
[image: image3.emf]Pre-Active

Active

Deactivated

Destroyed

Compromised

Destroyed

Compromised

1

2 3

4

5

6

7 8

9

10


Key Management Interoperability Protocol Specification Version 1.1
Candidate OASIS Standard 01

21 September 2012

Specification URIs

This version:

http://docs.oasis-open.org/kmip/spec/v1.1/cos01/kmip-spec-v1.1-cos01.doc (Authoritative)
http://docs.oasis-open.org/kmip/spec/v1.1/cos01/kmip-spec-v1.1-cos01.html
http://docs.oasis-open.org/kmip/spec/v1.1/cos01/kmip-spec-v1.1-cos01.pdf
Previous version:

http://www.oasis-open.org/committees/download.php/44885/kmip-spec-v1.1-csprd01.zip
Latest version:

http://docs.oasis-open.org/kmip/spec/v1.1/kmip-spec-v1.1.doc (Authoritative)
http://docs.oasis-open.org/kmip/spec/v1.1/kmip-spec-v1.1.html
http://docs.oasis-open.org/kmip/spec/v1.1/kmip-spec-v1.1.pdf
Technical Committee:

OASIS Key Management Interoperability Protocol (KMIP) TC
Chairs:

Robert Griffin (robert.griffin@rsa.com), EMC Corporation
Subhash Sankuratripati (Subhash.Sankuratripati@netapp.com), NetApp
Editors:

Robert Haas (rha@zurich.ibm.com), IBM
Indra Fitzgerald (indra.fitzgerald@hp.com), HP
Related work:

This specification replaces or supersedes:
· Key Management Interoperability Protocol Specification Version 1.0. 01 October 2010. OASIS Standard. http://docs.oasis-open.org/kmip/spec/v1.0/os/kmip-spec-1.0-os.html
This specification is related to:
· Key Management Interoperability Protocol Profiles Version 1.1. Latest version http://docs.oasis-open.org/kmip/profiles/v1.1/kmip-profiles-v1.1.html
· Key Management Interoperability Protocol Test Cases Version 1.1. Latest version. http://docs.oasis-open.org/kmip/testcases/v1.1/kmip-testcases-v1.1.html
· Key Management Interoperability Protocol Usage Guide Version 1.1. Latest version. http://docs.oasis-open.org/kmip/ug/v1.1/kmip-ug-v1.1.html
Abstract:

This document is intended for developers and architects who wish to design systems and applications that interoperate using the Key Management Interoperability Protocol Specification.

Status:

This document was last revised or approved by the OASIS Key Management Interoperability Protocol (KMIP) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/kmip/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/kmip/ipr.php).
Citation format:

When referencing this specification the following citation format should be used:

[KMIP-v1.1]
Key Management Interoperability Protocol Specification Version 1.1. 21 September 2012. Candidate OASIS Standard 01.
http://docs.oasis-open.org/kmip/spec/v1.1/cos01/kmip-spec-v1.1-cos01.html.
Notices

Copyright © OASIS Open 2012. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above guidance.
Table of Contents
81
Introduction


