cusparseSolvePolicy t policy U
cusparseOperation t trans L =
cusparseOperation t trans U =

ep 1l: create a descriptor which

CUSPARSE SOLVE POLICY NO LEVEL;
= CUSPARSE_SOLVE_POLICY NO LEVEL;
= CUSPARSE_SOLVE_POLICY USE_ LEVEL;
CUSPARSE_OPERATION NON TRANSPOSE;
CUSPARSE_OPERATION NON TRANSPOSE;

contains

/] =
/] =
/] =
/-
/] =

matrix M is base-1

matrix L is base-1

matrix L is lower triangular

matrix L has unit diagonal

matrix U is base-1

// - matrix U is upper triangular

// - matrix U has non-unit diagonal
cusparseCreateMatDescr (&descr M) ;
cusparseSetMatIndexBase(descr M, CUSPARSE INDEX BASE ONE),
cusparseSetMatType (descr M, CUSPARSE MATRIX TYPE GENERAL),

cusparseCreateMatDescr (&descr L) ;
cusparseSetMatIndexBase(descr L, CUSPARSE INDEX BASE ONE),
cusparseSetMatType (descr L, CUSPARSE MATRIX TYPE GENERAL),
cusparseSetMatFillMode (descr L, CUSPARSE FILL MODE _ LOWER) ;
cusparseSetMatDiagType (descr L, CUSPARSE DIAG TYPE UNIT)

cusparseCreateMatDescr (&descr U) ;
cusparseSetMatIndexBase (descr U, CUSPARSE INDEX BASE ONE) ;
cusparseSetMatType (descr U, CUSPARSE MATRIX TYPE GENERAL),
cusparseSetMatFillMode (descr U, CUSPARSE FILL _MODE UPPER) ;
cusparseSetMatDiagType (descr U, CUSPARSE DIAG TYPE NON UNIT) ;

// step 2: create a empty info structure

// we need one info for csrilu02 and two info's for csrsv2
cusparseCreateCsrilul02Info (&info M) ;
cusparseCreateCsrsv2Info (&info L) ;
cusparseCreateCsrsv2Info (&info U);

// step 3:
buffer
cusparseDcsrilu02 bufferSize (handle, m, nnz,
descr M, d csrVal, d csrRowPtr, d csrColInd, info M,
cusparseDcsrsv2 bufferSize (handle, trans L, m, nnz,
descr L, d csrVal, d csrRowPtr, d csrColInd, info L,
cusparseDcsrsv2 bufferSize (handle, trans U, m, nnz,
descr U, d csrVal, d csrRowPtr, d csrColInd, info U,

pBufferSize =

query how much memory used in csrilu02 and csrsv2,

and allocate

&pBufferSize M) ;
&pBufferSize L);
&pBufferSize U);

max (pBufferSize M, max (pBufferSize L, pBufferSize U));

// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.

cudaMalloc ((void**) &pBuffer, pBufferSize);

) N P o - . o -

the

cuSPARSE Preconditioners Reference

Input
handle handle to the cuSPARSE library context.
m number of rows and columns of matrix A.
nnz number of nonzeros of matrix A.
descrA the descriptor of matrix A. The supported matrix

type is CUSPARSE MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrValA valM

<type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix a.

csrRowPtrA

integer array of m +1elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA

integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

info

structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

policy

the supported policies are
CUSPARSE_SOLVE POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.

pBuffer

buffer allocated by the user; the size is returned
by esrilu02_bufferSize().

Output

csrValA valM

<type> matrix containing the incomplete-LU lower
and upper triangular factors.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSPARSE_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 158

cuSPARSE Preconditioners Reference

10.11. cusparseXcsrilu02_zeroPivot()

cusparseStatus_t
cusparseXcsrilu02 zeroPivot (cusparseHandle t handle,
csrilu02Info t info,
int *position);
If the returned error code is CUSPARSE_STATUS_ZERO_PIVOT, position=j means
A (J,3) has either a structural zero or a numerical zero; otherwise, position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXcsrilu02_zeroPivot () is a blocking call. It calls
cudaDeviceSynchronize () to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set proper
mode with cusparseSetPointerMode ().

Input
handle handle to the cuSPARSE library context.
info info contains structural zero or numerical zero if
the user already called esrilu02_analysis () or
csrilu02().
Output
position if no structural or numerical zero, position is -1;
otherwise if A (j,3) is missing or u(j, j) is zero,
position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID_ VALUE info is not valid.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 159

cuSPARSE Preconditioners Reference

10.12. cusparse<t>bsric02_bufferSize()

cusparseStatus t
cusparseSbsric02 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
float *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsric02Info t info,
int *pBufferSizeInBytes);

cusparseStatus_t
cusparseDbsric02 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
double *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsric02Info t info,
int *pBufferSizeInBytes)

cusparseStatus_ t
cusparseCbsric02 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
cuComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsric02Info t info,
int *pBufferSizelInBytes);

cusparseStatus_t
cusparseZbsric02 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrAh,
cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsric02Info t info,
int *pBufferSizelInBytes);

This function returns the size of a buffer used in computing the incomplete-Cholesky
factorization with 0 fill-in and no pivoting

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 160

cuSPARSE Preconditioners Reference

A=LLH

Aisan (mb*blockDim) * (mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrvala, bsrRowPtrA, and bsrColIndA.

The buffer size depends on the dimensions of mb, blockDim, and the number of
nonzero blocks of the matrix nnzb. If the user changes the matrix, it is necessary
to call bsric02_bufferSize () again to have the correct buffer size; otherwise, a

segmentation fault may occur.

Input
handle handle to the cuSPARSE library context.
dirA storage format of blocks, either
CUSPARSE_DIRECTION_ ROW Or
CUSPARSE_DIRECTION_COLUMN.
mb number of block rows and block columns of matrix
A.
nnzb number of nonzero blocks of matrix a.
descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.
bsrValA <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix a.
bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.
bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.
blockDim block dimension of sparse matrix A, larger than
zero.
Output
info record internal states based on different
algorithms.
pBufferSizeInBytes number of bytes of the buffer used in
bsric02_analysis() and bsric02().
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (mb, nnzb<=0); the
base index is not 0 or 1.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 161

cuSPARSE Preconditioners Reference

CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_ TYPE_NOT_ SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 162

cuSPARSE Preconditioners Reference

10.13. cusparse<t>bsric02_analysis()

cusparseStatus t
cusparseSbsric02 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
const float *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsric02Info_t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t
cusparseDbsric02 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
const double *bsrValAh,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsric02Info_t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseCbsric02 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
const cuComplex *bsrVvalAa,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsric02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer); -

cusparseStatus_t
cusparseZbsric02 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descra,
const cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsric02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer); -

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 163

cuSPARSE Preconditioners Reference

This function performs the analysis phase of the incomplete-Cholesky factorization with
0 fill-in and no pivoting

A=LLH

Aisan (mb*blockDim)x (mb*blockDim) sparse matrix that is defined in BSR

storage format by the three arrays bsrvalA, bsrRowPtra, and bsrColIndA.

The block in BSR format is of size blockDim*blockDim, stored as column-

major or row-major as determined by parameter dira, which is either
CUSPARSE_DIRECTION_ COLUMN or CUSPARSE DIRECTION_ ROW. The matrix type must
be CUSPARSE_MATRIX TYPE GENERAL, and the fill mode and diagonal type are ignored.

This function requires a buffer size returned by bsric02_bufferSize90.
The address of pBuffer must be a multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_ VALUE is returned.

Functionbsric02_analysis () reports structural zero and computes level information
stored in the opaque structure info. The level information can extract more parallelism
during incomplete Cholesky factorization. However bsric02 () can be done without
level information. To disable level information, the user needs to specify the parameter
policy of bsric02[_analysis|] as CUSPARSE SOLVE POLICY NO LEVEL.

Function bsric02_analysis always reports the first structural zero, even when
parameter policy is CUSPARSE _SOLVE_POLICY NO_LEVEL. The user must call
cusparseXbsric02_zeroPivot () to know where the structural zero is.

It is the user's choice whether to call bsric02 () if bsric02_analysis () reports a
structural zero. In this case, the user can still call bsric02 (), which returns a numerical
zero in the same position as the structural zero. However the result is meaningless.

Input

handle handle to the cuSPARSE library context.

dira storage format of blocks, either
CUSPARSE_DIRECTION ROW Or
CUSPARSE_DIRECTION COLUMN.

mb number of block rows and block columns of matrix
A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

bsrvala <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix a.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 164

cuSPARSE Preconditioners Reference

blockDim block dimension of sparse matrix A; must be larger
than zero.
info structure initialized using
cusparseCreateBsric02Info().
policy the supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.
pBuffer buffer allocated by the user; the size is returned
by bsric02_bufferSize().
Output
info structure filled with information collected during

the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (mb,nnzb<=0); the
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 165

cuSPARSE Preconditioners Reference

10.14. cusparse<t>bsric02()

cusparseStatus t

cusparseSbsri062(cusparseHandle_t handle,

cusparseStatus t

cusparseDirection t dirA,

int mb,

int nnzb,

const cusparseMatDescr t descrA,
float *bsrValAh,

const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsric02Info_t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseDbsric02 (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,

int mb,

int nnzb,

const cusparseMatDescr t descrA,
double *bsrValA,

const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsric02Info_ t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseCbsric02 (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,

int mb,

int nnzb,

const cusparseMatDescr t descrA,
cuComplex *bsrvValAa,

const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsric02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseZbsric02 (cusparseHandle t handle,

www.nvidia.com
CUSPARSE Library

cusparseDirection t dirA,

int mb,

int nnzb,

const cusparseMatDescr t descrA,
cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsric02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

DU-06709-001_v7.5 | 166

cuSPARSE Preconditioners Reference

This function performs the solve phase of the incomplete-Cholesky factorization with 0
fill-in and no pivoting

A=LLH

Aisan (mb*blockDim) x (mb*blockDim) sparse matrix that is defined in BSR

storage format by the three arrays bsrvalA, bsrRowPtra, and bsrColIndA.

The block in BSR format is of size blockDim*blockDim, stored as column-

major or row-major as determined by parameter dira, which is either
CUSPARSE_DIRECTION_ COLUMN or CUSPARSE DIRECTION_ ROW. The matrix type must
be CUSPARSE_MATRIX TYPE GENERAL, and the fill mode and diagonal type are ignored.

This function requires a buffer size returned by bsric02_bufferSize().
The address of pBuffer must be a multiple of 128 bytes. If it is not,
CUSPARSE_STATUS_INVALID_ VALUE is returned.

Although bsric02 () can be done without level information, the user must

be aware of consistency. If bsric02_analysis () is called with policy
CUSPARSE_SOLVE_ POLICY USE LEVEL, bsric02() can be run with

or without levels. On the other hand if bsric02_analysis () is called

with CUSPARSE_SOLVE_POLICY NO_LEVEL, bsric02 () can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL,‘ otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Function bsric02 () has the same behavior as esric02 (). That is,

bsr2csr (bsric02(A)) = csric02 (bsr2csr(A)). The numerical zero of esric02 ()
means there exists some zero L(j, j). The numerical zero of bsric02 () means there
exists some block Lj, j) that is not invertible.

Function bsric02 reports the first numerical zero, including a structural zero. The user
must call cusparseXbsric02_ zeroPivot () to know where the numerical zero is.

The bsric02 () function only takes the lower triangular part of matrix A to perform
factorization. The strictly upper triangular part is ignored and never touched. It does not
matter if A is Hermitian or not. In other words, from the point of view of bsric02(), A
is Hermitian and only the lower triangular part is provided. Moreover, the imaginary
part of diagonal elements of diagonal blocks is ignored.

For example, suppose A is a real m-by-m matrix, where m=mb*blockDim. The following
code solves precondition system M*y = x, where Mis the product of Cholesky
factorization L and its transpose.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 167

cuSPARSE Preconditioners Reference

M=LLH

// Suppose that A is m x m sparse matrix represented by BSR format,

// The number of block rows/columns is mb, and

// the number of nonzero blocks is nnzb.

// Assumption:

// - handle is already created by cusparseCreate(),

// - (d bsrRowPtr, d bsrColInd, d bsrVal) is BSR of A on device memory,
// - d x is right hand side vector on device memory,

// - d y is solution vector on device memory.

// - d_z is intermediate result on device memory.

// - dx, dy and d z are of size m.

cusparseMatDescr t descr M = 0;

cusparseMatDescr t descr L = 0;

bsric02Info t info M = 0;

bsrsv2Info t info L = 0;

bsrsv2Info t info Lt = 0;

int pBufferSize M;

int pBufferSize L;

int pBufferSize Lt;

int pBufferSize;

void *pBuffer = 0;

int structural zero;

int numerical zero;

const double alpha = 1.;

const cusparseSolvePolicy t policy M = CUSPARSE SOLVE POLICY NO LEVEL;
const cusparseSolvePolicy t policy L = CUSPARSE SOLVE POLICY NO LEVEL;
const cusparseSolvePolicy t policy Lt = CUSPARSE SOLVE POLICY USE LEVEL;
const cusparseOperation t trans L = CUSPARSE OPERATION NON TRANSPOSE;
const cusparseOperation t trans Lt = CUSPARSE OPERATION TRANSPOSE;
const cusparseDirection t dir = CUSPARSE DIRECTION COLUMN;

// step 1l: create a descriptor which contains

// - matrix M is base-1

// - matrix L is base-1

// - matrix L is lower triangular

// - matrix L has non-unit diagonal

cusparseCreateMatDescr(&descr_M);

cusparseSetMatIndexBase (descr M, CUSPARSE INDEX BASE ONE) ;
cusparseSetMatType (descr M, CUSPARSE MATRIX TYPE GENERAL) ;

cuspa

rseCreateMatDescr(&descr_L);

cusparseSetMatIndexBase (descr L, CUSPARSE INDEX BASE ONE) ;
cusparseSetMatType (descr L, CUSPARSE MATRIX TYPE GENERAL) ;
cusparseSetMatFillMode (descr L, CUSPARSE FILL MODE LOWER) ;
cusparseSetMatDiagType (descr L, CUSPARSE DIAG TYPE NON UNIT) ;

// st

ep 2:

create a empty info structure

// we need one info for bsric02 and two info's for bsrsv2

cuspa
cuspa
cuspa

// st
buff
cuspa

rseCreateBsric02Info (&info M) ;
rseCreateBsrsv2Info (&info L);
rseCreateBsrsv2Info (&info Lt);

ep 3:
er
rseDbsric02 bufferSize (handle,

query how much memory used in bsric02 and bsrsv2,

dir,

and allocate the

mb, nnzb,

descr M, d bsrVal, d bsrRowPtr, d bsrColInd, blockDim, info M,

&buf
cuspa

ferSize M);
rseDbsrsv?2 bufferSize (handle,

dir,

trans L, mb, nnzb,

descr L, d_Eeral, d bsrRowPtr, d_bsrColIHd, blockDim, info L,

&pBu

fferSize L);

cusparseDbsrsv2 bufferSize (handle, dir, _
descr L, d bsrVal, d bsrRowPtr, d bsrColInd, blockDim, info Lt,

&pBu

pBuff

ffergize_ft);

erSize

max (bufferSize M, max (pBufferSize L,

trans Lt, mb, nnzb,

pBufferSize Lt));

// pBuffer returned by cudaMalloc is automatically aligned to 128 bytes.

cudaMalloc ((void**) &pBuffer,

pBufferSize) ;

// step 4: perform analysis of incomplete Cholesky on M
// perform analysis of triangular solve on L
// perform analysis of triangular solve on L'

I T T T e

1

B T — -

cuSPARSE Preconditioners Reference

Input

handle handle to the cuSPARSE library context.

dira storage format of blocks, either
CUSPARSE_DIRECTION_ ROW OF
CUSPARSE_DIRECTION COLUMN.

mb number of block rows and block columns of matrix
A.

nnzb number of nonzero blocks of matrix a.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

bsrvalaA <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

policy the supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.

pBuffer buffer allocated by the user, the size is returned
by bsric02_bufferSize().

Output
bsrValA <type> matrix containing the incomplete-Cholesky

lower triangular factor.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (mb,nnzb<=0); the
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 169

cuSPARSE Preconditioners Reference

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED| the matrix type is not supported.

10.15. cusparseXbsric02_zeroPivot()

cusparseStatus t
cusparseXbsric02 zeroPivot (cusparseHandle t handle,

bsric02Info t info,

int *position);
If the returned error code is CUSPARSE STATUS_ZERO_ PIVOT, position=j means
A(3j,3) haseither a structural zero or a numerical zero (the block is not positive
definite). Otherwise position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXbsric02_zeroPivot () is a blocking call. It calls
cudaDeviceSynchronize () to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set the proper
mode with cusparseSetPointerMode ().

Input
handle handle to the cuSPARSE library context.
info info contains a structural zero or a
numerical zero if the user already called
bsric02_analysis() Or bsric02().
Output
position if no structural or numerical zero, position is -1,

otherwise if A(3,3) is missing or L(j,j) is not
positive definite, position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID_ VALUE info is not valid.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 170

cuSPARSE Preconditioners Reference

10.16. cusparse<t>bsrilu02_numericBoost()

cusparseStatus t
cusparseSbsrilu02 numericBoost (cusparseHandle t handle,
bsrilu02Info t info,
int enable boost,
double *tol,
float *boost val);

cusparseStatus t
cusparseDbsrilu02 numericBoost (cusparseHandle t handle,
bsrilu02Info t info,
int enable boost,
double *tol,
double *boost val);

cusparseStatus t
cusparseCbsrilu02 numericBoost (cusparseHandle t handle,
bsrilu02Info t info,
int enable boost,
double *tol,
cuComplex *boost val);

cusparseStatus t
cusparseZbsrilu02 numericBoost (cusparseHandle t handle,
bsrilu02Info t info,
int enable boost,
double *tol,
cuDoubleComplex *boost val);

The user can use a boost value to replace a numerical value in incomplete LU
factorization. Parameter tol is used to determine a numerical zero, and boost_val is
used to replace a numerical zero. The behavior is as follows:

if tol >= fabs(A(j,j)), then reset each diagonal element of block A (3, 3) by
boost_val.