81.1 Terminology


111.2 Normative References


141.3 Non-Normative References


152
Objects


152.1 Base Objects


152.1.1 Attribute


162.1.2 Credential


162.1.3 Key Block


182.1.4 Key Value


182.1.5 Key Wrapping Data


202.1.6 Key Wrapping Specification


212.1.7 Transparent Key Structures


252.1.8 Template-Attribute Structures


262.1.9 Extension Information


262.2 Managed Objects


262.2.1 Certificate


262.2.2 Symmetric Key


272.2.3 Public Key


272.2.4 Private Key


272.2.5 Split Key


282.2.6 Template


292.2.7 Secret Data


292.2.8 Opaque Object


313
Attributes


323.1 Unique Identifier


333.2 Name


333.3 Object Type


343.4 Cryptographic Algorithm


343.5 Cryptographic Length


353.6 Cryptographic Parameters


373.7 Cryptographic Domain Parameters


373.8 Certificate Type


383.9 Certificate Length


383.10 X.509 Certificate Identifier


393.11 X.509 Certificate Subject


403.12 X.509 Certificate Issuer


403.13 Certificate Identifier


413.14 Certificate Subject


423.15 Certificate Issuer


423.16 Digital Signature Algorithm


433.17 Digest


443.18 Operation Policy Name


453.18.1 Operations outside of operation policy control


453.18.2 Default Operation Policy


473.19 Cryptographic Usage Mask


493.20 Lease Time


493.21 Usage Limits


513.22 State


523.23 Initial Date


533.24 Activation Date


543.25 Process Start Date


543.26 Protect Stop Date


553.27 Deactivation Date


563.28 Destroy Date


563.29 Compromise Occurrence Date


563.30 Compromise Date


573.31 Revocation Reason


583.32 Archive Date


583.33 Object Group


593.34 Fresh


593.35 Link


603.36 Application Specific Information


613.37 Contact Information


623.38 Last Change Date


623.39 Custom Attribute


644
Client-to-Server Operations


644.1 Create


654.2 Create Key Pair


674.3 Register


684.4 Re-key


704.5 Re-key Key Pair


734.6 Derive Key


754.7 Certify


764.8 Re-certify


784.9 Locate


804.10 Check


814.11 Get


824.12 Get Attributes


834.13 Get Attribute List


834.14 Add Attribute


844.15 Modify Attribute


844.16 Delete Attribute


854.17 Obtain Lease


864.18 Get Usage Allocation


864.19 Activate


874.20 Revoke


874.21 Destroy


884.22 Archive


884.23 Recover


894.24 Validate


894.25 Query


904.26 Discover Versions


914.27 Cancel


924.28 Poll


935
Server-to-Client Operations


935.1 Notify


935.2 Put


956
Message Contents


956.1 Protocol Version


956.2 Operation


956.3 Maximum Response Size


956.4 Unique Batch Item ID


966.5 Time Stamp


966.6 Authentication


966.7 Asynchronous Indicator


966.8 Asynchronous Correlation Value


976.9 Result Status


976.10 Result Reason


986.11 Result Message


986.12 Batch Order Option


986.13 Batch Error Continuation Option


996.14 Batch Count


996.15 Batch Item


996.16 Message Extension


1007
Message Format


1007.1 Message Structure


1007.2 Operations


1028
Authentication


1039
Message Encoding


1039.1 TTLV Encoding


1039.1.1 TTLV Encoding Fields


1059.1.2 Examples


1069.1.3 Defined Values


12710
Transport


12811
Error Handling


12811.1 General


12911.2 Create


12911.3 Create Key Pair


13011.4 Register


13111.5 Re-key


13111.6 Re-key Key Pair


13211.7 Derive Key


13311.8 Certify


13311.9 Re-certify


13311.10 Locate


13411.11 Check


13411.12 Get


13511.13 Get Attributes


13511.14 Get Attribute List


13511.15 Add Attribute


13611.16 Modify Attribute


13611.17 Delete Attribute


13711.18 Obtain Lease


13711.19 Get Usage Allocation


13711.20 Activate


13811.21 Revoke


13811.22 Destroy


13811.23 Archive


13811.24 Recover


13811.25 Validate


13911.26 Query


13911.27 Cancel


13911.28 Poll


13911.29 Batch Items


14012
KMIP Server and Client Implementation Conformance


14012.1 KMIP Server Implementation Conformance


14012.2 KMIP Client Implementation Conformance


141Appendix A.
Acknowledgments


143Appendix B.
Attribute Cross-Reference


145Appendix C.
Tag Cross-Reference


151Appendix D.
Operations and Object Cross-Reference


153Appendix E.
Acronyms


156Appendix F.
List of Figures and Tables


163Appendix G.
Revision History




1 Introduction
This document is intended as a specification of the protocol used for the communication between clients and servers to perform certain management operations on objects stored and maintained by a key management system. These objects are referred to as Managed Objects in this specification. They include symmetric and asymmetric cryptographic keys, digital certificates, and templates used to simplify the creation of objects and control their use. Managed Objects are managed with operations that include the ability to generate cryptographic keys, register objects with the key management system, obtain objects from the system, destroy objects from the system, and search for objects maintained by the system. Managed Objects also have associated attributes, which are named values stored by the key management system and are obtained from the system via operations. Certain attributes are added, modified, or deleted by operations.

The protocol specified in this document includes several certificate-related functions for which there are a number of existing protocols – namely Validate (e.g., SCVP or XKMS), Certify (e.g. CMP, CMC, SCEP) and Re-certify (e.g. CMP, CMC, SCEP). The protocol does not attempt to define a comprehensive certificate management protocol, such as would be needed for a certification authority. However, it does include functions that are needed to allow a key server to provide a proxy for certificate management functions.

In addition to the normative definitions for managed objects, operations and attributes, this specification also includes normative definitions for the following aspects of the protocol:

· The expected behavior of the server and client as a result of operations,

· Message contents and formats,

· Message encoding (including enumerations), and

· Error handling.

This specification is complemented by three other documents. The Usage Guide [KMIP-UG] provides illustrative information on using the protocol. The KMIP Profiles Specification [KMIP-Prof] provides a selected set of conformance profiles and authentication suites. The Test Specification [KMIP-TC] provides samples of protocol messages corresponding to a set of defined test cases.

This specification defines the KMIP protocol version major 1 and minor 1 (see 6.1).

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

For acronyms used in this document, see Appendix E. For definitions not found in this document, see [SP800-57-1].

	Archive
	To place information not accessed frequently into long-term storage. 

	Asymmetric key pair

(key pair)
	A public key and its corresponding private key; a key pair is used with a public key algorithm.

	Authentication 
	A process that establishes the origin of information, or determines an entity’s identity.

	Authentication code
	A cryptographic checksum based on a security function (also known as a Message Authentication Code).

	Authorization
	Access privileges that are granted to an entity; conveying an “official” sanction to perform a security function or activity.

	Certificate length
	The length (in bytes) of an X.509 public key certificate.

	Certification authority 
	The entity in a Public Key Infrastructure (PKI) that is responsible for issuing certificates, and exacting compliance to a PKI policy.

	Ciphertext
	Data in its encrypted form.

	Compromise
	The unauthorized disclosure, modification, substitution or use of sensitive data (e.g., keying material and other security-related information).

	Confidentiality
	The property that sensitive information is not disclosed to unauthorized entities.

	Cryptographic algorithm
	A well-defined computational procedure that takes variable inputs, including a cryptographic key and produces an output.

	Cryptographic key
(key)
	A parameter used in conjunction with a cryptographic algorithm that determines its operation in such a way that an entity with knowledge of the key can reproduce or reverse the operation, while an entity without knowledge of the key cannot. Examples include:

1. The transformation of plaintext data into ciphertext data,

2. The transformation of ciphertext data into plaintext data,

3. The computation of a digital signature from data,

4. The verification of a digital signature,

5. The computation of an authentication code from data,

6. The verification of an authentication code from data and a received authentication code.

	Decryption
	The process of changing ciphertext into plaintext using a cryptographic algorithm and key.

	Digest (or hash)
	The result of applying a hashing algorithm to information.

	Digital signature
(signature)
	The result of a cryptographic transformation of data that, when properly implemented with supporting infrastructure and policy, provides the services of:

1. origin authentication

2. data integrity, and

3. signer non-repudiation.

	Digital Signature Algorithm
	A cryptographic algorithm used for digital signature.

	Encryption
	The process of changing plaintext into ciphertext using a cryptographic algorithm and key.

	Hashing algorithm (or hash algorithm, hash function)
	An algorithm that maps a bit string of arbitrary length to a fixed length bit string. Approved hashing algorithms satisfy the following properties:

1. (One-way) It is computationally infeasible to find any input that

maps to any pre-specified output, and

2. (Collision resistant) It is computationally infeasible to find any two distinct inputs that map to the same output.

	Integrity
	The property that sensitive data has not been modified or deleted in an unauthorized and undetected manner.

	Key derivation
(derivation)
	A function in the lifecycle of keying material; the process by which one or more keys are derived from 1) either a shared secret from a key agreement computation or a pre-shared cryptographic key, and 2) other information.

	Key management
	The activities involving the handling of cryptographic keys and other related security parameters (e.g., IVs and passwords) during the entire life cycle of the keys, including their generation, storage, establishment, entry and output, and destruction.

	Key wrapping
(wrapping)
	A method of encrypting and/or MACing/signing keys.