To enable a boost value, the user sets parameter enable_boost to 1 before calling
bsrilu02 (). To disable the boost value, the user can call bsrilu02_numericBoost ()
with parameter enable boost=0.

If enable boost=0, tol and boost_val are ignored.

Both tol and boost_val can be in host memory or device memory. The user can set the
proper mode with cusparseSetPointerMode ().

Input
handle handle to the cuSPARSE library context.
info structure initialized using
cusparseCreateBsrilu02Info().
enable_boost disable boost by setting enable boost=0.
Otherwise, boost is enabled.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 171

cuSPARSE Preconditioners Reference

tol tolerance to determine a numerical zero.

boost_val boost value to replace a numerical zero.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE info or pointer mode is not valid.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 172

cuSPARSE Preconditioners Reference

10.17. cusparse<t>bsrilu02_bufferSize()

cusparseStatus t
cusparseSbsrilu02 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
float *bsrValAh,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrilu02Info_t info,
int *pBufferSizeInBytes);

cusparseStatus_t
cusparseDbsrilu02 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
double *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrilu02Info t info,
int *pBufferSizeInBytes);

cusparseStatus_ t
cusparseCbsrilu02 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
cuComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrilu02Info t info,
int *pBufferSizeInBytes)

cusparseStatus_t
cusparseZbsrilu02 bufferSize (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
cuDoubleComplex *bsrValAa,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrilu02Info t info,
int *pBufferSizeInBytes) ;

This function returns the size of the buffer used in computing the incomplete-LU
factorization with 0 fill-in and no pivoting

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 173

cuSPARSE Preconditioners Reference

Lu

Aisan (mb*blockDim) * (mb*blockDim) sparse matrix that is defined in BSR storage
format by the three arrays bsrvala, bsrRowPtrA, and bsrColIndA.

The buffer size depends on the dimensions of mb, blockDim, and the number of
nonzero blocks of the matrix nnzb. If the user changes the matrix, it is necessary to
call bsrilu02_bufferSize () again to have the correct buffer size; otherwise, a

segmentation fault may occur.

Input

handle handle to the cuSPARSE library context.

dirA storage format of blocks, either
CUSPARSE_DIRECTION_ ROW Or
CUSPARSE_DIRECTION_COLUMN.

mb number of block rows and columns of matrix a.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

bsrValA <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix a.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

Output

info record internal states based on different
algorithms.

pBufferSizeInBytes number of bytes of the buffer used in

bsrilu02_ analysis() and bsrilu02 ().

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (mb, nnzb<=0),
base index is not 0 or 1.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 174

cuSPARSE Preconditioners Reference

CUSPARSE_STATUS_ARCH MISMATCH the device only supports compute capability 2.0
and above.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_ TYPE_NOT_ SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 175

cuSPARSE Preconditioners Reference

10.18. cusparse<t>bsrilu02_analysis()

cusparseStatus t
cusparseSbsrilu02 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
float *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrilu02Info_t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus t
cusparseDbsrilu02 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
double *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrilu02Info_ t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseCbsrilu02 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
cuComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseStatus_t
cusparseZbsrilu02 analysis (cusparseHandle t handle,
cusparseDirection t dirA,
int mb,
int nnzb,
const cusparseMatDescr t descrA,
cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
bsrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer); -

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 176

cuSPARSE Preconditioners Reference

This function performs the analysis phase of the incomplete-LU factorization with 0 fill-
in and no pivoting

A=LU

Aisan (mb*blockDim) x (mb*blockDim) sparse matrix that is defined in BSR

storage format by the three arrays bsrvalA, bsrRowPtra, and bsrColIndA.

The block in BSR format is of size blockDim*blockDim, stored as column-

major or row-major as determined by parameter dira, which is either

CUSPARSE DIRECTION_ COLUMN or CUSPARSE DIRECTION_ ROW. The matrix type must
be CUSPARSE_MATRIX TYPE GENERAL, and the fill mode and diagonal type are ignored.

This function requires a buffer size returned by bsrilu02_bufferSize().
The address of pBuf fer must be multiple of 128 bytes. If it is not,
CUSPARSE STATUS INVALID VALUE is returned.

Function bsrilu02_ analysis () reportsa structural zero and computes

level information stored in the opaque structure info. The level information

can extract more parallelism during incomplete LU factorization. However
bsrilu02 () can be done without level information. To disable level information,
the user needs to specify the parameter policy of bsrilu02[_analysis|] as
CUSPARSE_SOLVE_POLICY NO_LEVEL.

Function bsrilu02_analysis () always reports the first structural zero, even with
parameter policy is CUSPARSE_SOLVE_POLICY NO_LEVEL. The user must call
cusparseXbsrilu02_zeroPivot () to know where the structural zero is.

It is the user's choice whether to call bsrilu02 () if bsrilu02_analysis () reports
a structural zero. In this case, the user can still call bsxilu02 (), which will return

a numerical zero at the same position as the structural zero. However the result is
meaningless.

Input

handle handle to the cuSPARSE library context.

dira storage format of blocks, either
CUSPARSE_DIRECTION_ ROW Or
CUSPARSE_DIRECTION COLUMN.

mb number of block rows and block columns of matrix
A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

bsrvalaA <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 177

cuSPARSE Preconditioners Reference

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A, larger than
zero.

info structure initialized using
cusparseCreateBsrilu02Info().

policy the supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.

pBuffer buffer allocated by the user, the size is returned
by bsrilu02_bufferSize().

Output
info structure filled with information collected during

the analysis phase (that should be passed to the
solve phase unchanged).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (mb,nnzb<=0); the
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE_NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 178

cuSPARSE Preconditioners Reference

10.19. cusparse<t>bsrilu02()

cusparseStatus t

cusparseSbsrilEOZ(cusparseHandle_t handle,

cusparseStatus t

cusparseDirection t dirA,

int mb,

int nnzb,

const cusparseMatDescr t descry,
float *bsrValAa,

const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseDbsrilu02 (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,

int mb,

int nnzb,

const cusparseMatDescr t descry,
double *bsrVala,

const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseCbsrilu02 (cusparseHandle t handle,

cusparseStatus_t

cusparseDirection t dirA,

int mb,

int nnzb,

const cusparseMatDescr t descry,
cuComplex *bsrValA,

const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

cusparseZbsrilu02 (cusparseHandle t handle,

www.nvidia.com
CUSPARSE Library

cusparseDirection t dirA,

int mb,

int nnzb,

const cusparseMatDescr t descry,
cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,

const int *bsrColIndA,

int blockDim,

bsrilu02Info t info,
cusparseSolvePolicy t policy,
void *pBuffer);

DU-06709-001_v7.5 | 179

cuSPARSE Preconditioners Reference

This function performs the solve phase of the incomplete-LU factorization with 0 fill-in
and no pivoting

A=LU

Aisan (mb*blockDim) x (mb*blockDim) sparse matrix that is defined

in BSR storage format by the three arrays bsrvala, bsrRowPtrA, and

bsrColIndA. The block in BSR format is of size blockDim*blockDim, stored

as column-major or row-major determined by parameter dira, which is either
CUSPARSE_DIRECTION COLUMN or CUSPARSE_DIRECTION_ ROW. The matrix type must
be CUSPARSE_MATRIX TYPE GENERAL, and the fill mode and diagonal type are ignored.
Function bsrilu02 () supports an arbitrary blockDim.

This function requires a buffer size returned by bsrilu02_bufferSize().
The address of pBuf fer must be a multiple of 128 bytes. If it is not,
CUSPARSE STATUS INVALID VALUE is returned.

Although bsrilu02 () can be used without level information, the user must

be aware of consistency. If bsrilu02_analysis () is called with policy
CUSPARSE_SOLVE_POLICY USE_LEVEL, bsrilu02 () can be run with

or without levels. On the other hand, if bsrilu02_analysis () is called

with CUSPARSE_SOLVE_POLICY NO_ LEVEL, bsrilu02() can only accept
CUSPARSE_SOLVE_POLICY_NO_LEVEL,‘ otherwise, CUSPARSE_STATUS_INVALID_VALUE
is returned.

Function bsrilu02 () has the same behavior as esrilu02 (). That s,

bsr2csr (bsrilu02 (A)) = csrilu02 (bsr2csr (A)). The numerical zero of
csrilu02 () means there exists some zero U(j, j). The numerical zero of bsrilu02 ()
means there exists some block U (3, j) that is not invertible.

Function bsrilu02 reports the first numerical zero, including a structural zero. The user
must call cusparseXbsrilu02_ zeroPivot () to know where the numerical zero is.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 180

For example, suppose A is a real

code solves precondition system M*y =

cuSPARSE Preconditioners Reference

m-by-m matrix where m=mb*blockDim. The following
x, where M is the product of LU factors L and U.

// Suppose that A is m x m sparse matrix represented by BSR format,

// The number of block rows/columns is mb, and

// the number of nonzero blocks is nnzb.

// Assumption:

// - handle is already created by cusparseCreate(),

// - (d_bsrRowPtr, d bsrCollInd, d bsrVal) is BSR of A on device memory,
// - d x is right hand side vector on device memory.

// - d_y is solution vector on device memory.

// - d_z is intermediate result on device memory.

// - dx, dy and d z are of size m.

cusparseMatDescr t descr M = 0;

cusparseMatDescr t descr L = 0;

cusparseMatDescr t descr U = 0;

bsrilu02Info t info M = 0;

bsrsv2Info t info L = 0;

bsrsv2Info t info U = 0;

int pBufferSize M;

int pBufferSize L;

int pBufferSize U;

int pBufferSize;

void *pBuffer = 0;

int structural zero;

int numerical zero;

const double alpha = 1.;

const cusparseSolvePolicy t policy M = CUSPARSE SOLVE POLICY NO LEVEL;
const cusparseSolvePolicy t policy L = CUSPARSE SOLVE POLICY NO LEVEL;
const cusparseSolvePolicy t policy U = CUSPARSE SOLVE POLICY USE LEVEL;
const cusparseOperation t trans L = CUSPARSE OPERATION NON TRANSPOSE;
const cusparseOperation t trans U = CUSPARSE OPERATION NON TRANSPOSE;
const cusparseDirection t dir = CUSPARSE DIRECTION COLUMN;

// step 1l: create a descriptor which contains

// - matrix M is base-1

// - matrix L is base-1

// - matrix L is lower triangular

// - matrix L has unit diagonal

// - matrix U is base-1

// - matrix U is upper triangular

// - matrix U has non-unit diagonal

cusparseCreateMatDescr (&descr M) ;

cusparseSetMatIndexBase(descr M, CUSPARSE INDEX BASE ONE),
cusparseSetMatType (descr M, CUSPARSE MATRIX TYPE GENERAL),

cuspa
cuspa

rseCreateMatDescr (&descr L) ;
rseSetMatIndexBase (descr L,

CUSPARSE INDEX BASE ONE) ;

cusparseSetMatType (descr L, CUSPARSE MATRIX TYPE GENERAL),
cusparseSetMatFillMode (descr L, CUSPARSE FILL MODE _ LOWER) ;
cusparseSetMatDiagType (descr L, CUSPARSE DIAG TYPE UNIT)

cuspa
cuspa
cuspa

rseCreateMatDescr (&descr U);
rseSetMatIndexBase (descr U,
rseSetMatType (descr U, CUSPARSE

CUSPARSE INDEX BASE ONE) ;

MATRIX TYPE GENERAL),

cusparseSetMatFillMode (descr U, CUSPARSE FILL _MODE UPPER) ;
cusparseSetMatDiagType (descr U, CUSPARSE DIAG TYPE NON UNIT) ;

// st

ep 2:

create a empty info structure

// we need one info for bsrilu02 and two info's for bsrsv2

cusparseCreateBsrilu02Info(&info M) ;
cusparseCreateBsrsv2Info (&info L) ;
cusparseCreateBsrsv2Info (&info U);
// step 3: query how much memory used in bsrilu02 and bsrsv2, and allocate the
buffer
cusparseDbsrilu02 bufferSize (handle, dir, mb, nnzb,
descr M, d bsrVal, d bsrRowPtr, d bsrColInd, blockDim, info M,
&pBufferSize M) ;
cusparseDbsrsv2 bufferSize (handle, dir, trans L, mb, nnzb,
descr L, d bsrVal, d bsrRowPtr, d bsrColInd, blockDim, info L,
&pBufferSize L);
cusparseDbsrsv2 bufferSize (handle, dir, trans U, mb, nnzb,
U, d bsrRowPtr, d bsrColInd, blockDim, info U,

descr

d bsrval,

. e

cuSPARSE Preconditioners Reference

Input

handle handle to the cuSPARSE library context.

dira storage format of blocks: either
CUSPARSE_DIRECTION_ ROW OF
CUSPARSE_DIRECTION COLUMN.

mb number of block rows and block columns of matrix
A.

nnzb number of nonzero blocks of matrix a.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

bsrvalaA <type> array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) nonzero blocks of matrix A.

bsrRowPtrA integer array of mb +1elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColIndA integer array of nnzb (= bsrRowPtrA (mb) -
bsrRowPtrA (0)) column indices of the nonzero
blocks of matrix A.

blockDim block dimension of sparse matrix A; must be larger
than zero.

info structure with information collected during the
analysis phase (that should have been passed to
the solve phase unchanged).

policy the supported policies are
CUSPARSE_SOLVE_POLICY NO_LEVEL and
CUSPARSE_SOLVE_POLICY USE_LEVEL.

pBuffer buffer allocated by the user; the size is returned
by bsrilu02_bufferSize().

Output
bsrValA <type> matrix containing the incomplete-LU lower

and upper triangular factors.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (mb,nnzb<=0); the
base index is not 0 or 1.

CUSPARSE_STATUS_ARCH_MISMATCH

the device only supports compute capability 2.0
and above.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 182

cuSPARSE Preconditioners Reference

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED| the matrix type is not supported.

10.20. cusparseXbsrilu02_zeroPivot()

cusparseStatus t
cusparseXbsrilu02 zeroPivot (cusparseHandle t handle,

bsrilu02Info t info,

int *position);
If the returned error code is CUSPARSE STATUS_ZERO_ PIVOT, position=j means
A(j,j) has either a structural zero or a numerical zero (the block is not invertible).
Otherwise position=-1.

The position can be 0-based or 1-based, the same as the matrix.

Function cusparseXbsrilu02_zeroPivot () is a blocking call. It calls
cudaDeviceSynchronize () to make sure all previous kernels are done.

The position can be in the host memory or device memory. The user can set proper the
mode with cusparseSetPointerMode ().

Input
handle handle to the cuSPARSE library context.
info info contains structural zero or numerical zero if
the user already called bsrilu02_analysis () or
bsrilu02().
Output
position if no structural or numerical zero, position is -1;

otherwise if A(3,3) is missing or U(j,j) is not
invertible, position=j.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID_ VALUE info is not valid.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 183

cuSPARSE Preconditioners Reference

10.21. cusparse<t>gtsv()

cusparseStatus t
cusparseSgtsv (cusparseHandle t handle,
int m,
int n,
const float *dil,
const float *d,
const float *du,
float *B,
int 1db)
cusparseStatus_t
cusparseDgtsv (cusparseHandle t handle,
int m,
int n,
const double *dl,
const double *d,
const double *du,
double *B,
int 1db)
cusparseStatus t
cusparseCgtsv (cusparseHandle t handle,
int m,
int n,
const cuComplex *dl,
const cuComplex *d,
const cuComplex *du,
cuComplex *B,
int 1db)
cusparseStatus_t
cusparseZgtsv (cusparseHandle t handle,
int m,
int n,
const cuDoubleComplex *dl,
const cuDoubleComplex *d,
const cuDoubleComplex *du,
cuDoubleComplex *B,
int 1db)

This function computes the solution of a tridiagonal linear system with multiple right-
hand sides:

A:Y=axX
The coefficient matrix A of each of these tri-diagonal linear system is defined with three
vectors corresponding to its lower (d1), main (d), and upper (du) matrix diagonals; the

right-hand sides are stored in the dense matrix X. Notice that solution Y overwrites right-
hand-side matrix X on exit.

Assuming A is of size m and base-1, d1, d and du are defined by the following formula:
dl(i) := A(i, i-1) fori=1,2,...,m
The first element of dl is out-of-bound (d1 (1) := A(1,0)),sodl(1l) = 0.

d(i) = A(i,i) fori=1,2,...,m

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 184

cuSPARSE Preconditioners Reference

du(i) = A(i,i+l) fori=1,2,...,m
The last element of du is out-of-bound (du(m) := A(m,m+1)),sodu(m) = 0.