	Message authentication code (MAC)
	A cryptographic checksum on data that uses a symmetric key to detect both accidental and intentional modifications of data.

	PGP certificate
	A transferable public key in the OpenPGP Message Format (see [RFC4880]).

	Private key
	A cryptographic key, used with a public key cryptographic algorithm, that is uniquely associated with an entity and is not made public. The private key is associated with a public key. Depending on the algorithm, the private key may be used to:

1. Compute the corresponding public key,

2. Compute a digital signature that may be verified by the corresponding public key,

3. Decrypt data that was encrypted by the corresponding public key, or

4. Compute a piece of common shared data, together with other information.

	Profile
	A specification of objects, attributes, operations, message elements and authentication methods to be used in specific contexts of key management server and client interactions (see [KMIP-Prof]).

	Public key
	A cryptographic key used with a public key cryptographic algorithm that is uniquely associated with an entity and that may be made public. The public key is associated with a private key. The public key may be known by anyone and, depending on the algorithm, may be used to:

1. Verify a digital signature that is signed by the corresponding private key,

2. Encrypt data that can be decrypted by the corresponding private key, or

3. Compute a piece of shared data.

	Public key certificate
(certificate)
	A set of data that uniquely identifies an entity, contains the entity's public key and possibly other information, and is digitally signed by a trusted party, thereby binding the public key to the entity.

	Public key cryptographic algorithm
	A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the property that determining the private key from the public key is computationally infeasible.

	Public Key Infrastructure
	A framework that is established to issue, maintain and revoke public key certificates.

	Recover
	To retrieve information that was archived to long-term storage. 

	Split knowledge 
	A process by which a cryptographic key is split into n multiple key components, individually providing no knowledge of the original key, which can be subsequently combined to recreate the original cryptographic key. If knowledge of k (where k is less than or equal to n) components is required to construct the original key, then knowledge of any k-1 key components provides no information about the original key other than, possibly, its length.

	Symmetric key
	A single cryptographic key that is used with a secret (symmetric) key algorithm. 

	Symmetric key algorithm
	A cryptographic algorithm that uses the same secret (symmetric) key for an operation and its complement (e.g., encryption and decryption).

	X.509 certificate
	The ISO/ITU-T X.509 standard defined two types of certificates – the X.509 public key certificate, and the X.509 attribute certificate. Most commonly (including this document), an X.509 certificate refers to the X.509 public key certificate.

	X.509 public key certificate
	The public key for a user (or device) and a name for the user (or device), together with some other information, rendered un-forgeable by the digital signature of the certification authority that issued the certificate, encoded in the format defined in the ISO/ITU-T X.509 standard.


Table 1: Terminology

1.2 Normative References

 [FIPS186-3]
Digital Signature Standard (DSS), FIPS PUB 186-3, Jun 2009, http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
[FIPS197]
Advanced Encryption Standard, FIPS PUB 197, Nov 2001, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[FIPS198-1]
The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198-1, Jul 2008, http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
[IEEE1003-1]
IEEE Std 1003.1, Standard for information technology - portable operating system interface (POSIX). Shell and utilities, 2004.

[ISO16609]
ISO, Banking -- Requirements for message authentication using symmetric techniques, ISO 16609, 1991

[ISO9797-1]
ISO/IEC, Information technology -- Security techniques -- Message Authentication Codes (MACs) -- Part 1: Mechanisms using a block cipher, ISO/IEC 9797-1, 1999

[KMIP-Prof]
Key Management Interoperability Protocol Profiles Version 1.1. 21 September 2012. Candidate OASIS Standard 01. http://docs.oasis-open.org/kmip/profiles/v1.1/cos01/kmip-profiles-v1.1-cos01.html.
[PKCS#1]
RSA Laboratories, PKCS #1 v2.1: RSA Cryptography Standard, Jun 14, 2002,  http://www.rsa.com/rsalabs/node.asp?id=2125
[PKCS#5]
RSA Laboratories, PKCS #5 v2.1: Password-Based Cryptography Standard, Oct 5, 2006, http://www.rsa.com/rsalabs/node.asp?id=2127 