The routine does perform pivoting, which usually results in more accurate and more
stable results than cusparse<t>gtsv_nopivot () at the expense of some execution
time

This routine requires significant amount of temporary extra storage (min (m, 8)
x (3+n) xsizeof (<type>)). It is executed asynchronously with respect to the host and
may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
m the size of the linear system (must be > 3).
n number of right-hand sides, columns of matrix B.
dl <type> dense array containing the lower diagonal
of the tri-diagonal linear system. The first element
of each lower diagonal must be zero.
d <type> dense array containing the main diagonal of
the tri-diagonal linear system.
du <type> dense array containing the upper diagonal
of the tri-diagonal linear system. The last element
of each upper diagonal must be zero.
B <type> dense right-hand-side array of dimensions
(1db, n).
1db leading dimension of B (that is > max (1, m)).
Output
B <type> dense solution array of dimensions (1db,
n).
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m<3, n<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.
CUSPARSE_STATUS_MATRIX TYPE_NOT SUPPORTED| the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 185

cuSPARSE Preconditioners Reference

10.22. cusparse<t>gtsv_nopivot()

cusparseStatus_t

cusparseSgtsv_nopivot (cusparseHandle t handle, int m, int n,
const float *dl, const float el
const float *du, float *B, int 1ldb)

cusparseStatus_ t
cusparseDgtsv_nopivot (cusparseHandle t handle, int m, int n,
const double *dl, const double *@l,
const double *du, double *B, int 1ldb)
cusparseStatus_t
cusparseCgtsv_nopivot (cusparseHandle t handle, int m, int n,
const cuComplex *dl, const cuComplex =@l
const cuComplex *du, cuComplex *B, int 1db)
cusparseStatus_t
cusparseZgtsv_nopivot (cusparseHandle t handle, int m, int n,
const cuDoubleComplex *dl, const cuDoubleComplex *d,
const cuDoubleComplex *du, cuDoubleComplex *B, int 1db)

This function computes the solution of a tridiagonal linear system with multiple right-
hand sides:

A«Y=a+X

The coefficient matrix A of each of these tri-diagonal linear system is defined with three
vectors corresponding to its lower (d1), main (d), and upper (du) matrix diagonals; the
right-hand sides are stored in the dense matrix X. Notice that solution Y overwrites right-
hand-side matrix X on exit.

The routine does not perform any pivoting and uses a combination of the Cyclic
Reduction (CR) and the Parallel Cyclic Reduction (PCR) algorithms to find the solution.
It achieves better performance when m is a power of 2.

This routine requires a significant amount of temporary extra storage
(mx (3+n) xsizeof (<type>)). It is executed asynchronously with respect to the host
and may return control to the application on the host before the result is ready:.

Input

handle handle to the cuSPARSE library context.

m the size of the linear system (must be > 3).

n number of right-hand sides, columns of matrix B.

dl <type> dense array containing the lower diagonal
of the tri-diagonal linear system. The first element
of each lower diagonal must be zero.

d <type> dense array containing the main diagonal of
the tri-diagonal linear system.

du <type> dense array containing the upper diagonal
of the tri-diagonal linear system. The last element
of each upper diagonal must be zero.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 186

cuSPARSE Preconditioners Reference

B <type> dense right-hand-side array of dimensions
(1db, n).
1db leading dimension of B. (that is > max (1, m)).
Output
B <type> dense solution array of dimensions (1db,

n).

Status Returned

CUSPARSE STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m<3, n<0).

CUSPARSE_STATUS_ARCH_ MISMATCH

the device does not support double precision.

CUSPARSE STATUS_ EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

10.23. cusparse<t>gtsvStridedBatch()

cusparseStatus_t

cusparseSgtsvStridedBatch (cusparseHandle t handle,
const float
const float
const float

int batchCount,

cusparseStatus_t

cusparseDgtsvStridedBatch (cusparseHandle t handle,
const double
const double
const double

int batchCount,

cusparseStatus t

int m,
*d1,
*d,
#olu,

float ¥R,

int batchStride)

int m,
*d1,
*d,
“olul,

double ¥Ry

int batchStride)

cusparsngtsvSEridedBatch(cusparseHandle_t handle, int m,

const cuComplex
const cuComplex
const cuComplex

int batchCount,

cusparseStatus t

*d1,
*d,
el

cuComplex 5%,

int batchStride)

cusparsethsvSEridedBatch(cusparseHandle_t handle, int m,
const cuDoubleComplex *dl,

const cuDoubleComplex
const cuDoubleComplex *du,

int batchCount,

www.nvidia.com
CUSPARSE Library

*d,

cuDoubleComplex *x,

int batchStride)

DU-06709-001_v7.5 | 187

cuSPARSE Preconditioners Reference

This function computes the solution of multiple tridiagonal linear systems for i=0,
...,batchCount:

A(’)*y(’)=a*x(’)

The coefficient matrix A of each of these tri-diagonal linear system is defined with three
vectors corresponding to its lower (d1), main (d), and upper (du) matrix diagonals; the
right-hand sides are stored in the dense matrix X. Notice that solution Y overwrites right-
hand-side matrix X on exit. The different matrices are assumed to be of the same size and
are stored with a fixed batchStride in memory.

The routine does not perform any pivoting and uses a combination of the Cyclic
Reduction (CR) and the Parallel Cyclic Reduction (PCR) algorithms to find the solution.
It achieves better performance when m is a power of 2.

This routine requires a significant amount of temporary extra storage

((batchCountx (4xm+2048) xsizeof (<type>))). It is executed asynchronously with
respect to the host and may return control to the application on the host before the result
is ready.

Input

handle handle to the cuSPARSE library context.

m the size of the linear system (must be > 3).

dl <type> dense array containing the lower diagonal
of the tri-diagonal linear system. The lower

diagonal di that corresponds to the i linear
system starts at location dl1+batchStridexi in
memory. Also, the first element of each lower
diagonal must be zero.

d <type> dense array containing the main diagonal of
the tri-diagonal linear system. The main diagonal

d that corresponds to the i linear system starts
at location d+batchStridexi in memory.

du <type> dense array containing the upper diagonal
of the tri-diagonal linear system. The upper
diagonal duf that corresponds to the i linear
system starts at location dutbatchStridexi in
memory. Also, the last element of each upper
diagonal must be zero.

x <type> dense array that contains the right-hand-
side of the tri-diagonal linear system. The right-
hand-side x() that corresponds to the i linear
system starts at location x+batchStridexiin
memory.

batchCount number of systems to solve.

batchStride stride (number of elements) that separates the
vectors of every system (must be at least m).

Output

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 188

cuSPARSE Preconditioners Reference

<type> dense array that contains the solution of
the tri-diagonal linear system. The solution x)
that corresponds to the i linear system starts at
location x+batchStridexiin memory.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (m<3,
batchCount<0, batchStride<m).

CUSPARSE STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 189

Chapter 11.
CUSPARSE REORDERINGS REFERENCE

This chapter describes the reordering routines used to manipulate sparse matrices.

11.1. cusparse<t>csrcolor()

cusparseStatus_t

cusparseScsrcolor (cusparseHandle t handle, int m, int nnz,
const cusparseMatDescr t descrA, const float *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
const float *fractionToColor, int *ncolors, int *coloring,
int *reordering, cusparseColorInfo t info);

cusparseStatus t

cusparseDcsrcolor (cusparseHandle t handle, int m, int nnz,
const cusparseMatDescr t descrA, const double *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
const double *fractionToColor,int *ncolors, int *coloring,
int *reordering, cusparseColorInfo t info);

cusparseStatus t

cusparseCcsrcolor (cusparseHandle t handle, int m, int nnz,
const cusparseMatDescr t descrA, const cuComplex *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
const float *fractionToColor, int *ncolors, int *coloring,
int *reordering, cusparseColorInfo t info);

cusparseStatus t
cusparsezZcsrcolor (cusparseHandle t handle, int m, int nnz,
const cusparseMatDescr t descrA, const cuDoubleComplex *csrValAa,
const int *csrRowPtrA, const int *csrColIndA,
const double *fractionToColor,int *ncolors, int *coloring,
int *reordering, cusparseColorInfo t info);

This function performs the coloring of the adjacency graph associated with the matrix

A stored in CSR format. The coloring is an assignment of colors (integer numbers)

to nodes, such that neighboring nodes have distinct colors. An approximate coloring
algorithm is used in this routine, and is stopped when a certain percentage of nodes has
been colored. The rest of the nodes are assigned distinct colors (an increasing sequence
of integers numbers, starting from the last integer used previously). The last two
auxiliary routines can be used to extract the resulting number of colors, their assignment

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 190

CUSPARSE Reorderings Reference

and the associated reordering. The reordering is such that nodes that have been assigned
the same color are reordered to be next to each other.

The matrix A passed to this routine, must be stored as a general matrix and have a
symmetric sparsity pattern. If the matrix is nonsymmetric the user should pass A+A"T

as a parameter to this routine.

Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

nnz number of nonzero elements of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE _MATRIX TYPE_ GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrVala <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix a.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

fractionToColor fraction of nodes to be colored, which should be in
the interval [0.0,1.0], for example 0.8 implies that
80 percent of nodes will be colored.

info structure with information to be passed to the
coloring.

Output

ncolors The number of distinct colors used (at most the
size of the matrix, but likely much smaller).

coloring The resulting coloring permutation

reordering The resulting reordering permutation (untouched if

NULL)

Status Returned

CUSPARSE STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m, nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH

the device does not support double precision
(compute capability (c.c.) >= 1.3 required).

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 191

CUSPARSE Reorderings Reference

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 192

Chapter 12.
CUSPARSE FORMAT CONVERSION
REFERENCE

This chapter describes the conversion routines between different sparse and dense
storage formats.

coosort, csrsort, cscsort, csru2esr and csr2csc_indexOnly are sorting routines
without malloc inside, the following table estimates the buffer size

routine buffer size maximum problem size if buffer is
limited by 2GB

coosort > 16*n bytes 125M

csrsort or > 20*n bytes 100M

cscsort

csru2csr 'd' > 28*n bytes ; 'z' 71M for 'd' and 55M for 'Z'

> 36*n bytes

csr2csc_indexOnlly> 16*n bytes 125M

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 193

12.1. cusparse<t>bsr2csr()

cusparseStatus_t
cusparseSbsr2csr (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
const cusparseMatDescr t descrA,
const float *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
const cusparseMatDescr t descrC,
float *csrValcC,
int *csrRowPtrC,
int *csrColIndC)
cusparseStatus_t
cusparseDbsr2csr (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
const cusparseMatDescr t descrA,
const double *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
const cusparseMatDescr t descrC,
double *csrVal(C,
int *csrRowPtrC,
int *csrColIndC)
cusparseStatus_t
cusparseCbsr2csr (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
const cusparseMatDescr t descrA,
const cuComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
const cusparseMatDescr t descrC,
cuComplex *csrvalC,
int *csrRowPtrC,
int *csrColIndC)
cusparseStatus_t
cusparseZbsr2csr (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
const cusparseMatDescr t descrA,
const cuDoubleComplex *bsrValAa,
const int *bsrRowPtrA,
const int *bsrColIndA,
int blockDim,
const cusparseMatDescr t descrC,
cuDoubleComplex *csrValcC,
int *csrRowPtrC,
int *csrColIndC)

www.nvidia.com
CUSPARSE Library

cuSPARSE Format Conversion Reference

DU-06709-001_v7.5 | 194

cuSPARSE Format Conversion Reference

This function converts a sparse matrix in BSR format that is defined by the three arrays
bsrValA, bsrRowPtrA, and bsrColIndA) into a sparse matrix in CSR format that is
defined by arrays esrValC, csrRowPtrC, and csrColIndC.

Let m (=mb*blockDim) be the number of rows of A and n (=nb*blockDim) be number
of columns of &, then A and C are m*n sparse matrices. The BSR format of A contains
nnzb (=bsrRowPtrA[mb] - bsrRowPtrA[0]) nonzero blocks, whereas the sparse
matrix A contains nnz (=nnzb*blockDim*blockDim) elements. The user must allocate
enough space for arrays csrRowPtrC, csrColIndC, and esrValC. The requirements are
as follows:

csrRowPtrC of m+1 elements
csrValc of nnz elements
csrColIndC of nnz elements

The general procedure is as follows:

// Given BSR format (bsrRowPtrA, bsrcolIndA, bsrValA) and
// blocks of BSR format are stored in column-major order.
cusparseDirection_t dir = CUSPARSE DIRECTION COLUMN;
int m = mb*blockDim;
int nnzb = bsrRowPtrA[mb] - bsrRowPtrA[0]; // number of blocks
int nnz = nnzb * blockDim * blockDim; // number of elements
cudaMalloc ((void**) &csrRowPtrC, sizeof (int) * (m+1));
cudaMalloc ((void**) &csrColIndC, sizeof (int) *nnz);
cudaMalloc ((void**) &csrvValC, sizeof (float) *nnz);
cusparseSbsr2csr (handle, dir, mb, nb,

descrA,

bsrvalA, bsrRowPtrA, bsrColIndA,

blockDim,

descrC,

csrValC, csrRowPtrC, csrColIndC);

Input
handle handle to the cuSPARSE library context.
dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW Or
CUSPARSE_DIRECTION COLUMN.
mb number of block rows of sparse matrix a.
nb number of block columns of sparse matrix A.
descrA the descriptor of matrix a.
bsrvValaA <type> array of nnzb*blockDim*blockDim
nonzero elements of matrix A.
bsrRowPtrA integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix A.
bsrColIndA integer array of nnzb column indices of the
nonzero blocks of matrix A.
blockDim block dimension of sparse matrix a.
descrC the descriptor of matrix c.
Output

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 195

cuSPARSE Format Conversion Reference

csrValC <type> array of nnz (=csrRowPtrC[m] -
csrRowPtrC[0]) nonzero elements of matrix C.

csrRowPtrC integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one of matrix c.

csrColIndC integer array of nnz column indices of the nonzero
elements of matrix c.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (mb, nb<0,

IndexBase Of descrA, descrcC is not base-0 or
base-1, dir is not row-major or column-major, or

blockDim<1).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION_ FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_ TYPE_NOT_ SUPPORTED| the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 196

cuSPARSE Format Conversion Reference

12.2. cusparse<t>gebsr2gebsc_bufferSize()

cusparseStatus t
cusparseSgebsr2gebsc bufferSize (cusparseHandle t handle,

int mb,

int nb,

int nnzb,

const float *bsrval,
const int *bsrRowPtr,
const int *bsrColInd,
int rowBlockDim,

int colBlockDim,

int *pBufferSize)

cusparseStatus_t
cusparseDgebsr2gebsc _bufferSize (cusparseHandle t handle,

int mb,

int nb,

int nnzb,

const double *bsrVal,
const int *bsrRowPtr,
const int *bsrColInd,
int rowBlockDim,

int colBlockDim,

int *pBufferSize)

cusparseStatus_t
cusparseCgebsr2gebsc_bufferSize (cusparseHandle t handle,

int mb,

int nb,

int nnzb,

const cuComplex *bsrval,
const int *bsrRowPtr,
const int *bsrColInd,
int rowBlockDim,

int colBlockDim,

int *pBufferSize)

cusparseStatus t
cusparseZgebsr2gebsc bufferSize (cusparseHandle t handle,

int mb,

int nb,

int nnzb,

const cuDoubleComplex *bsrVal,
const int *bsrRowPtr,

const int *bsrColInd,

int rowBlockDim,

int colBlockDim,

int *pBufferSize)

This function returns size of buffer used in computing gebsr2gebsc ().

Input
handle handle to the cuSPARSE library context.
mb number of block rows of sparse matrix A.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 197

cuSPARSE Format Conversion Reference

nb number of block columns of sparse matrix Aa.
nnzb number of nonzero blocks of matrix A.
bsrval <type> array of

nnzb*rowBlockDim*colBlockDim NON-zero
elements of matrix A.

bsrRowPtr integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one.

bsrColInd integer array of nnzb column indices of the non-
zero blocks of matrix A.
rowBlockDim number of rows within a block of a.
colBlockDim number of columns within a block of A.
Output
pBufferSize host pointer containing number of bytes of the

buffer used in gebsr2gebsc ().

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (mb, nb,

nnzb<0, Or rowBlockDim, colBlockDim<1).

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 198

cuSPARSE Format Conversion Reference

12.3. cusparse<t>gebsr2gebsc()

cusparseStatus t
cusparseSgebsr2gebsc (cusparseHandle t handle,
int mb,
int nb,
int nnzb,
const float *bsrval,
const int *bsrRowPtr,
const int *bsrColInd,
int rowBlockDim,
int colBlockDim,
float *bscVal,
int *bscRowlInd,
int *bscColPtr,
cusparseAction t copyValues,
cusparselndexBase t baseldx,
void *pBuffer)

cusparseStatus_t
cusparseDgebsr2gebsc (cusparseHandle t handle,
int mb,
int nb,
int nnzb,
const double *bsrVal,
const int *bsrRowPtr,
const int *bsrCollInd,
int rowBlockDim,
int colBlockDim,
double *bscVal,
int *bscRowInd,
int *bscColPtr,
cusparseAction t copyValues,
cusparselndexBase t baselIdx,
void *pBuffer)

cusparseStatus_t
cusparseCgebsr2gebsc (cusparseHandle t handle,
int mb,
int nb,
int nnzb,
const cuComplex *bsrval,
const int *bsrRowPtr,
const int *bsrColInd,
int rowBlockDim,
int colBlockDim,
cuComplex *bscVal,
int *bscRowInd,
int *bscColPtr,
cusparseAction t copyValues,
cusparselndexBase t baseldx,
void *pBuffer)

cusparseStatus t
cusparseZgebsr2gebsc (cusparseHandle t handle,
int mb,
int nb,
int nnzb,
const cuDoubleComplex *bsrVal,
const int *bsrRowPtr,
const int *bsrColInd,
int rowBlockDim,
int colBlockDim,
cuDoubleComplex *bscVal,
NNt *herRowTnd

cuSPARSE Format Conversion Reference

This function can be seen as the same as esr2csc () when each block of size
rowBlockDim*colBlockDim is regarded as a scalar.

This sparsity pattern of the result matrix can also be seen as the transpose of the original
sparse matrix, but the memory layout of a block does not change.