[PKCS#7]
RSA Laboratories, PKCS#7 v1.5: Cryptographic Message Syntax Standard, Nov 1, 1993, http://www.rsa.com/rsalabs/node.asp?id=2129
[PKCS#8]
RSA Laboratories, PKCS#8 v1.2: Private-Key Information Syntax Standard, Nov 1, 1993, http://www.rsa.com/rsalabs/node.asp?id=2130
[PKCS#10]
RSA Laboratories, PKCS #10 v1.7: Certification Request Syntax Standard, May 26, 2000, http://www.rsa.com/rsalabs/node.asp?id=2132
[RFC1319]
B. Kaliski, The MD2 Message-Digest Algorithm, IETF RFC 1319, Apr 1992, http://www.ietf.org/rfc/rfc1319.txt
[RFC1320]
R. Rivest, The MD4 Message-Digest Algorithm, IETF RFC 1320, Apr 1992, http://www.ietf.org/rfc/rfc1320.txt
[RFC1321]
R. Rivest, The MD5 Message-Digest Algorithm, IETF RFC 1321, Apr 1992, http://www.ietf.org/rfc/rfc1321.txt
[RFC1421]
J. Linn, Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures, IETF RFC 1421, Feb 1993, http://www.ietf.org/rfc/rfc1421.txt
[RFC1424]
B. Kaliski, Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and Related Services, IETF RFC 1424, Feb 1993, http://www.ietf.org/rfc/rfc1424.txt
[RFC2104]
H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Authentication, IETF RFC 2104, Feb 1997, http://www.ietf.org/rfc/rfc2104.txt
[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
 [RFC 2246]
T. Dierks and C. Allen, The TLS Protocol, Version 1.0, IETF RFC 2246, Jan 1999, http://www.ietf.org/rfc/rfc2246.txt 
[RFC2898]
B. Kaliski, PKCS #5: Password-Based Cryptography Specification Version 2.0, IETF RFC 2898, Sep 2000, http://www.ietf.org/rfc/rfc2898.txt
[RFC 3394]
J. Schaad, R. Housley, Advanced Encryption Standard (AES) Key Wrap Algorithm, IETF RFC 3394, Sep 2002, http://www.ietf.org/rfc/rfc3394.txt
[RFC3447]
J. Jonsson, B. Kaliski, Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1, IETF RFC 3447, Feb 2003, http://www.ietf.org/rfc/rfc3447.txt
[RFC3629]
F. Yergeau, UTF-8, a transformation format of ISO 10646, IETF RFC 3629, Nov 2003, http://www.ietf.org/rfc/rfc3629.txt
[RFC3647]
S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu, Internet X.509 Public Key Infrastructure Certificate Policy and Certification Practices Framework, IETF RFC 3647, Nov 2003, http://www.ietf.org/rfc/rfc3647.txt 

[RFC4055] 
J. Schadd, B. Kaliski, and R, Housley, HHAdditional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, IETF RFC 4055, June 2055, http://www.ietf.org/rfc/rfc4055.txt 
[RFC4210]
C. Adams, S. Farrell, T. Kause and T. Mononen, Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP), IETF RFC 2510, Sep 2005, http://www.ietf.org/rfc/rfc4210.txt 
[RFC4211]
J. Schaad, Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF), IETF RFC 4211, Sep 2005, http://www.ietf.org/rfc/rfc4211.txt
[RFC4868]
S. Kelly, S. Frankel, Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec, IETF RFC 4868, May 2007, http://www.ietf.org/rfc/rfc4868.txt
[RFC4880]
J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, OpenPGP Message Format, IETF RFC 4880, Nov 2007, http://www.ietf.org/rfc/rfc4880.txt
[RFC4949]
R. Shirey, Internet Security Glossary, Version 2, IETF RFC 4949, Aug 2007, http://www.ietf.org/rfc/rfc4949.txt
[RFC5272]
J. Schaad and M. Meyers, Certificate Management over CMS (CMC), IETF RFC 5272, Jun 2008, http://www.ietf.org/rfc/rfc5272.txt
[RFC5280]
D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk, Internet X.509 Public Key Infrastructure Certificate, IETF RFC 5280, May 2008, http://www.ietf.org/rfc/rfc5280.txt
[RFC5649]
R. Housley, Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm, IETF RFC 5649, Aug 2009, http://www.ietf.org/rfc/rfc5649.txt
[SHAMIR1979]
A. Shamir, How to share a secret, Communications of the ACM, vol. 22, no. 11, pp. 612-613, Nov 1979
[SP800-38A]
M. Dworkin, Recommendation for Block Cipher Modes of Operation – Methods and Techniques, NIST Special Publication 800-38A, Dec 2001, http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
[SP800-38B]
M. Dworkin, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication, NIST Special Publication 800-38B, May 2005, http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
[SP800-38C]
M. Dworkin, Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality, NIST Special Publication 800-38C, May 2004, http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
[SP800-38D]
M. Dworkin, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, NIST Special Publication 800-38D, Nov 2007, http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
[SP800-38E]
M. Dworkin, Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Block-Oriented Storage Devices, NIST Special Publication 800-38E, Jan 2010, http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