The user must call gebsr2gebsc_bufferSize () to determine the size of the buffer
required by gebsr2gebsc (), allocate the buffer, and pass the buffer pointer to

gebsr2gebsc().
Input
handle handle to the cuSPARSE library context.
mb number of block rows of sparse matrix A.
nb number of block columns of sparse matrix a.
nnzb number of nonzero blocks of matrix A.
bsrval <type> array of
nnzb*rowBlockDim*colBlockDim NONZEro
elements of matrix A.
bsrRowPtr integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one.
bsrColInd integer array of nnzb column indices of the non-
zero blocks of matrix A.
rowBlockDim number of rows within a block of a.
colBlockDim number of columns within a block of A.
copyValues CUSPARSE ACTION_SYMBOLIC Or
CUSPARSE_ACTION_NUMERIC.
baseIdx CUSPARSE_INDEX BASE_ZERO Or
CUSPARSE_INDEX BASE ONE.
pBuffer buffer allocated by the user; the size is return by
gebsr2gebsc_bufferSize().
Output
bscval <type> array of
nnzb*rowBlockDim*colBlockDim
non-zero elements of matrix A. It is
only filled-in if copyValues is set to
CUSPARSE_ACTION_NUMERIC.
bscRowInd integer array of nnzb row indices of the non-zero
blocks of matrix A.
bscColPtr integer array of nb+1 elements that contains the

start of every block column and the end of the last
block column plus one.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 200

cuSPARSE Format Conversion Reference

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (mb, nb, nnzb<0,
baseIdx is not base-0 or base-1, or rowBlockDim,
colBlockDim<1).

CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 201

cuSPARSE Format Conversion Reference

12.4. cusparse<t>gebsr2gebsr_bufferSize()

cusparseStatus t
cusparseSgebsr2gebsr bufferSize (cusparseHandle t handle,

cusparseDirection t dir,

int mb,

int nb,

int nnzb,

const cusparseMatDescr t descrA,

const float *bsrValAa,

const int *bsrRowPtrA,

const int *bsrColIndA,

int rowBlockDimA,

int colBlockDimA,

int rowBlockDimC,

int colBlockDimC,

int *pBufferSize)

cusparseStatus_t
cusparseDgebsr2gebsr bufferSize (cusparseHandle t handle,

cusparseDirection t dir,

int mb,

int nb,

int nnzb,

const cusparseMatDescr t descrA,

const double *bsrValA,

const int *bsrRowPtrA,

const int *bsrColIndA,

int rowBlockDimA,

int colBlockDimA,

int rowBlockDimC,

int colBlockDimC,

int *pBufferSize)

cusparseStatus t
cusparseCgebsr2gebsr bufferSize (cusparseHandle t handle,

cusparseDirection t dir,

int mb,

int nb,

int nnzb,

const cusparseMatDescr t descrA,

const cuComplex *bsrValA,

const int *bsrRowPtrA,

const int *bsrColIndA,

int rowBlockDimA,

int colBlockDimA,

int rowBlockDimC,

int colBlockDimC,

int *pBufferSize)

cusparseStatus_t
cusparseZgebsr2gebsr bufferSize (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
int nnzb,
const cusparseMatDescr t descrA,
const cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int rowBlockDimA,
int colBlockDimA,
int rowBlockDimC,
int colBlockDimC,
TNt *PMR11IfFferli-e)

cuSPARSE Format Conversion Reference

This function returns size of the buffer used in computing gebsr2gebsrNnz () and

gebsr2gebsr ().
Input
handle handle to the cuSPARSE library context.
dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW Or
CUSPARSE_DIRECTION COLUMN.
mb number of block rows of sparse matrix a.
nb number of block columns of sparse matrix a.
nnzb number of nonzero blocks of matrix A.
descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.
bsrValA <type> array of
nnzb*rowBlockDimA*colBlockDimA NON-Z€ro
elements of matrix A.
bsrRowPtrA integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix a.
bsrColIndA integer array of nnzb column indices of the
nonzero blocks of matrix A.
rowBlockDimA number of rows within a block of a.
colBlockDimA number of columns within a block of A.
rowBlockDimC number of rows within a block of c.
colBlockDimC number of columns within a block of ¢
Output
pBufferSize host pointer containing number of bytes of the

buffer used in gebsr2gebsr ().

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (mb, nb,
nnzb<0; Or rowBlockDimA, colBlockDimA,
rowBlockDimC, colBlockDimC<1).

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 203

cuSPARSE Format Conversion Reference

12.5. cusparse<t>gebsr2gebsr()

cusparseStatus_t
cusparseXgebsr2gebsrNnz (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
int nnzb,
const cusparseMatDescr t descrA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int rowBlockDimA,
int colBlockDimA,
const cusparseMatDescr t descrC,
int *bsrRowPtrC,
int rowBlockDimC,
int colBlockDimC,
int *nnzTotalDevHostPtr,
void *pBuffer)

cusparseStatus_t
cusparseSgebsr2gebsr (cusparseHandle t handle,

cusparseDirection t dir,

int mb,

int nb,

int nnzb,

const cusparseMatDescr t descrA,

const float *bsrValAa,

const int *bsrRowPtrA,

const int *bsrColIndA,

int rowBlockDimA,

int colBlockDimA,

const cusparseMatDescr t descrC,

float *bsrValcC,

int *bsrRowPtrC,

int *bsrColIndC,

int rowBlockDimC,

int colBlockDimC,

void *pBuffer)

cusparseStatus_t
cusparseDgebsr2gebsr (cusparseHandle t handle,

cusparseDirection t dir,

int mb,

int nb,

int nnzb,

const cusparseMatDescr t descrA,

const double *bsrValA,

const int *bsrRowPtrA,

const int *bsrColIndA,

int rowBlockDimA,

int colBlockDimA,

const cusparseMatDescr t descrC,

double *bsrVval(C,

int *bsrRowPtrC,

int *bsrColIndC,

int rowBlockDimC,

int colBlockDimC,

void *pBuffer)

cusparseStatus_t
cusparseCgebsr2gebsr (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
NNt nn7bh

cuSPARSE Format Conversion Reference

This function converts a sparse matrix in general BSR format that is defined by the three
arrays bsrVala, bsrRowPtrA, and bsrColIndA into a sparse matrix in another general
BSR format that is defined by arrays bsrvValC, bsrRowPtrC, and bsrColIndC.

If rowBlockDimA=1 and colBlockDimA=1, cusparse[S|D|C|Z]gebsr2gebsr () is the
same as cusparse[S|D|C|Z]csr2gebsr ().

If rowBlockDimC=1 and colBlockDimC=1, cusparse[S|D|C|Z]gebsr2gebsr () is the
same as cusparse[S|D|C|Z]gebsr2csr ().

A is an m*n sparse matrix where m (=mb*rowBlockDim) is the number of rows of &,

and n (=nb*colBlockDim) is the number of columns of A. The general BSR format of A
contains nnzb (=bsrRowPtrA[mb] - bsrRowPtrA[0]) nonzero blocks. The matrix C
is also general BSR format with a different block size, rowBlockDimC*colBlockDimC.
If m is not a multiple of rowBlockDimC, or n is not a multiple of colBlockDimC,

zeros are filled in. The number of block rows of C is mec (= (m+rowBlockDimC-1) /
rowBlockDimC) . The number of block rows of C is nc (= (n+colBlockDimC-1) /
colBlockDimC). The number of nonzero blocks of C is nnzc.

The implementation adopts a two-step approach to do the conversion.

First, the user allocates bsrRowPtrC of me+1 elements and uses function
cusparseXgebsr2gebsrNnz () to determine the number of nonzero block
columns per block row of matrix C. Second, the user gathers nnzc (number of non-
zero block columns of matrix C) from either (nnzc=*nnzTotalDevHostPtr)

or (nnzc=bsrRowPtrC[mc]-bsrRowPtrC[0]) and allocates bsrvalcC of
nnzc*rowBlockDimC*colBlockDimC elements and bsrColIndC of nnzc integers.
Finally the function cusparse[S|D|C|Z]gebsr2gebsr () is called to complete the
conversion.

The user must call gebsr2gebsr_bufferSize () to know the size of the buffer required
by gebsr2gebsr (), allocate the buffer, and pass the buffer pointer to gebsr2gebsr ().

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 205

cuSPARSE Format Conversion Reference

The general procedure is as follows:

// Given general BSR format (bsrRowPtrA, bsrColIndA, bsrValA) and
// blocks of BSR format are stored in column-major order.

cusparseDirection t dir = CUSPARSE DIRECTION COLUMN;

int base, nnzc;

int m = mb*rowBlockDimA;

int n = nb*colBlockDimA;

int mc = (m+rowBlockDimC-1)/rowBlockDimC;
int nc = (n+colBlockDimC-1)/colBlockDimC;
int bufferSize;

void *pBuffer;
cusparseSgebsr2gebsr bufferSize (handle, dir, mb, nb, nnzb,

descrA, bsrValA, bsrRowPtrA, bsrColInda,
rowBlockDimA, colBlockDimA,
rowBlockDimC, colBlockDimC,
&bufferSize);

cudaMalloc ((void**) &pBuffer, bufferSize);
cudaMalloc ((void**) &bsrRowPtrC, sizeof (int) * (mc+1)) ;
// nnzTotalDevHostPtr points to host memory

int

*nnzTotalDevHostPtr = &nnzc;

cusparseXgebsr2gebsrNnz (handle, dir, mb, nb, nnzb,

descrA, bsrRowPtrA, bsrColIndA,
rowBlockDimA, colBlockDimA,
descrC, bsrRowPtrC,
rowBlockDimC, colBlockDimC,

nnzTotalDevHostPtr,
pBuffer);
if (NULL != nnzTotalDevHostPtr) {
nnzc = *nnzTotalDevHostPtr;
lelse{

}

cudaMemcpy (&nnzc, bsrRowPtrC+mc, sizeof (int), cudaMemcpyDeviceToHost) ;
cudaMemcpy (&base, bsrRowPtrC, sizeof (int), cudaMemcpyDeviceToHost) ;
nnzc -= base;

cudaMalloc ((void**) &§bsrColIndC, sizeof (int) *nnzc);
cudaMalloc ((void**) &bsrValC, sizeof (float)* (rowBlockDimC*colBlockDimC) *nnzc) ;
cusparseSgebsr2gebsr (handle, dir, mb, nb, nnzb,

descrA, bsrValA, bsrRowPtrA, bsrColIndA,
rowBlockDimA, colBlockDimA,
descrC, bsrValC, bsrRowPtrC, bsrColIndC,
rowBlockDimC, colBlockDimC,

pBuffer);
Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW Or
CUSPARSE_DIRECTION_ COLUMN.

mb number of block rows of sparse matrix a.

nb number of block columns of sparse matrix A.

nnzb number of nonzero blocks of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ ZERO and
CUSPARSE_INDEX BASE ONE.

bsrvalA <type> array of
nnzb*rowBlockDimA*colBlockDimA non-zero
elements of matrix A.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 206

cuSPARSE Format Conversion Reference

bsrRowPtrA integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix A.

bsrColIndA integer array of nnzb column indices of the non-
zero blocks of matrix A.

rowBlockDimA number of rows within a block of a.

colBlockDimA number of columns within a block of A.

descrC the descriptor of matrix ¢. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.

rowBlockDimC number of rows within a block of c.

colBlockDimC number of columns within a block of c.

pBuffer buffer allocated by the user; the size is return by
gebsr2gebsr_ bufferSize().

Output

bsrvalcC <type> array of
nnzc*rowBlockDimC*colBlockDimC non-zero
elements of matrix c.

bsrRowPtrC integer array of mec+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix C.

bsrColIndC integer array of nnzc block column indices of the
nonzero blocks of matrix c.

nnzTotalDevHostPtr total number of nonzero blocks of c.

*nnzTotalDevHostPtr is the same as
bsrRowPtrC[mc] -bsrRowPtrC[0].

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (mb, nb,
nnzb<0, baseIdx is not base-0 or base-1; or
rowBlockDimA, colBlockDimA, rowBlockDimC,
colBlockDimC<1).

CUSPARSE STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

CUSPARSE_STATUS_ INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 207

12.6. cusparse<t>gebsr2csr()

cusparseStatus_t
cusparseSgebsr2csr (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
const cusparseMatDescr t descrA,
const float *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int rowBlockDim,
int colBlockDim,
const cusparseMatDescr t descrC,
float *csrValC,
int *csrRowPtrC,
int *csrColIndC)
cusparseStatus t
cusparseDgebsr2csr (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
const cusparseMatDescr t descrAh,
const double *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int rowBlockDim,
int colBlockDim,
const cusparseMatDescr t descrC,
double *csrValC,
int *csrRowPtrC,
int *csrColIndC)
cusparseStatus t
cusparseCgebsr2csr (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
const cusparseMatDescr t descrA,
const cuComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int rowBlockDim,
int colBlockDim,
const cusparseMatDescr t descrC,
cuComplex *csrValC,
int *csrRowPtrC,
int *csrColIndC)
cusparseStatus_t
cusparseZgebsr2csr (cusparseHandle t handle,
cusparseDirection t dir,
int mb,
int nb,
const cusparseMatDescr t descrA,
const cuDoubleComplex *bsrValA,
const int *bsrRowPtrA,
const int *bsrColIndA,
int rowBlockDim,
int colBlockDim,
const cusparseMatDescr t descrC,
cuDoubleComplex *csrValC,
int *csrRowPtrC,
int *csrColIndC)
www.nvidia.com
CUSPARSE Library

cuSPARSE Format Conversion Reference

DU-06709-001_v7.5 | 208

cuSPARSE Format Conversion Reference

This function converts a sparse matrix in general BSR format that is defined by the three
arrays bsrValA, bsrRowPtrA, and bsrColIndA into a sparse matrix in CSR format that
is defined by arrays esrValC, csrRowPtrC, and csrColIndC.

Let m (=mb*rowBlockDim) be number of rows of A and n (=nb*colBlockDim) be
number of columns of A, then A and C are m*n sparse matrices. The general BSR format
of A contains nnzb (=bsrRowPtrA[mb] - bsrRowPtrA[0]) non-zero blocks, whereas
sparse matrix A contains nnz (=nnzb*rowBlockDim*colBlockDim) elements. The user
must allocate enough space for arrays ecsrRowPtrC, csrColIndC, and csrValC. The
requirements are as follows:

csrRowPtrC of m+1 elements
csrValc of nnz elements
csrColIndC of nnz elements

The general procedure is as follows:

// Given general BSR format (bsrRowPtrA, bsrColIndA, bsrValA) and
// blocks of BSR format are stored in column-major order.
CusparseDirection_t dir = CUSPARSE DIRECTION COLUMN;
int m = mb*rowBlockDim;
int n = nb*colBlockDim;
int nnzb = bsrRowPtrA[mb] - bsrRowPtrA[0]; // number of blocks
int nnz = nnzb * rowBlockDim * colBlockDim; // number of elements
cudaMalloc ((void**) &csrRowPtrC, sizeof (int) * (m+1));
cudaMalloc ((void**) &csrColIndC, sizeof (int) *nnz);
cudaMalloc ((void**) &csrValC, sizeof (float) *nnz);
cusparseSgebsr2csr (handle, dir, mb, nb,

descrA,

bsrValA, bsrRowPtrA, bsrColIndA,

rowBlockDim, colBlockDim,

descrC,

csrValC, csrRowPtrC, csrColIndC);

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW Or
CUSPARSE_DIRECTION COLUMN.

mb number of block rows of sparse matrix a.

nb number of block columns of sparse matrix a.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

bsrvala <type> array of
nnzb*rowBlockDim*colBlockDim NON-Z€ero
elements of matrix A.

bsrRowPtrA integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix a.

bsrColIndA integer array of nnzb column indices of the non-
zero blocks of matrix A.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 209

cuSPARSE Format Conversion Reference

rowBlockDim number of rows within a block of a.
colBlockDim number of columns within a block of A.
descrC the descriptor of matrix c. The supported matrix

type is CUSPARSE_MATRIX TYPE_ GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

Output
csrValC <type> array of nnz non-zero elements of matrix
C.
csrRowPtrC integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one of matrix c.
csrColIndC integer array of nnz column indices of the non-

zero elements of matrix C.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (mb, nb<0

is not base-0 or base-1, or rowBlockDim,
colBlockDim<1).

CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX TYPE_NOT_ SUPPORTED| the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 210

cuSPARSE Format Conversion Reference

12.7. cusparse<t>csr2gebsr_bufferSize()

cusparseStatus t
cusparseScsr2gebsr bufferSize (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const float *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
int rowBlockDim,
int colBlockDim,
int *pBufferSize)

cusparseStatus_t
cusparseDcsr2gebsr bufferSize (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int rowBlockDim,
int colBlockDim,
int *pBufferSize)

cusparseStatus_ t
cusparseCcsr2gebsr bufferSize (cusparseHandle t handle,
cusparseDirection t dir,
int m, -
int n,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int rowBlockDim,
int colBlockDim,
int *pBufferSize)

cusparseStatus_t
cusparseZcsr2gebsr bufferSize (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int rowBlockDim,
int colBlockDim,
int *pBufferSize)

This function returns the size of the buffer used in computing csr2gebsrNnz and
csr2gebsr.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 211

cuSPARSE Format Conversion Reference

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ ROW OF
CUSPARSE_DIRECTION COLUMN.

m number of rows of sparse matrix A.

n number of columns of sparse matrix a.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

csrvVala <type> array of nnz nonzero elements of matrix a.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one of matrix a.

csrColIndA integer array of nnz column indices of the nonzero
elements of matrix A.

descrC the descriptor of matrix c. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

rowBlockDim number of rows within a block of c.

colBlockDim number of columns within a block of c.

Output
pBufferSize host pointer containing number of bytes of

the buffer used in csr2gebsrNnz () and
csr2gebsr().

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (m,n<0, or
rowBlockDim, colBlockDim<1).

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 212

cuSPARSE Format Conversion Reference

12.8. cusparse<t>csr2gebsr()

cusparseStatus t
cusparseXcsr2gebsrNnz (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
const cusparseMatDescr t descrC,
int *bsrRowPtrC,
int rowBlockDim,
int colBlockDim,
int *nnzTotalDevHostPtr,
void *pBuffer)

cusparseStatus_t
cusparseScsr2gebsr (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const float *csrValAa,
const int *csrRowPtrA,
const int *csrColIndA,
const cusparseMatDescr t descrC,
float *bsrvalC,
int *bsrRowPtrC,
int *bsrColIndC,
int rowBlockDim,
int colBlockDim,
void *pBuffer)

cusparseStatus t
cusparseDcsr2gebsr (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cusparseMatDescr t descrC,
double *bsrVal(C,
int *bsrRowPtrC,
int *bsrColIndC,
int rowBlockDim,
int colBlockDim,
void *pBuffer)

cusparseStatus_t
cusparseCcsr2gebsr (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cusparseMatDescr t descrC,
cuComplex *bsrValC,
int *bsrRowPtrC,
int *bsrColIndC,
TNt rowRIockDIim .

cuSPARSE Format Conversion Reference

This function converts a sparse matrix A in CSR format (that is defined by arrays
csrValh, csrRowPtrA, and csrColIndA) into a sparse matrix C in general BSR format
(that is defined by the three arrays bsrvValC, bsrRowPtrC, and bsrColIndC).