[SP800-56A]
E. Barker, D. Johnson, and M. Smid, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised), NIST Special Publication 800-56A, Mar 2007, http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
[SP800-56B]
E. Barker, L. Chen, A. Regenscheid, and M. Smid, Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography, NIST Special Publication 800-56B, Aug 2009, http://csrc.nist.gov/publications/nistpubs/800-56B/sp800-56B.pdf
[SP800-57-1]
E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, Recommendations for Key Management - Part 1: General (Revised), NIST Special Publication 800-57 part 1, Mar 2007, http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
[SP800-67]
W. Barker, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, NIST Special Publication 800-67, Version 1.1, Revised 19 May 2008, http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf
[SP800-108]
L. Chen, Recommendation for Key Derivation Using Pseudorandom Functions (Revised), NIST Special Publication 800-108, Oct 2009, http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

[X.509]
International Telecommunication Union (ITU)–T, X.509:  Information technology – Open systems interconnection – The Directory:  Public-key and attribute certificate frameworks, Aug 2005, http://www.itu.int/rec/T-REC-X.509-200508-I/en
[X9.24-1]
ANSI, X9.24 - Retail Financial Services Symmetric Key Management - Part 1: Using Symmetric Techniques, 2004.

[X9.31]
ANSI, X9.31:Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA), Sep 1998. 

[X9.42]
ANSI, X9-42: Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm Cryptography, 2003.

[X9-57]
ANSI, X9-57: Public Key Cryptography for the Financial Services Industry: Certificate Management, 1997.

[X9.62]
ANSI, X9-62: Public Key Cryptography for the Financial Services Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA), 2005.

[X9-63]
ANSI, X9-63: Public Key Cryptography for the Financial Services Industry, Key Agreement and Key Transport Using Elliptic Curve Cryptography, 2001.

[X9-102]
ANSI, X9-102: Symmetric Key Cryptography for the Financial Services Industry - Wrapping of Keys and Associated Data, 2008.

[X9 TR-31]
ANSI, X9 TR-31: Interoperable Secure Key Exchange Key Block Specification for Symmetric Algorithms, 2005.

1.3 Non-Normative References

[KMIP-UG]
Key Management Interoperability Protocol Usage Guide Version 1.1. 27 July 2012. OASIS Committee Note 01. http://docs.oasis-open.org/kmip/ug/v1.1/cn01/kmip-ug-v1.1-cn01.html.
[KMIP-TC]
Key Management Interoperability Protocol Test Cases Version 1.1. 27 July 2012. OASIS Committee Note 01. http://docs.oasis-open.org/kmip/testcases/v1.1/cn01/kmip-testcases-v1.1-cn01.html.
[ISO/IEC 9945-2]
The Open Group, Regular Expressions, The Single UNIX Specification version 2, 1997, ISO/IEC 9945-2:1993, http://www.opengroup.org/onlinepubs/007908799/xbd/re.html 
2 Objects 

The following subsections describe the objects that are passed between the clients and servers of the key management system. Some of these object types, called Base Objects, are used only in the protocol itself, and are not considered Managed Objects. Key management systems MAY choose to support a subset of the Managed Objects. The object descriptions refer to the primitive data types of which they are composed. These primitive data types are (see Section 9.1.1.4):

· Integer

· Long Integer

· Big Integer

· Enumeration –  choices from a predefined list of values 

· Boolean

· Text String – string of characters representing human-readable text

· Byte String –  sequence of unencoded byte values 

· Date-Time –  date and time, with a granularity of one second

· Interval –  a length of time expressed in seconds

Structures are composed of ordered lists of primitive data types or sub-structures.