The matrix A is a m*n sparse matrix and matrix Cis a

(mb*rowBlockDim) * (nb*colBlockDim) sparse matrix, where mb (= (m
+rowBlockDim-1) /rowBlockDim) is the number of block rows of C, and nb (= (n
+colBlockDim-1) /colBlockDim) is the number of block columns of C.

The block of C is of size rowBlockDim*colBlockDim. If m is not multiple of
rowBlockDim or n is not multiple of colBlockDim, zeros are filled in.

The implementation adopts a two-step approach to do the conversion. First, the user
allocates bsrRowPtrC of mb+1 elements and uses function cusparseXcsr2gebsrNnz ()
to determine the number of nonzero block columns per block row. Second, the

user gathers nnzb (number of nonzero block columns of matrix C) from either
(nnzb=*nnzTotalDevHostPtr) or (nnzb=bsrRowPtrC[mb]-bsrRowPtrC[0]) and
allocates bsrValC of nnzb*rowBlockDim*colBlockDim elements and bsrColIndC of
nnzb integers. Finally function cusparse[S|D|C|2Z]csr2gebsr () is called to complete
the conversion.

The user must obtain the size of the buffer required by esr2gebsr () by calling
csr2gebsr_bufferSize (), allocate the buffer, and pass the buffer pointer to
csr2gebsr ().

www.nvidia.com

CUSPARSE Library DU-06709-001_v7.5 | 214

The general procedure is as follows:

// Given CSR format (csrRowPtrA,

csrColIndA,

cuSPARSE Format Conversion Reference

csrValA) and

// blocks of BSR format are stored in column-major order.

cusparseDirection t dir =
int base, nnzb;

int mb =
int nb =
int bufferSize;
void *pBuffer;

(m + rowBlockDim-1) /rowBlockDim;
(n + colBlockDim-1)/colBlockDim;

CUSPARSE DIRECTION COLUMN;

cusparseScsr2gebsr bufferSize (handle, dir, m, n,
descrA, csrValA, csrRowPtrA, csrColIndA,
rowBlockDim, colBlockDim,

&bufferSize) ;

cudaMalloc ((void**) &pBuffer, bufferSize);

cudaMalloc ((void**) &§bsrRowPtrC, sizeof (int) * (mb+1));

// nnzTotalDevHostPtr points to host memory

int *nnzTotalDevHostPtr = &nnzb;

cusparseXcsr2gebsrNnz (handle, dir, m, n,
descrA, csrRowPtrA, csrColIndA,
descrC, bsrRowPtrC, rowBlockDim, colBlockDim,
nnzTotalDevHostPtr,
pBuffer);

if (NULL != nnzTotalDevHostPtr) {
nnzb = *nnzTotalDevHostPtr;

lelse{

cudaMemcpy (&nnzb, bsrRowPtrC+mb,
cudaMemcpy (&base, bsrRowPtrC,
nnzb -= base;
}
cudaMalloc ((void**) &bsrColIndC,
cudaMalloc ((void**) &bsrvalcC,

sizeof (int),
sizeof (int),

cudaMemcpyDeviceToHost) ;
cudaMemcpyDeviceToHost) ;

sizeof (int) *nnzb) ;
sizeof (float) * (rowBlockDim*colBlockDim) *nnzb) ;

cusparseScsr2gebsr (handle, dir, m, n,
descra,
csrValA, csrRowPtrA, csrColIndA,
descrC,
bsrvValC, bsrRowPtrC, bsrColIndC,
rowBlockDim, colBlockDim,
pBuffer) ;
Input
handle handle to the cuSPARSE library context.
dir storage format of blocks, either
CUSPARSE_DIRECTION_ROW Or
CUSPARSE_DIRECTION_ COLUMN.
m number of rows of sparse matrix A.
n number of columns of sparse matrix A.
descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.
csrValA <type> array of nnz nonzero elements of matrix a.
csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one of matrix Aa.
csrColIndA integer array of nnz column indices of the nonzero
elements of matrix A.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 215

cuSPARSE Format Conversion Reference

descrC the descriptor of matrix c. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

rowBlockDim number of rows within a block of C.
colBlockDim number of columns within a block of C.
pBuffer buffer allocated by the user, the size is return by

csr2gebsr bufferSize().

Output

bsrvalc <type> array of
nnzb*rowBlockDim*colBlockDim NONZero
elements of matrix c.

bsrRowPtrC integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix C.

bsrColIndC integer array of nnzb column indices of the
nonzero blocks of matrix c.

nnzTotalDevHostPtr total number of nonzero blocks of matrix C.

Pointer nnzTotalDevHostPtr can point to a
device memory or host memory.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,n<0, baseIdx
is not base-0 or base-1, or rowBlockDim,
colBlockDim<1).

CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.

CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED| the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

12.9. cusparse<t>coo2csr()

cusparseStatus_t
cusparseXcoo2csr (cusparseHandle t handle, const int *cooRowInd,
int nnz, int m, int *csrRowPtr, cusparselndexBase t
idxBase)

This function converts the array containing the uncompressed row indices
(corresponding to COO format) into an array of compressed row pointers
(corresponding to CSR format).

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 216

cuSPARSE Format Conversion Reference

It can also be used to convert the array containing the uncompressed column indices
(corresponding to COO format) into an array of column pointers (corresponding to CSC

format).

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
cooRowInd integer array of nnz uncompressed row indices.
nnz number of non-zeros of the sparse matrix (that is
also the length of array cooRowInd).
m number of rows of matrix A.
idxBase CUSPARSE_INDEX BASE_ZERO Or
CUSPARSE_INDEX BASE_ONE.
Output
csrRowPtr integer array of m+1 elements that contains the

start of every row and the end of the last row plus
one.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE STATUS_INVALID VALUE

idxBase is neither CUSPARSE_INDEX BASE_ZERO
nor CUSPARSE INDEX BASE ONE.

CUSPARSE STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 217

cuSPARSE Format Conversion Reference

12.10. cusparse<t>csc2dense()

cusparseStatus_t
cusparseScsc2dense (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,

const float *cscValAa,
const int *cscRowIndA, const int *cscColPtrA,
float *A, int 1lda)

cusparseStatus_t
cusparseDcsc2dense (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,

const double *cscValA,
const int *cscRowIndA, const int *cscColPtrA,
double *A, int 1lda)

cusparseStatus t
cusparseCcsc2dense (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const cuComplex *cscValA,
const int *cscRowIndA, const int *cscColPtrA,
cuComplex *A, int 1lda)
cusparseStatus_t
cusparseZcsc2dense (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const cuDoubleComplex *cscValA,

const int *cscRowIndA, const int *cscColPtrA,
cuDoubleComplex *A, int lda)

This function converts the sparse matrix in CSC format that is defined by the three
arrays cscValA, cscColPtrA, and cscRowIndA into the matrix A in dense format. The
dense matrix A is filled in with the values of the sparse matrix and with zeros elsewhere.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

m number of rows of matrix a.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ ZERO and
CUSPARSE_INDEX BASE ONE.

cscValA <type> array of nnz (= cscColPtrA(m) -
cscColPtrA (0)) nonzero elements of matrix A.

cscRowIndA integer array of nnz (= cscColPtrA (m) -
cscColPtrA (0)) row indices of the nonzero
elements of matrix A.

cscColPtrA integer array of n+1 elements that contains the
start of every row and the end of the last column
plus one.

lda leading dimension of dense array A.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 218

cuSPARSE Format Conversion Reference

Output

A array of dimensions (1da, n) that is filled in with
the values of the sparse matrix.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID_ VALUE invalid parameters were passed (m, n<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_MATRIX TYPE NOT SUPPORTED| the matrix type is not supported.

12.11. cusparse<t>csc2hyb()

cusparseStatus t
cusparseScsc2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const float *cscValAa,
const int *cscRowIndA, const int *cscColPtrA,
cusparseHybMat t hybA, int userEllWidth,
cusparseHybPartition t partitionType)
cusparseStatus t
cusparseDcsc2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const double *cscValAl,
const int *cscRowIndA, const int *cscColPtrA,
cusparseHybMat t hybA, int userEllWidth,
cusparseHybPartition t partitionType)
cusparseStatus_t
cusparseCcsc2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const cuComplex *cscValAh,
const int *cscRowIndA, const int *cscColPtrA,
cusparseHybMat t hybA, int userEllWidth,
cusparseHybPartition t partitionType)
cusparseStatus_t
cusparsezcsc2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const cuDoubleComplex *cscValA,
const int *cscRowIndA, const int *cscColPtrA,
cusparseHybMat t hybA, int userEllWidth,
cusparseHybPartition t partitionType)

This function converts a sparse matrix in CSC format into a sparse matrix in
HYB format. It assumes that the hybA parameter has been initialized with the
cusparseCreateHybMat () routine before calling this function.

This function requires some amount of temporary storage and a significant amount of
storage for the matrix in HYB format. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 219

cuSPARSE Format Conversion Reference

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE _MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ ZERO and
CUSPARSE_INDEX BASE ONE.

cscVala <type> array of nnz (= cscColPtrA (m) -
cscColPtrA (0)) nonzero elements of matrix a.

cscRowIndA integer array of nnz (= cscColPtrA (m) -
cscColPtrA (0)) column indices of the nonzero
elements of matrix A.

cscColPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

userEllWidth width of the regular (ELL) part of the matrix
in HYB format, which should be less than
the maximum number of nonzeros per row
and is only required if partitionType ==
CUSPARSE_HYB PARTITION USER.

partitionType partitioning method to be used in the conversion
(please refer to cusparseHybPartition_t for
details).

Output
hyba the matrix & in HYB storage format.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 220

cuSPARSE Format Conversion Reference

12.12. cusparse<t>csr2bsr()

cusparseStatus_t
cusparseXcsr2bsrNnz (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
int blockDim,
const cusparseMatDescr t descrC,
int *bsrRowPtrC,
int *nnzTotalDevHostPtr)
cusparseStatus t
cusparseScsr2bsr (cusparseHandle t handle,
cusparseDirection t dir,
int m, -
int n,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int blockDim,
const cusparseMatDescr t descrC,
float *bsrValC,
int *bsrRowPtrC,
int *bsrColIndC)
cusparseStatus t
cusparseDcsr2bsr (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int blockDim,
const cusparseMatDescr t descrC,
double *bsrValC,
int *bsrRowPtrC,
int *bsrColIndC)
cusparseStatus_t
cusparseCcsr2bsr (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int blockDim,
const cusparseMatDescr t descrC,
cuComplex *bsrValC,
int *bsrRowPtrC,
int *bsrColIndC)
cusparseStatus_t
cusparseZcsr2bsr (cusparseHandle t handle,
cusparseDirection t dir,
int m,
int n,
const cusparseMatDescr t descra,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
“nt blockDim .

cuSPARSE Format Conversion Reference

This function converts a sparse matrix in CSR format that is defined by the three arrays
csrValA, csrRowPtrA, and csrColIndA into a sparse matrix in BSR format that is
defined by arrays bsrValC, bsrRowPtrC, and bsrColIndC.

Ais an m*n sparse matrix. The BSR format of A has mb block rows, nb block columns,
and nnzb nonzero blocks, where mb= ((m+blockDim-1) /blockDim) and nb=(n
+blockDim-1) /blockDim.

If m or n is not multiple of blockDim, zeros are filled in.

The conversion in cuSPARSE entails a two-step approach. First, the user allocates
bsrRowPtrC of mb+1 elements and uses function cusparseXcsr2bsrNnz ()

to determine the number of nonzero block columns per block row. Second, the

user gathers nnzb (number of non-zero block columns of matrix C) from either
(nnzb=*nnzTotalDevHostPtr) or (nnzb=bsrRowPtrC[mb]-bsrRowPtrC[0]) and
allocates bsrvalcC of nnzb*blockDim*blockDim elements and bsrColIndC of nnzb
elements. Finally function cusparse[S|D|C|Z]csr2bsr90 is called to complete the
conversion.

The general procedure is as follows:

// Given CSR format (csrRowPtrA, csrcollIndA, csrValA) and
// blocks of BSR format are stored in column-major order.
cusparseDirection t dir = CUSPARSE DIRECTION COLUMN;
int base, nnzb;
int mb = (m + blockDim-1)/blockDim;
cudaMalloc ((void**) &§bsrRowPtrC, sizeof (int) * (mb+1));
// nnzTotalDevHostPtr points to host memory
int *nnzTotalDevHostPtr = &nnzb;
cusparseXcsr2bsrNnz (handle, dir, m, n,
descrA, csrRowPtrA, csrColIndA,
blockDim,
descrC, bsrRowPtrC,
nnzTotalDevHostPtr) ;
if (NULL != nnzTotalDevHostPtr) {
nnzb = *nnzTotalDevHostPtr;
}else(
cudaMemcpy (&nnzb, bsrRowPtrC+mb, sizeof (int), cudaMemcpyDeviceToHost) ;
cudaMemcpy (&base, bsrRowPtrC, sizeof (int), cudaMemcpyDeviceToHost) ;
nnzb -= base;
t
cudaMalloc ((void**) &bsrColIndC, sizeof (int) *nnzb) ;
cudaMalloc ((void**) &bsrValC, sizeof (float)* (blockDim*blockDim) *nnzb) ;
cusparseScsr2bsr (handle, dir, m, n,
descra,
csrValA, csrRowPtrA, csrColIndA,
blockDim,
descrC,
bsrvValC, bsrRowPtrC, bsrColIndC);

If blockDim is large (typically, a block cannot fit into shared memory), cusparse([S|
D|C|Z]csr2bsr () allocates a temporary integer array of size mb*blockDim integers. If
device memory is not available, CUSPARSE_STATUS_ALLOC_FAILED is returned.

Input

handle handle to the cuSPARSE library context.

dir storage format of blocks, either
CUSPARSE_DIRECTION_ ROW Or
CUSPARSE_DIRECTION_ COLUMN.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 222

cuSPARSE Format Conversion Reference

m number of rows of sparse matrix A.

n number of columns of sparse matrix A.

descrA the descriptor of matrix A.

csrVala <type> array of nnz (=csrRowPtrA[m] -
csrRowPtr[0]) non-zero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz column indices of the non-
zero elements of matrix A.

blockDim block dimension of sparse matrix A. The range of
blockDim is between 1 and min (m,n).

descrC the descriptor of matrix c.

Output

bsrvalcC <type> array of nnzb*blockDim*blockDim
nonzero elements of matrix C.

bsrRowPtrC integer array of mb+1 elements that contains the
start of every block row and the end of the last
block row plus one of matrix C.

bsrColIndC integer array of nnzb column indices of the non-
zero blocks of matrix C.

nnzTotalDevHostPtr total number of nonzero elements in device or

host memory. It is equal to (bsrRowPtrC[mb]-
bsrRowPtrC[0]).

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_ NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (m, n<0).
IndexBase field of descrA, descrcC is not base-0
or base-1, dir is not row-major or column-major,
or blockDim is not between 1 and min (m,n).

CUSPARSE STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED

the matrix type is not supported.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

12.13. cusparse<t>csr2coo()

cusparseStatus_ t

cusparseXcsr2coo (cusparseHandle t handle,

int nnz, int m, int
cusparselndexBase t

www.nvidia.com
CUSPARSE Library

const int *csrRowPtr,
*cooRowInd,
idxBase)

DU-06709-001_v7.5 | 223

cuSPARSE Format Conversion Reference

This function converts the array containing the compressed row pointers (corresponding
to CSR format) into an array of uncompressed row indices (corresponding to COO

format).

It can also be used to convert the array containing the compressed column indices
(corresponding to CSC format) into an array of uncompressed column indices

(corresponding to COO format).

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
csrRowPtr integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.
nnz number of nonzeros of the sparse matrix (that is
also the length of array cooRowInd).
m number of rows of matrix A.
idxBase CUSPARSE_INDEX BASE_ZERO Or
CUSPARSE_INDEX BASE ONE.
Output
cooRowInd integer array of nnz uncompressed row indices.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITTIALIZED

the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE

idxBase is neither CUSPARSE_INDEX BASE ZERO
nor CUSPARSE_INDEX BASE_ONE.

CUSPARSE_STATUS_ EXECUTION_FAILED

the function failed to launch on the GPU.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 224

cuSPARSE Format Conversion Reference

12.14. cusparse<t>csr2csc()

cusparseStatus_t

cusparseScsr2csc (cusparseHandle t handle, int m, int n, int nnz,
const float *csrVal, const int *csrRowPtr,
const int *csrColInd, float *cscVal,
int *cscRowInd, int *cscColPtr,
cusparseAction t copyValues,
cusparselndexBase t idxBase)

cusparseStatus_t

cusparseDcsr2csc (cusparseHandle t handle, int m, int n, int nnz,
const double *csrVal, const int *csrRowPtr,
const int *csrColInd, double *cscVal,
int *cscRowInd, int *cscColPtr,
cusparseAction t copyValues,
cusparselndexBase t idxBase)

cusparseStatus_t

cusparseCcsr2csc (cusparseHandle t handle, int m, int n, int nnz,
const cuComplex *csrVal, const int *csrRowPtr,
const int *csrColInd, cuComplex *cscVal,
int *cscRowInd, int *cscColPtr,
cusparseAction t copyValues,
cusparselndexBase t idxBase)

cusparseStatus_t

cusparsezcsr2csc (cusparseHandle t handle, int m, int n, int nnz,
const cuDoubleComplex *csrVal, const int *csrRowPtr,
const int *csrColInd, cuDoubleComplex *cscVal,
int *cscRowInd, int *cscColPtr,
cusparseAction t copyValues,
cusparselndexBase t idxBase)

This function converts a sparse matrix in CSR format (that is defined by the three

arrays csrVal, csrRowPtr, and esrColInd) into a sparse matrix in CSC format (that is
defined by arrays cscVal, cscRowInd, and escColPtr). The resulting matrix can also
be seen as the transpose of the original sparse matrix. Notice that this routine can also be
used to convert a matrix in CSC format into a matrix in CSR format.

This function requires a significant amount of extra storage that is proportional to the
matrix size. It is executed asynchronously with respect to the host, and it may return
control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

nnz number of nonzero elements of matrix A.

csrVal <type> array of nnz (= csrRowPtr (m) -
csrRowPtr (0)) nonzero elements of matrix A.

csrRowPtr integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 225

cuSPARSE Format Conversion Reference

csrColInd integer array of nnz (= csrRowPtr (m) -
csrRowPtr (0)) column indices of the nonzero
elements of matrix A.

copyValues CUSPARSE_ACTION_SYMBOLIC Or
CUSPARSE_ACTION_ NUMERIC.

idxBase CUSPARSE_INDEX_ BASE_ZERO Of
CUSPARSE_INDEX BASE_ONE.

Output

cscVal <type> array of nnz (= cscColPtr (n) -
cscColPtr (0)) nonzero elements of matrix
A. It is only filled in if copyValues is set to
CUSPARSE_ACTION_NUMERIC.

cscRowInd integer array of nnz (= cscColPtr(n) -
cscColPtr (0)) column indices of the nonzero
elements of matrix A.

cscColPtr integer array of n+1 elements that contains the

start of every column and the end of the last
column plus one.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,n,nnz<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 226

cuSPARSE Format Conversion Reference

12.15. cusparse<t>csr2dense()

cusparseStatus_t cusparseScsr2dense (cusparseHandle t handle,
int m,
int n,
const cusparseMatDescr t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
float *A,
int lda)

cusparseStatus_t cusparseDcsr2dense (cusparseHandle t handle,
int m,
int n,
const cusparseMatDescr t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
double *A,
int lda)

cusparseStatus_t cusparseCcsr2dense (cusparseHandle t handle,
int m,
int n,
const cusparseMatDescr t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuComplex *A,
int lda)

cusparseStatus_t cusparseZcsr2dense (cusparseHandle t handle,
int m,
int n,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuDoubleComplex *A,
int 1lda)

This function converts the sparse matrix in CSR format (that is defined by the three
arrays csrVala, csrRowPtrA, and csrColInda) into the matrix A in dense format. The
dense matrix A is filled in with the values of the sparse matrix and with zeros elsewhere.

This function requires no extra storage. It is executed asynchronously with respect to the
host, and it may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
m number of rows of matrix A.
n number of columns of matrix A.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 227

cuSPARSE Format Conversion Reference

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -

csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

lda leading dimension of array matrixa.
Output
A array of dimensions (1da,n) that is filled in with

the values of the sparse matrix.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m, n<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 228

cuSPARSE Format Conversion Reference

12.16. cusparse<t>csr2hyb()

cusparseStatus_t
cusparseScsr2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrAh,
const float *csrValAl,
const int *csrRowPtrA, const int *csrColIndA,
cusparseHybMat t hybA, int userEllwWidth,
cusparseHybPartition t partitionType)
cusparseStatus_t
cusparseDcsr2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const double *csrValAl,
const int *csrRowPtrA, const int *csrColIndA,
cusparseHybMat t hybA, int userEllWidth,
cusparseHybPartition t partitionType)
cusparseStatus_t
cusparseCcsr2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrAh,
const cuComplex *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
cusparseHybMat t hybA, int userEllWidth,
cusparseHybPartition t partitionType)
cusparseStatus_t
cusparsezcsr2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA, const int *csrColIndA,
cusparseHybMat t hybA, int userEllWidth,
cusparseHybPartition t partitionType)

This function converts a sparse matrix in CSR format into a sparse matrix in
HYB format. It assumes that the hybA parameter has been initialized with

cusparseCreateHybMat () routine before calling this function.

This function requires some amount of temporary storage and a significant amount of
storage for the matrix in HYB format. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 229

cuSPARSE Format Conversion Reference

csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.

userEllWidth width of the regular (ELL) part of the matrix
in HYB format, which should be less than
maximum number of nonzeros per row

and is only required if partitionType ==
CUSPARSE_HYB_PARTITION USER.

partitionType partitioning method to be used in the conversion
(please refer to cusparseHybPartition_t for
details).
Output
hyba the matrix A in HYB storage format.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,n<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 230

cuSPARSE Format Conversion Reference

12.17. cusparse<t>dense2csc()

cusparseStatus_t
cusparseSdense2csc (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,

const float WA,
int lda, const int *nnzPerCol,
float *cscValA,

int *cscRowIndA, int *cscColPtrA)
cusparseStatus_t
cusparseDdense2csc (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,

const double WA,
int lda, const int *nnzPerCol,
double *cscValA,

int *cscRowIndA, int *cscColPtrA)
cusparseStatus_t
cusparseCdense2csc (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrAh,

const cuComplex WA,
int lda, const int *nnzPerCol,
cuComplex *cscValA,

int *cscRowIndA, int *cscColPtrA)
cusparseStatus_t
cusparseZdense2csc (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const cuDoubleComplex *A,
int lda, const int *nnzPerCol,
cuDoubleComplex *cscValA,
int *cscRowIndA, int *cscColPtrA)

This function converts the matrix A in dense format into a sparse matrix in CSC format.
All the parameters are assumed to have been pre-allocated by the user, and the arrays
are filled in based on nnzPerCol, which can be precomputed with cusparse<t>nnz ().

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.

A array of dimensions (1da, n).

lda leading dimension of dense array A.

nnzPerCol array of size n containing the number of nonzero
elements per column.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 231

cuSPARSE Format Conversion Reference

Output

cscVala <type> array of nnz (= cscRowPtrA (m) -
cscRowPtrA (0)) nonzero elements of matrix
A. Itis only filled in if copyValues is set to
CUSPARSE_ACTION_NUMERIC.

cscRowIndA integer array of nnz (= cscRowPtrA (m) -
cscRowPtrA (0)) row indices of the nonzero
elements of matrix A.

cscColPtrA integer array of n+1 elements that contains the

start of every column and the end of the last
column plus one.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m, n<0).
CUSPARSE_STATUS_ARCH_MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

12.18. cusparse<t>dense2csr()

cusparseStatus t

cusparseSdense2csr (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const float WA,

int 1lda,
float

const int *nnzPerRow,
*csrValA,

int *csrRowPtrA, int *csrColIndA)

cusparseStatus t

cusparseDdense2csr (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const double WA,

int 1lda,
double

const int *nnzPerRow,
*csrValA,

int *csrRowPtrA, int *csrColIndA)

cusparseStatus t

cusparseCdense2csr (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const cuComplex *A,

int 1lda,
cuComplex

const int *nnzPerRow,
*csrValA,

int *csrRowPtrA, int *csrColIndA)

cusparseStatus_t

cusparseZdense2csr (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrAh,
const cuDoubleComplex *A,

int 1lda,

const int *nnzPerRow,

cuDoubleComplex *csrValA,
int *csrRowPtrA, int *csrColIndA)

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 232

cuSPARSE Format Conversion Reference

This function converts the matrix A in dense format into a sparse matrix in CSR format.
All the parameters are assumed to have been pre-allocated by the user and the arrays are
filled in based on nnzPerRow, which can be pre-computed with cusparse<t>nnz ().

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE ZERO and
CUSPARSE_INDEX BASE ONE.

A array of dimensions (1da, n).

lda leading dimension of dense array A.

nnzPerRow array of size n containing the number of non-zero
elements per row.

Output

csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.

csrRowPtrA integer array of m+1 elements that contains the
start of every column and the end of the last
column plus one.

csrColIndA integer array of nnz (= csrRowPtrA (m) -

csrRowPtrA (0)) column indices of the non-zero
elements of matrix A.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_ NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m, n<0).

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX TYPE_NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 233

cuSPARSE Format Conversion Reference

12.19. cusparse<t>dense2hyb()

cusparseStatus_t
cusparseSdense2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const float WA,
int lda, const int *nnzPerRow, cusparseHybMat t hybA,
int userEllWidth,
cusparseHybPartition t partitionType)
cusparseStatus_t
cusparseDdense2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const double WA,
int lda, const int *nnzPerRow, cusparseHybMat t
hybA,
int userEllWidth,
cusparseHybPartition t partitionType)
cusparseStatus t
cusparseCdense2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const cuComplex *A,
int lda, const int *nnzPerRow, cusparseHybMat t hybA,
int userEllWidth,
cusparseHybPartition t partitionType)
cusparseStatus t
cusparseZdense2hyb (cusparseHandle t handle, int m, int n,
const cusparseMatDescr t descrA,
const cuDoubleComplex *A,
int lda, const int *nnzPerRow, cusparseHybMat t hybA,
int userEllWidth,
cusparseHybPartition t partitionType)

This function converts matrix A in dense format into a sparse matrix in HYB format.
It assumes that the routine cusparseCreateHybMat () was used to initialize the
opaque structure hybA and that the array nnzPerRow was pre-computed with
cusparse<t>nnz ().

This function requires some amount of temporary storage and a significant amount of
storage for the matrix in HYB format. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input

handle handle to the cuSPARSE library context.

m number of rows of matrix A.

n number of columns of matrix A.

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_ GENERAL.

A array of dimensions (1da, n).

lda leading dimension of dense array A.

nnzPerRow array of size m containing the number of nonzero
elements per row.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 234

cuSPARSE Format Conversion Reference

userEllWidth

width of the regular (ELL) part of the matrix
in HYB format, which should be less than
maximum number of nonzeros per row

and is only required if partitionType ==
CUSPARSE_HYB_PARTITION USER.

partitionType

partitioning method to be used in the conversion
(please refer to cusparseHybPartition_t for
details).

Output

hybA

the matrix & in HYB storage format.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_ALLOC_FAILED

the resources could not be allocated.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m, n<O0).

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE STATUS_MATRIX TYPE NOT SUPPORTED

the matrix type is not supported.

12.20. cusparse<t>hyb2csc()

cusparseStatus t

cusparseShbecgc (cusparseHandle t handle,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,

float
cusparseStatus t

*cscValA,

int *cscRowIndA, int *cscColPtrA)

cusparseDhbecgc (cusparseHandle t handle,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,

double

cusparseStatus_t

*cscValA,

int *cscRowIndA, int *cscColPtrA)

cusparseChyb2csc (cusparseHandle t handle,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,

cuComplex
cusparseStatus t

*cscValA,

int *cscRowIndA, int *cscColPtrA)

cusparseZhyb2csc (cusparseHandle t handle,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,

cuDoubleComplex *cscValA,

*cscColPtrA)

int *cscRowIndA, int

This function converts a sparse matrix in HYB format into a sparse matrix in CSC

format.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 235

cuSPARSE Format Conversion Reference

This function requires some amount of temporary storage. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.

Input
handle handle to the cuSPARSE library context.
descrA the descriptor of matrix A in Hyb
format. The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
hybA the matrix a in HYB storage format.
Output
cscVala <type> array of nnz (= cscColPtrA (m) -
cscColPtrA (0)) nonzero elements of matrix a.
cscRowIndA integer array of nnz (= cscColPtrA (m) -
cscColPtrA (0)) column indices of the non-zero
elements of matrix a.
cscColPtrA integer array of m+1 elements that contains the
start of every column and the end of the last row
plus one.
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID_ VALUE invalid parameters were passed (m, n<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 236

cuSPARSE Format Conversion Reference

12.21. cusparse<t>hyb2csr()

cusparseStatus_t
cusparseShyb2csr (cusparseHandle t handle,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,
float *csrValA, int *csrRowPtrA, int *csrColIndA)
cusparseStatus_ t
cusparseDhyb2csr (cusparseHandle t handle,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,
double *csrValA, int *csrRowPtrA, int *csrColIndA)

cusparseStatus_t
cusparseChyb2csr (cusparseHandle t handle,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,
cuComplex *csrValA, int *csrRowPtrA, int *csrColIndA)
cusparseStatus_t
cusparseZhyb2csr (cusparseHandle t handle,
const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,
cuDoubleComplex *csrValA, int *csrRowPtrA, int
*csrColIndA)

This function converts a sparse matrix in HYB format into a sparse matrix in CSR
format.

This function requires some amount of temporary storage. It is executed asynchronously
with respect to the host and may return control to the application on the host before the
result is ready.

Input
handle handle to the cuSPARSE library context.
descrA the descriptor of matrix a in Hyb
format. The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
hybA the matrix a in HYB storage format.
Output
csrValA <type> array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) nonzero elements of matrix A.
csrRowPtrA integer array of m+1 elements that contains the
start of every column and the end of the last row
plus one.
csrColIndA integer array of nnz (= csrRowPtrA (m) -
csrRowPtrA (0)) column indices of the nonzero
elements of matrix A.
Status Returned
CUSPARSE_STATUS_SUCCESS the operation completed successfully.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 237

cuSPARSE Format Conversion Reference

CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m, n<O0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED the matrix type is not supported.

12.22. cusparse<t>hyb2dense()

cusparseStatus t

cusparseShyb2dense (cusparseHandle t handle,

const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,

float *A,
int 1lda)
cusparseStatus t

cusparseDhbedgnse(cusparseHandle_t handle,

const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,

double *A,
int 1lda)
cusparseStatus_t

cusparseChyb2dense (cusparseHandle t handle,

const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,

cuComplex *A,
int lda)
cusparseStatus t

cusparseZhbedgnse(cusparseHandleit handle,

const cusparseMatDescr t descrA,
const cusparseHybMat t hybA,

cuDoubleComplex *A,
int 1lda)

This function converts a sparse matrix in HYB format (contained in the opaque
structure) into matrix A in dense format. The dense matrix A is filled in with the values

of the sparse matrix and with zeros elsewhere.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
descrA the descriptor of matrix A in Hyb
format. The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL.
hyba the matrix A in HYB storage format.
lda leading dimension of dense array a.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 238

Output

cuSPARSE Format Conversion Reference

array of dimensions (1da, n) that is filled in with
the values of the sparse matrix.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE

the internally stored hyb format parameters are
invalid.

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS EXECUTION_ FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_MATRIX_TYPE NOT SUPPORTED

the matrix type is not supported.

12.23. cusparse<t>nnz()

cusparseStatus t

cusparseSnnz (cusparseHandle t handle,
const cusparseMatDescr t descrA,
*A,

int *nnzPerRowColumn,

int n,

const float

int lda,
cusparseStatus_t

cusparseDnnz (cusparseHandle t handle,
const cusparseMatDescr t descrA,
*A,

int *nnzPerRowColumn,

int n,

const double

int 1lda,
cusparseStatus_t

cusparseCnnz (cusparseHandle t handle,
const cusparseMatDescr t descrA,
*A,

int *nnzPerRowColumn,

int n,

const cuComplex

int 1lda,
cusparseStatus t

cusparseznnz (cusparseHandle t handle,
const cusparseMatDescr t descrA,

int n,

cusparseDirection t dirA, int m,

int *nnzTotalDevHostPtr)

cusparseDirection t dirA, int m,

int *nnzTotalDevHostPtr)

cusparseDirection t dirA, int m,

int *nnzTotalDevHostPtr)

cusparseDirection t dirA, int m,

const cuDoubleComplex *A,

int 1lda,

int *nnzPerRowColumn,

int *nnzTotalDevHostPtr)

This function computes the number of nonzero elements per row or column and the
total number of nonzero elements in a dense matrix.

This function requires no extra storage. It is executed asynchronously with respect to the
host and may return control to the application on the host before the result is ready.

Input
handle handle to the cuSPARSE library context.
dira direction that specifies whether to count nonzero
elements by CUSPARSE_DIRECTION_ ROW or by
CUSPARSE_DIRECTION COLUMN.
m number of rows of matrix a.
n number of columns of matrix a.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 239

cuSPARSE Format Conversion Reference

descrA the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE ONE.

A array of dimensions (1da, n).
lda leading dimension of dense array A.
Output
nnzPerRowColumn array of size m or n containing the number of
nonzero elements per row or column, respectively.
nnzTotalDevHostPtr total number of nonzero elements in device or host
memory.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_ALLOC_FAILED the resources could not be allocated.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m, n<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT_ SUPPORTED the matrix type is not supported.

12.24. cusparseCreateldentityPermutation()

cusparseStatus_t

cusparseCreateldentityPermutation (cusparseHandle t handle,
int n,
int *p);

This function creates an identity map. The output parameter p represents such map by p
= 0:1:(n-1).

This function is typically used with coosort, csrsort, cscsort, csr2ecsc_indexOnly.

Input

parameter device or host description

handle host handle to the cuSPARSE library context.
n host size of the map.

Output

parameter device or host description

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 240

cuSPARSE Format Conversion Reference

P

device

integer array of dimensions n.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (n<0).

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_ EXECUTION_ FAILED

the function failed to launch on the GPU.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

12.25. cusparseXcoosort()

cusparseStatus_ t

cusparseXcoosort bufferSizeExt (
cusparseHandle t handle,

cusparseStatus t

int
int

m,
n,

int nnz,

const int *cooRows,

const int *cooCols,

size t *pBufferSizelInBytes);

cusparseXcoosortByRow (cusparseHandle t handle,

cusparseStatus_t

int
int
int
int
int
int

m,
n,

nnz,
*cooRows,
*cooCols,

*p,

void *pBuffer);

cusparseXcoosortByColumn (cusparseHandle t handle,

int
int
int
int
int
int

m,
n,

nnz,
*cooRows,
*cooCols,
*P,

void *pBuffer);

This function sorts COO format. The stable sorting is in-place. Also the user can sort by
row or sort by column.