2.1 Base Objects

These objects are used within the messages of the protocol, but are not objects managed by the key management system. They are components of Managed Objects.

2.1.1 Attribute

An Attribute object is a structure (see Table 2) used for sending and receiving Managed Object attributes. The Attribute Name is a text-string that is used to identify the attribute. The Attribute Index is an index number assigned by the key management server. The Attribute Index is used to identify the particular instance. Attribute Indices SHALL start with 0. The Attribute Index of an attribute SHALL NOT change when other instances are added or deleted. Single-instance Attributes (attributes which an object MAY only have at most one instance thereof)  SHALL have an Attribute Index of 0. The Attribute Value is either a primitive data type or structured object, depending on the attribute.

When an Attribute structure is used to specify or return a particular instance of an Attribute and the Attribute Index is not specified it SHALL be assumed to be 0.

	Object
	Encoding
	REQUIRED

	Attribute
	Structure
	

	Attribute Name
	Text String
	Yes

	Attribute Index
	Integer
	No

	Attribute Value
	Varies, depending on attribute. See Section 3
	Yes, except for the Notify operation (see Section 5.1)


Table 2: Attribute Object Structure

2.1.2 Credential 

A Credential is a structure (see Table 3) used for client identification purposes and is not managed by the key management system (e.g., user id/password pairs, Kerberos tokens, etc). It MAY be used for authentication purposes as indicated in [KMIP-Prof].

	Object
	Encoding
	REQUIRED

	Credential
	Structure
	

	Credential Type
	Enumeration, see 9.1.3.2.1
	Yes

	Credential Value
	Varies. Structure for Username and Password Credential Type.
	Yes


Table 3: Credential Object Structure

If the Credential Type in the Credential is Username and Password, then Credential Value is a structure as shown in Table 4. The Username field identifies the client, and the Password field is a secret that authenticates the client.

	Object
	Encoding
	REQUIRED

	Credential Value
	Structure
	

	Username
	Text String
	Yes

	Password
	Text String
	No


Table 4: Credential Value Structure for the Username and Password Credential 

If the Credential Type in the Credential is Device, then Credential Value is a structure as shown in Table 5. One or a combination of the Device Serial Number, Network Identifier, Machine Identifier, and Media Identifier SHALL be unique. Server implementations MAY enforce policies on uniqueness for individual fields.  Optionally a shared secret or password MAY also be used to authenticate the client.

	Object
	Encoding
	REQUIRED

	Credential Value
	Structure
	

	Device Serial Number
	Text String
	No

	Password
	Text String
	No

	Device Identifier
	Text String
	No

	Network Identifier
	Text String
	No

	Machine Identifier
	Text String
	No

	Media Identifier
	Text String
	No


Table 5: Credential Value Structure for the Device Credential

2.1.3 Key Block

A Key Block object is a structure (see Table 6) used to encapsulate all of the information that is closely associated with a cryptographic key. It contains a Key Value of one of the following Key Format Types:

· Raw – This is a key that contains only cryptographic key material, encoded as a string of bytes. 

· Opaque – This is an encoded key for which the encoding is unknown to the key management system. It is encoded as a string of bytes.

· PKCS1 – This is an encoded private key, expressed as a DER-encoded ASN.1 PKCS#1 object.

· PKCS8 – This is an encoded private key, expressed as a DER-encoded ASN.1 PKCS#8 object, supporting both the RSAPrivateKey syntax and EncryptedPrivateKey.

· X.509 – This is an encoded object, expressed as a DER-encoded ASN.1 X.509 object.

· ECPrivateKey – This is an ASN.1 encoded elliptic curve private key.

· Several Transparent Key types – These are algorithm-specific structures containing defined values for the various key types, as defined in Section 2.1.7
· Extensions – These are vendor-specific extensions to allow for proprietary or legacy key formats.

The Key Block MAY contain the Key Compression Type, which indicates the format of the elliptic curve public key. By default, the public key is uncompressed.
The Key Block also has the Cryptographic Algorithm and the Cryptographic Length of the key contained in the Key Value field. Some example values are:

· RSA keys are typically 1024, 2048 or 3072 bits in length

· 3DES keys are typically from 112 to 192 bits (depending upon key length and the presence of parity bits)

· AES keys are 128, 192 or 256 bits in length

The Key Block SHALL contain a Key Wrapping Data structure if the key in the Key Value field is wrapped (i.e., encrypted, or MACed/signed, or both).

	Object
	Encoding
	REQUIRED

	Key Block
	Structure
	

	Key Format Type
	Enumeration, see 9.1.3.2.3
	Yes

	Key Compression Type
	Enumeration, see 9.1.3.2.2
	No

	Key Value
	Byte String: for wrapped Key Value; Structure: for plaintext Key Value, see 2.1.4 
	Yes

	Cryptographic Algorithm
	Enumeration, see 9.1.3.2.13
	Yes, MAY be omitted only if this information is available from the Key Value. Does not apply to Secret Data or Opaque Objects. If present, the Cryptographic Length SHALL also be present. 

	Cryptographic Length
	Integer
	Yes, MAY be omitted only if this information is available from the Key Value. Does not apply to Secret Data or Opaque Objects. If present, the Cryptographic Algorithm SHALL also be present.

	Key Wrapping Data
	Structure, see 2.1.5 
	No, SHALL only be present if the key is wrapped.


Table 6: Key Block Object Structure

2.1.4 Key Value

The Key Value is used only inside a Key Block and is either a Byte String or a structure (see Table 7):

· The Key Value structure contains the key material, either as a byte string or as a Transparent Key structure (see Section 2.1.7), and OPTIONAL attribute information that is associated and encapsulated with the key material. This attribute information differs from the attributes associated with Managed Objects, and which is obtained via the Get Attributes operation, only by the fact that it is encapsulated with (and possibly wrapped with) the key material itself.

· The Key Value Byte String is either the wrapped TTLV-encoded (see Section 9.1) Key Value structure, or the wrapped un-encoded value of the Byte String Key Material field.

	Object
	Encoding
	REQUIRED

	Key Value 
	Structure
	

	Key Material
	Byte String: for Raw, Opaque, PKCS1, PKCS8, ECPrivateKey, or Extension Key Format types;

Structure: for Transparent, or Extension Key Format Types 
	Yes

	Attribute
	Attribute Object, see Section 2.1.1
	No. MAY be repeated


Table 7: Key Value Object Structure

2.1.5 Key Wrapping Data

The Key Block MAY also supply OPTIONAL information about a cryptographic key wrapping mechanism used to wrap the Key Value. This consists of a Key Wrapping Data structure (see Table 8). It is only used inside a Key Block.

This structure contains fields for: 

· A Wrapping Method, which indicates the method used to wrap the Key Value.

· Encryption Key Information, which contains the Unique Identifier (see 3.1) value of the encryption key and associated cryptographic parameters. 

· MAC/Signature Key Information, which contains the Unique Identifier value of the MAC/signature key and associated cryptographic parameters.

· A MAC/Signature, which contains a MAC or signature of the Key Value.

· An IV/Counter/Nonce, if REQUIRED by the wrapping method.

· An Encoding Option, specifying the encoding of the Key Value Byte String that has been wrapped. If No Encoding is specified, then the Key Value SHALL NOT contain any attributes. 

If wrapping is used, then the whole Key Value structure is wrapped unless otherwise specified by the Wrapping Method. The algorithms used for wrapping are given by the Cryptographic Algorithm attributes of the encryption key and/or MAC/signature key; the block-cipher mode, padding method, and hashing algorithm used for wrapping are given by the Cryptographic Parameters in the Encryption Key Information and/or MAC/Signature Key Information, or, if not present, from the Cryptographic Parameters attribute of the respective key(s). At least one of the Encryption Key Information and the MAC/Signature Key Information SHALL be specified.

The following wrapping methods are currently defined:

· Encrypt only (i.e., encryption using a symmetric key or public key, or authenticated encryption algorithms that use a single key)

· MAC/sign only (i.e., either MACing the Key Value with a symmetric key, or signing the Key