A is an mxn sparse matrix that is defined in COO storage format by the three arrays

cooVals, cooRows, and cooCols.

The matrix must be base 0.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 241

cuSPARSE Format Conversion Reference

The matrix type is regarded as CUSPARSE_MATRIX TYPE GENERAL implicitly. In other
words, any symmetric property is ignored.

This function coosort () requires buffer size returned by coosort_bufferSizeExt ().
The address of pBuffer must be multiple of 128 bytes. If not,
CUSPARSE_STATUS_INVALID VALUE is returned.

The parameter P is both input and output. If the user wants to compute sorted cooval,
P must be set as 0:1:(nnz-1) before coosort (), and after coosort (), new sorted value
array satisfies cooval_sorted = cooVal (P).

The following code shows how to sort a COO format by row.

// A is a 3x3 sparse matrix, base-0

// | 1 2 0 |

// A= 050 |

// | 0 8 0 |

const int m = 3;

const int n = 3;

const int nnz = 4;

cooRows [nnz] = {2, 1, 0, 0 }; // on device
cooCols[nnz] = {1, 1, 0, 1 }; // on device
cooVals[nnz] = {8.0, 5.0, 1.0, 2.0 }; // on device
size t pBufferSizelInBytes = 0;

void_*pBuffer = NULL;
int *P = NULL;

// step 1l: allocate buffer

cusparseXcoosort bufferSizeExt (handle, m, n, nnz, cooRows, cooCols,
&pBufferSizelInBytes) ;

cudaMalloc (&pBuffer, sizeof (char)* pBufferSizelnBytes);

// step 2: setup permutation vector P to identity
cudaMalloc(&P, sizeof (int) *nnz);
cusparseCreateldentityPermutation (handle, nnz, P);

// step 3: sort COO format by Row
cusparseXcoosortByRow (handle, m, n, nnz, cooRows, cooCols, P, pBuffer);

// step 4: gather sorted cooVals
cusparseDgthr (handle, nnz, cooVals, cooVals sorted, P,
CUSPARSE INDEX BASE ZERO) ;

Input
parameter device or host description
handle host handle to the cuSPARSE library context.
m host number of rows of matrix A.
n host number of columns of matrix A.
nnz host number of nonzero elements of matrix A.
cooRows device integer array of nnz unsorted row indices of a.
cooCols device integer array of nnz unsorted column indices of A.
P device integer array of nnz unsorted map indices. To construct
cooVal, the user has to set P=0:1: (nnz-1).
pBuffer device buffer allocated by the user; the size is returned by
coosort_bufferSizeExt().

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 242

cuSPARSE Format Conversion Reference

Output
parameter device or host description
cooRows device integer array of nnz sorted row indices of A.
cooCols device integer array of nnz sorted column indices of a.
P device integer array of nnz sorted map indices.
pBufferSizeInByteﬁ host number of bytes of the buffer.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE STATUS_NOT INITIALIZED

the library was not initialized.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (n<0).

CUSPARSE STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

12.26. cusparseXcsrsort()

cusparseStatus t

cusparseXcsrso?t_bufferSizeExt (

cusparseStatus_t

cusparseHandle t handle,

int m,
int n,
int nnz,

const int *csrRowPtr,
const int *csrCollInd,
size t *pBufferSizelnBytes);

cusparseXcsrsort (cusparseHandle t handle,

int m,
int n,
int nnz,

const cusparseMatDescr t descrA,
const int *csrRowPtr,

int *csrCollInd,

sbinle W2

void *pBuffer);

This function sorts CSR format. The stable sorting is in-place.

The matrix type is regarded as CUSPARSE_MATRIX TYPE GENERAL implicitly. In other
words, any symmetric property is ignored.

This function esrsort () requires buffer size returned by csrsort_bufferSizeExt().
The address of pBuffer must be multiple of 128 bytes. If not,
CUSPARSE_STATUS_INVALID_VALUE is returned.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 243

cuSPARSE Format Conversion Reference

The parameter P is both input and output. If the user wants to compute sorted csrval,
P must be set as 0:1:(nnz-1) before esrsort (), and after esrsort (), new sorted value
array satisfies csrval_sorted = csrVal(P).

The general procedure is as follows:

// A is a 3x3 sparse matrix, base-0
// | 1 \

// A =] 4

// | 7
const int m = 3;
const int n = 3;
const int nnz = 9;

csrRowPtr[m+l] = { 0, 3, 6, 9}; // on device
csrColInd[nnz] = { 2, 1, 0, 0, 2,1, 1, 2, 0}; // on device
csrVal[nnz] = { 3, 2, 1, 4, 6, 5, 8, 9, 7}; // on device
size t pBufferSizeInBytes = 0;

void *pBuffer = NULL;

int *P = NULL;

X
2 3
56
8 9

// step 1l: allocate buffer

cusparseXcsrsort bufferSizeExt (handle, m, n, nnz, csrRowPtr, csrColInd,
&pBufferSizelInBytes) ;

cudaMalloc (&pBuffer, sizeof (char)* pBufferSizelnBytes);

// step 2: setup permutation vector P to identity
cudaMalloc(&P, sizeof (int) *nnz);
cusparseCreateldentityPermutation (handle, nnz, P);

// step 3: sort CSR format
cusparseXcsrsort (handle, m, n, nnz, descrA, csrRowPtr, csrColInd, P, pBuffer);

// step 4: gather sorted csrVal
cusparseDgthr (handle, nnz, csrVal, csrVal sorted, P, CUSPARSE INDEX BASE ZERO) ;

Input
parameter device or host description
handle host handle to the cuSPARSE library context.
m host number of rows of matrix A.
n host number of columns of matrix A.
nnz host number of nonzero elements of matrix A.
csrRowsPtr device integer array of m+1 elements that contains the start of
every row and the end of the last row plus one.
csrColInd device integer array of nnz unsorted column indices of A.
P device integer array of nnz unsorted map indices. To construct
csrVal, the user has to set P=0:1: (nnz-1).
pBuffer device buffer allocated by the user; the size is returned by
csrsort_bufferSizeExt().
Output
parameter device or host description
csrColInd device integer array of nnz sorted column indices of a.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 244

cuSPARSE Format Conversion Reference

P device integer array of nnz sorted map indices.

pBufferSizeInBytes] host number of bytes of the buffer.

Status Returned

CUSPARSE_STATUS_SUCCESS the operation completed successfully.
CUSPARSE_STATUS_NOT INITIALIZED the library was not initialized.
CUSPARSE_STATUS_INVALID VALUE invalid parameters were passed (m,n,nnz<0).
CUSPARSE_STATUS_ARCH MISMATCH the device does not support double precision.
CUSPARSE_STATUS_EXECUTION FAILED the function failed to launch on the GPU.
CUSPARSE_STATUS_INTERNAL ERROR an internal operation failed.

CUSPARSE_STATUS_MATRIX TYPE NOT SUPPORTED the matrix type is not supported.

12.27. cusparseXcscsort()

cusparseStatus t
cusparseXcscsort bufferSizeExt (
cusparseHandle t handle,
int m,
int n,
int nnz,
const int *cscColPtr,
const int *cscRowlInd,
size t *pBufferSizeInBytes);

cusparseStatus_t
cusparseXcscsort (cusparseHandle t handle,
int m,
int n,
int nnz,
const cusparseMatDescr t descra,
const int *cscColPtr,
int *cscRowInd,
int *P,
void *pBuffer);

This function sorts CSC format. The stable sorting is in-place.

The matrix type is regarded as CUSPARSE_MATRIX TYPE GENERAL implicitly. In other
words, any symmetric property is ignored.

This function csesort () requires buffer size returned by csesort_bufferSizeExt ().
The address of pBuffer must be multiple of 128 bytes. If not,
CUSPARSE STATUS INVALID VALUE is returned.

The parameter P is both input and output. If the user wants to compute sorted escval,
P must be set as 0:1:(nnz-1) before cscsort (), and after esesort (), new sorted value
array satisfies cscVal_sorted = cscVal (P).

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 245

cuSPARSE Format Conversion Reference

The general procedure is as follows:

// A is a 3x3 sparse matrix, base-0
// |12 |
// A =140 |
// | 08 |
const int m = 3;
const int n = 2;
const int nnz = 4;
cscColPtr[n+1] { 0, 2, 4}; // on device
cscRowInd[nnz] = { 1, 0, 2, 0}; // on device
cscVal[nnz] ={ 4.0, 1.0, 8.0, 2.0 }; // on device
size t pBufferSizelInBytes = 0;

void *pBuffer = NULL;

int *P = NULL;

4

// step 1: allocate buffer

cusparseXcscsort bufferSizeExt (handle, m, n, nnz, cscColPtr, cscRowInd,
&pBufferSizelInBytes) ;

cudaMalloc (&pBuffer, sizeof (char)* pBufferSizeInBytes);

// step 2: setup permutation vector P to identity
cudaMalloc(&P, sizeof (int) *nnz);
cusparseCreateldentityPermutation (handle, nnz, P);

// step 3: sort CSC format
cusparseXcscsort (handle, m, n, nnz, descrA, cscColPtr, cscRowInd, P, pBuffer);

// step 4: gather sorted cscVal
cusparseDgthr (handle, nnz, cscVal, cscVal sorted, P, CUSPARSE INDEX BASE ZERO) ;

Input
parameter device or host description
handle host handle to the cuSPARSE library context.
m host number of rows of matrix A.
n host number of columns of matrix A.
nnz host number of nonzero elements of matrix A.
cscColPtr device integer array of n+1 elements that contains the start of
every column and the end of the last column plus one.
cscRowInd device integer array of nnz unsorted row indices of a.
P device integer array of nnz unsorted map indices. To construct
cscVal, the user has to set P=0:1: (nnz-1).
pBuffer device buffer allocated by the user; the size is returned by
cscsort_bufferSizeExt().
Output
parameter device or host description
cscRowInd device integer array of nnz sorted row indices of a.
P device integer array of nnz sorted map indices.
pBufferSizeInBytes] host number of bytes of the buffer.

Status Returned

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 246

cuSPARSE Format Conversion Reference

CUSPARSE STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE_STATUS_INVALID VALUE

invalid parameters were passed (m,n,nnz<0).

CUSPARSE_STATUS_ARCH MISMATCH

the device does not support double precision.

CUSPARSE_STATUS EXECUTION_ FAILED

the function failed to launch on the GPU.

CUSPARSE STATUS_ INTERNAL ERROR

an internal operation failed.

CUSPARSE STATUS_MATRIX TYPE NOT SUPPORTED

the matrix type is not supported.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 247

cuSPARSE Format Conversion Reference

12.28. cusparseXcsru2csr()

cusparseStatus_t cusparseCreateCsruZcsrInfo(csru2csrInfo t *info);

cusparseStatus_t cusparseDestroyCsruZcsrInfo (csru2csrInfo t info);

cusparseStatus_t

cusparseScsru2csr _bufferSizeExt (

cusparseStatus t

cusparseHandle t handle,

int m,

int n,

int nnz,

float *csrVal,

const int *csrRowPtr,

int *csrColInd,
csruzcsrInfo t info,

size t *pBufferSizeInBytes);

cusparseDcsru2Esr_bufferSizeExt(

cusparseStatus t

cusparseHandle t handle,

int m,

int n,

int nnz,

double *csrval,

const int *csrRowPtr,

int *csrCollInd,
csru2csrInfo t info,

size t *pBufferSizelInBytes);

cusparseCcsru2csr bufferSizeExt (

cusparseStatus t

cusparseHandle t handle,

int m,

int n,

int nnz,

cuComplex *csrVal,

const int *csrRowPtr,

int *csrColInd,
csru2csrinfo t info,

size t *pBufferSizeInBytes);

cusparsechru2Esr_bufferSizeExt(

cusparseStatus t

cusparseHandle t handle,

int m,

int n,

int nnz,

cuDoubleComplex *csrVal,
const int *csrRowPtr,

int *csrCollInd,
csruzcsrInfo t info,

size t *pBufferSizelInBytes);

cusparseScsruZEsr(cusparseHandle_t handle,

const cusparseMatDescr t descra,
float *csrVal,

const int *csrRowPtr,

int *csrCollInd,

cavrni2cerTnfo + “nfo

cuSPARSE Format Conversion Reference

This function transfers unsorted CSR format to CSR format, and vice versa. The
operation is in-place.

This function is a wrapper of csrsort and gthr. The usecase is the following scenario.

If the user has a matrix A of CSR format which is unsorted, and implements his own
code (which can be CPU or GPU kernel) based on this special order (for example,
diagonal first, then lower triangle, then upper triangle), and wants to convert it to CSR
format when calling CUSPARSE library, and then convert it back when doing something
else on his/her kernel. For example, suppose the user wants to solve a linear system
Ax=Db by the following iterative scheme

x(k#1) = x(K) 4 LD p_ ax(k)

The code heavily uses SpMv and triangular solve. Assume that the user has an in-
house design of SpMV (Sparse Matrix-Vector multiplication) based on special order
of A. However the user wants to use CUSAPRSE library for triangular solver. Then the
following code can work.

do
step 1: compute residual vector r = b - A x(K byin-house S
step 2: B := sort(A), and L is lower triangular part of B
(only sort A once and keep the permutation vector)

step 3: solve z

n
=
N
*
N —~
o

step 4: add correction x(kt1) = x(k) 4+
step 5: A := unsort(B)
(use permutation vector to get back the unsorted CSR)
until convergence

The requirements of step 2 and step 5 are
1. In-place operation.
2. The permutation vector P is hidden in an opaque structure.

3. No cudaMalloc inside the conversion routine. Instead, the user has to provide the
buffer explicitly.

4. The conversion between unsorted CSR and sorted CSR may needs several times, but
the function only generates the permutation vector P once.

5. The function is based on csrsort, gather and scatter operations.

The operation is called esru2esr, which means unsorted CSR to sorted CSR. Also we
provide the inverse operation, called esr2ecsru.

In order to keep the permutation vector invisible, we need an opaque structure
called esru2esrInfo. Then two functions (cusparseCreateCsru2csriInfo,
cusparseDestroyCsru2csrInfo) are used to initialize and to destroy the opaque
structure.

cusparse[S|D|C|Z]csru2csr_bufferSizeExt returns the size of the buffer.
The permutation vector P is also allcated inside esru2esriInfo. The lifetime of the
permutation vector is the same as the lifetime of esru2esriInfo.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 249

cuSPARSE Format Conversion Reference

cusparse[S|D|C| 2] esru2csr performs forward transformation from unsorted CSR to
sorted CSR. First call uses csrsort to generate the permutation vector P, and subsequent
call uses P to do transformation.

cusparse[S|D|C|Z]csr2csru performs backward transformation from sorted CSR to
unsorted CSR. P is used to get unsorted form back.

The following tables describe parameters of csr2csru_bufferSizeExt and csr2csru.

Input

parameter device or host description

handle host handle to the cuSPARSE library context.

m host number of rows of matrix A.

n host number of columns of matrix A.

nnz host number of nonzero elements of matrix A.

descrA host the descriptor of matrix A. The supported matrix type is
CUSPARSE_MATRIX TYPE GENERAL, Also, the supported
index bases are CUSPARSE_INDEX BASE_ZERO and
CUSPARSE_INDEX BASE_ONE.

csrVal device <type> array of nnz unsorted nonzero elements of matrix
A.

csrRowsPtr device integer array of m+1 elements that contains the start of
every row and the end of the last row plus one.

csrColInd device integer array of nnz unsorted column indices of A.

info host opaque structure initialized using
cusparseCreateCsru2csrInfo().

pBuffer device buffer allocated by the user; the size is returned by
csru2csr_bufferSizeExt ().

Output

parameter device or host description

csrVal device <type> array of nnz sorted nonzero elements of matrix
A.

csrColInd device integer array of nnz sorted column indices of a.

pBufferSizeInBytes] host number of bytes of the buffer.

Status Returned

CUSPARSE_STATUS_SUCCESS

the operation completed successfully.

CUSPARSE_STATUS_NOT_ INITIALIZED

the library was not initialized.

CUSPARSE STATUS_INVALID VALUE

invalid parameters were passed (m,n,nnz<0).

CUSPARSE_STATUS_ARCH_MISMATCH

the device does not support double precision.

CUSPARSE STATUS_ EXECUTION_FAILED

the function failed to launch on the GPU.

CUSPARSE_STATUS_INTERNAL ERROR

an internal operation failed.

www.nvidia.com
CUSPARSE Library

DU-06709-001_v7.5 | 250

cuSPARSE Format Conversion Reference

CUSPARSE_STATUS_MATRIX_TYPE NOT_ SUPPORTED the matrix type is not supported.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 251

Chapter 13.
APPENDIX A: CUSPARSE LIBRARY C++

EXAMPLE

For sample code reference please see the example code below. It shows an application
written in C++ using the cuSPARSE library API. The code performs the following
actions:

1. Creates a sparse test matrix in COO format.

2. Creates a sparse and dense vector.

3. Allocates GPU memory and copies the matrix and vectors into it.
4. Initializes the cuSPARSE library.

5. Creates and sets up the matrix descriptor.

6. Converts the matrix from COO to CSR format.

7. Exercises Level 1 routines.

8. Exercises Level 2 routines.

9. Exercises Level 3 routines.

10. Destroys the matrix descriptor.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 252

Appendix A: cuSPARSE Library C++ Example

11. Releases resources allocated for the cuSPARSE library.

//Example:

Application using C++ and the CUSPARSE library

/= e e

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<cuda_runtime.h>
"cusparse.h"

#define CLEANUP (s)

do {

printf ("%s\n", s);
if (yHostPtr)

if (zHostPtr)

if (xIndHostPtr)

if (xValHostPtr)

if (cooRowIndexHostPtr) free
if (cooColIndexHostPtr) free

if (cooValHostPtr)
if (y)

if (z)

if (xInd)

if (xVal)

if (csrRowPtr)

if (cooRowIndex)
if (cooColIndex)
if (cooVval)

if (descr)

if (handle)
cudaDeviceReset () ;
fflush (stdout);

} while

int main

(0)
(Ot

free (yHostPtr) ;

free (zHostPtr) ;

free (xIndHostPtr) ;

free (xValHostPtr) ;
(cooRowIndexHostPtr) ;
(cooColIndexHostPtr) ;

free (cooValHostPtr) ;

cudaFree (y) ;

cudaFree(z);

cudaFree (xInd) ;

cudaFree (xVal) ;

cudaFree (csrRowPtr) ;

cudaFree (cooRowIndex) ;

cudaFree (cooColIndex) ;

cudaFree (cooVal) ;

cusparseDestroyMatDescr (descr) ; \

cusparseDestroy (handle); \

\

PP P A A G P A A A A A A

\

cudaError t cudaStatl,cudaStat2,cudaStat3,cudaStat4,cudaStat5,cudastat6;
cusparseStatus_t status;

cusparseHandle t handle=0;

cusparseMatDescr t descr=0;

int *
int *

cooRowIndexHostPtr=0;
cooColIndexHostPtr=0;

double * cooValHostPtr=0;

int *
int *

double * cooVal=0;

int *

cooRowIndex=0;
cooColIndex=0;

xIndHostPtr=0;

double * xValHostPtr=0;
double * yHostPtr=0;
int * xInd=0;
double * xVal=0;
double * y=0;

int * csrRowPtr=0;
double * zHostPtr=0;
double * z=0;

n, nnz, nnz vector;

int

double dzero =0.0
double dtwo =2.0
double dthree=3.0;
double dfive =5.0

printf ("testing

’

’

’

example\n") ;

/* create the following sparse test matrix in COO format */

/* |1.0 2.0 3.0|

| 4.0 |

/5.0 6.0 7.0}

| 8.0 9.0| */
n=4; nnz=9;
cooRowIndexHostPtr = (int *) malloc (nnz*sizeof (cooRowIndexHostPtr([0]));
cooColIndexHostPtr = (int *) malloc (nnz*sizeof (cooColIndexHostPtr[0]));
cooValHostPtr = (double *)malloc (nnz*sizeof (cooValHostPtr[0]));
if ((!'cooRowIndexHostPtr) || (!cooColIndexHostPtr) || (!cooValHostPtr)) {

}

cooRowIndexHostPtr[0]=
cooRowIndexHostPtr[l]=
cooRowTndexHostPtr[2]

CLEANUP ("Host malloc failed (matrix)");
return 1;

0; cooColIndexHostPtr[0]=0; cooValHostPtr[0]=1.0;
0; cooColIndexHostPtr[1l]=2; cooValHostPtr[1]=2.0;
O* cooCol TndexHostPtr[[21=3: cooValHostPtr[21=3 0-

Chapter 14.
APPENDIX B: CUSPARSE FORTRAN
BINDINGS

The cuSPARSE library is implemented using the C-based CUDA toolchain, and it thus
provides a C-style API that makes interfacing to applications written in C or C++ trivial.
There are also many applications implemented in Fortran that would benefit from using
cuSPARSE, and therefore a cuSPARSE Fortran interface has been developed.

Unfortunately, Fortran-to-C calling conventions are not standardized and differ by
platform and toolchain. In particular, differences may exist in the following areas:

Symbol names (capitalization, name decoration)
Argument passing (by value or reference)
Passing of pointer arguments (size of the pointer)

To provide maximum flexibility in addressing those differences, the cuSPARSE Fortran
interface is provided in the form of wrapper functions, which are written in C and

are located in the file cusparse_fortran.c. This file also contains a few additional
wrapper functions (for cudaMalloc (), cudaMemset, and so on) that can be used to
allocate memory on the GPU.

The cuSPARSE Fortran wrapper code is provided as an example only and needs to be
compiled into an application for it to call the cuSPARSE API functions. Providing this
source code allows users to make any changes necessary for a particular platform and
toolchain.

The cuSPARSE Fortran wrapper code has been used to demonstrate interoperability
with the compilers g95 0.91 (on 32-bit and 64-bit Linux) and g95 0.92 (on 32-bit and 64-
bit Mac OS X). In order to use other compilers, users have to make any changes to the
wrapper code that may be required.

The direct wrappers, intended for production code, substitute device pointers for vector
and matrix arguments in all cuSPARSE functions. To use these interfaces, existing
applications need to be modified slightly to allocate and deallocate data structures

in GPU memory space (using CUDA MALLOC () and CUDA_FREE ()) and to copy data
between GPU and CPU memory spaces (using the CUDA MEMCPY () routines). The
sample wrappers provided in cusparse_fortran.c map device pointers to the OS-

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 254

Appendix B: cuSPARSE Fortran Bindings

dependent type size_t, which is 32 bits wide on 32-bit platforms and 64 bits wide on a
64-bit platforms.

One approach to dealing with index arithmetic on device pointers in Fortran code is to
use C-style macros and to use the C preprocessor to expand them. On Linux and Mac
OS X, preprocessing can be done by using the option '-cpp' with g95 or gfortran. The
function GET_SHIFTED_ADDRESS (), provided with the cuSPARSE Fortran wrappers,
can also be used, as shown in example B.

Example B shows the the C++ of example A implemented in Fortran 77 on the host. This
example should be compiled with ARCH_64 defined as 1 on a 64-bit OS system and as
undefined on a 32-bit OS system. For example, on g95 or gfortran, it can be done directly
on the command line using the option -cpp -DARCH_64=1.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 255

Appendix B: cuSPARSE Fortran Bindings

14.1. Example B, Fortran Application

#else

#endif

#define
#define

ARCH 64 0
ARCH 64 1

program cusparse fortran example
implicit none

integer

cuda malloc

external cuda free

integer
integer
integer
integer
integer
integer

cuda memcpy c2fort int
cuda memcpy c2fort real
cuda memcpy fort2c int
cuda memcpy fort2c real
cuda memset

cusparse create

external cusparse destroy

integer
integer

cusparse get version
cusparse create mat descr

external cusparse destroy mat descr

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

cusparse set mat type
cusparse get mat type
cusparse get mat fill mode
cusparse get mat diag type
cusparse set mat index base
cusparse get mat index base
cusparse xXCo02CSr

cusparse dsctr

cusparse dcsrmv

cusparse_ dcsrmm

external get shifted address
#if ARCH 64
integer*8 handle
integer*8 descrA
integer*8 cooRowIndex
integer*8 cooColIndex
integer*8 cooVal
integer*8 xInd
integer*8 xVal
integer*8 y

integer*8 z

integer*8 csrRowPtr
integer*8 ynpl

integer*4 handle
integer*4 descrA
integer*4 cooRowIndex
integer*4 cooColIndex
integer*4 cooVal
integer*4 xInd
integer*4 xVal
integer*4 y

integer*4 z

integer*4 csrRowPtr
integer*4 ynpl

integer
integer
integer
integer

status

cudaStatl, cudaStat2, cudaStat3
cudaStaté4, cudaStat5, cudaStaté
n, nnz, nnz vector

parameter (n=4, nnz;9, nnz_ vector=3)

integer
integer
real*8
integer
real*8
real*8
real*8
integer
integer
real*8
real*8

cooRowIndexHostPtr (nnz)
cooColIndexHostPtr (nnz)
cooValHostPtr (nnz)
xIndHostPtr (nnz vector)
xValHostPtr (nnz vector)
yHostPtr (2*n)
zHostPtr (2* (n+1))

i,]

version, mtype, fmode, dtype, ibase
dzero,dtwo,dthree,dfive
epsilon

Chapter 15.
APPENDIX C: ACKNOWLEDGEMENTS

NVIDIA would like to thank the following individuals and institutions for their
contributions:

» The cusparse<t>gtsv implementation is derived from a version developed by Li-Wen
Chang from the University of Illinois.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 257

Chapter 16.
BIBLIOGRAPHY

[1] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector Multiplication on
Throughput-Oriented Processors”, Supercomputing, 2009.

[2] R. Grimes, D. Kincaid, and D. Young, “ITPACK 2.0 User’s Guide”, Technical Report
CNA-150, Center for Numerical Analysis, University of Texas, 1979.

[3] M. Naumoyv, “Incomplete-LU and Cholesky Preconditioned Iterative Methods Using
cuSPARSE and cuBLAS”, Technical Report and White Paper, 2011.

www.nvidia.com
CUSPARSE Library DU-06709-001_v7.5 | 258

http://research.nvidia.com/content/implementing-sparse-matrix-vector-multiplication-throughput-oriented-processors
http://research.nvidia.com/content/implementing-sparse-matrix-vector-multiplication-throughput-oriented-processors
http://developer.nvidia.com/content/accelerated-solution-sparse-linear-systems
http://developer.nvidia.com/content/accelerated-solution-sparse-linear-systems

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2015 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbiA®

	Table of Contents
	Introduction
	1.1. Naming Conventions
	1.2. Asynchronous Execution
	1.3. Static Library support

	Using the cuSPARSE API
	2.1. Thread Safety
	2.2. Scalar Parameters
	2.3. Parallelism with Streams

	cuSPARSE Indexing and Data Formats
	3.1. Index Base Format
	3.2. Vector Formats
	3.2.1. Dense Format
	3.2.2. Sparse Format

	3.3. Matrix Formats
	3.3.1. Dense Format
	3.3.2. Coordinate Format (COO)
	3.3.3. Compressed Sparse Row Format (CSR)
	3.3.4. Compressed Sparse Column Format (CSC)
	3.3.5. Ellpack-Itpack Format (ELL)
	3.3.6. Hybrid Format (HYB)
	3.3.7. Block Compressed Sparse Row Format (BSR)
	3.3.8. Extended BSR Format (BSRX)

	cuSPARSE Types Reference
	4.1. Data types
	4.2. cusparseAction_t
	4.3. cusparseDirection_t
	4.4. cusparseHandle_t
	4.5. cusparseHybMat_t
	4.5.1. cusparseHybPartition_t

	4.6. cusparseMatDescr_t
	4.6.1. cusparseDiagType_t
	4.6.2. cusparseFillMode_t
	4.6.3. cusparseIndexBase_t
	4.6.4. cusparseMatrixType_t

	4.7. cusparseOperation_t
	4.8. cusparsePointerMode_t
	4.9. cusparseSolvePolicy_t
	4.10. cusparseSolveAnalysisInfo_t
	4.11. cusparseSolveAnalysisInfo_t
	4.12. csrsv2Info_t
	4.13. csric02Info_t
	4.14. csrilu02Info_t
	4.15. bsrsv2Info_t
	4.16. bsrsm2Info_t
	4.17. bsric02Info_t
	4.18. bsrilu02Info_t
	4.19. csrgemm2Info_t
	4.20. cusparseStatus_t

	cuSPARSE Helper Function Reference
	5.1. cusparseCreate()
	5.2. cusparseCreateSolveAnalysisInfo()
	5.3. cusparseCreateHybMat()
	5.4. cusparseCreateMatDescr()
	5.5. cusparseCreateSolveAnalysisInfo()
	5.6. cusparseDestroy()
	5.7. cusparseDestroySolveAnalysisInfo()
	5.8. cusparseDestroyHybMat()
	5.9. cusparseDestroyMatDescr()
	5.10. cusparseDestroySolveAnalysisInfo()
	5.11. cusparseGetLevelInfo()
	5.12. cusparseGetMatDiagType()
	5.13. cusparseGetMatFillMode()
	5.14. cusparseGetMatIndexBase()
	5.15. cusparseGetMatType()
	5.16. cusparseGetPointerMode()
	5.17. cusparseGetVersion()
	5.18. cusparseSetMatDiagType()
	5.19. cusparseSetMatFillMode()
	5.20. cusparseSetMatIndexBase()
	5.21. cusparseSetMatType()
	5.22. cusparseSetPointerMode()
	5.23. cusparseSetStream()
	5.24. cusparseCreateCsrsv2Info()
	5.25. cusparseDestroyCsrsv2Info()
	5.26. cusparseCreateCsric02Info()
	5.27. cusparseDestroyCsric02Info()
	5.28. cusparseCreateCsrilu02Info()
	5.29. cusparseDestroyCsrilu02Info()
	5.30. cusparseCreateBsrsv2Info()
	5.31. cusparseDestroyBsrsv2Info()
	5.32. cusparseCreateBsrsm2Info()
	5.33. cusparseDestroyBsrsm2Info()
	5.34. cusparseCreateBsric02Info()
	5.35. cusparseDestroyBsric02Info()
	5.36. cusparseCreateBsrilu02Info()
	5.37. cusparseDestroyBsrilu02Info()
	5.38. cusparseCreateCsrgemm2Info()
	5.39. cusparseDestroyCsrgemm2Info()

	cuSPARSE Level 1 Function Reference
	6.1. cusparse<t>axpyi()
	6.2. cusparse<t>doti()
	6.3. cusparse<t>dotci()
	6.4. cusparse<t>gthr()
	6.5. cusparse<t>gthrz()
	6.6. cusparse<t>roti()
	6.7. cusparse<t>sctr()

	cuSPARSE Level 2 Function Reference
	7.1. cusparse<t>bsrmv()
	7.2. cusparse<t>bsrxmv()
	7.3. cusparse<t>csrmv()
	7.4. cusparse<t>gemvi()
	7.5. cusparse<t>gemvi_bufferSize()
	7.6. cusparse<t>bsrsv2_bufferSize()
	7.7. cusparse<t>bsrsv2_analysis()
	7.8. cusparse<t>bsrsv2_solve()
	7.9. cusparseXbsrsv2_zeroPivot()
	7.10. cusparse<t>csrsv_analysis()
	7.11. cusparse<t>csrsv_solve()
	7.12. cusparse<t>csrsv2_bufferSize()
	7.13. cusparse<t>csrsv2_analysis()
	7.14. cusparse<t>csrsv2_solve()
	7.15. cusparseXcsrsv2_zeroPivot()
	7.16. cusparse<t>hybmv()
	7.17. cusparse<t>hybsv_analysis()
	7.18. cusparse<t>hybsv_solve()

	cuSPARSE Level 3 Function Reference
	8.1. cusparse<t>csrmm()
	8.2. cusparse<t>csrmm2()
	8.3. cusparse<t>csrsm_analysis()
	8.4. cusparse<t>csrsm_solve()
	8.5. cusparse<t>bsrmm()
	8.6. cusparse<t>bsrsm2_bufferSize()
	8.7. cusparse<t>bsrsm2_analysis()
	8.8. cusparse<t>bsrsm2_solve()
	8.9. cusparseXbsrsm2_zeroPivot()

	cuSPARSE Extra Function Reference
	9.1. cusparse<t>csrgeam()
	9.2. cusparse<t>csrgemm()
	9.3. cusparse<t>csrgemm2()

	cuSPARSE Preconditioners Reference
	10.1. cusparse<t>csric0()
	10.2. cusparse<t>csric02_bufferSize()
	10.3. cusparse<t>csric02_analysis()
	10.4. cusparse<t>csric02()
	10.5. cusparseXcsric02_zeroPivot()
	10.6. cusparse<t>csrilu0()
	10.7. cusparse<t>csrilu02_numericBoost()
	10.8. cusparse<t>csrilu02_bufferSize()
	10.9. cusparse<t>csrilu02_analysis()
	10.10. cusparse<t>csrilu02()
	10.11. cusparseXcsrilu02_zeroPivot()
	10.12. cusparse<t>bsric02_bufferSize()
	10.13. cusparse<t>bsric02_analysis()
	10.14. cusparse<t>bsric02()
	10.15. cusparseXbsric02_zeroPivot()
	10.16. cusparse<t>bsrilu02_numericBoost()
	10.17. cusparse<t>bsrilu02_bufferSize()
	10.18. cusparse<t>bsrilu02_analysis()
	10.19. cusparse<t>bsrilu02()
	10.20. cusparseXbsrilu02_zeroPivot()
	10.21. cusparse<t>gtsv()
	10.22. cusparse<t>gtsv_nopivot()
	10.23. cusparse<t>gtsvStridedBatch()

	cuSPARSE Reorderings Reference
	11.1. cusparse<t>csrcolor()

	cuSPARSE Format Conversion Reference
	12.1. cusparse<t>bsr2csr()
	12.2. cusparse<t>gebsr2gebsc_bufferSize()
	12.3. cusparse<t>gebsr2gebsc()
	12.4. cusparse<t>gebsr2gebsr_bufferSize()
	12.5. cusparse<t>gebsr2gebsr()
	12.6. cusparse<t>gebsr2csr()
	12.7. cusparse<t>csr2gebsr_bufferSize()
	12.8. cusparse<t>csr2gebsr()
	12.9. cusparse<t>coo2csr()
	12.10. cusparse<t>csc2dense()
	12.11. cusparse<t>csc2hyb()
	12.12. cusparse<t>csr2bsr()
	12.13. cusparse<t>csr2coo()
	12.14. cusparse<t>csr2csc()
	12.15. cusparse<t>csr2dense()
	12.16. cusparse<t>csr2hyb()
	12.17. cusparse<t>dense2csc()
	12.18. cusparse<t>dense2csr()
	12.19. cusparse<t>dense2hyb()
	12.20. cusparse<t>hyb2csc()
	12.21. cusparse<t>hyb2csr()
	12.22. cusparse<t>hyb2dense()
	12.23. cusparse<t>nnz()
	12.24. cusparseCreateIdentityPermutation()
	12.25. cusparseXcoosort()
	12.26. cusparseXcsrsort()
	12.27. cusparseXcscsort()
	12.28. cusparseXcsru2csr()

	Appendix A: cuSPARSE Library C++ Example
	Appendix B: cuSPARSE Fortran Bindings
	14.1. Example B, Fortran Application

	Appendix C: Acknowledgements
	Bibliography

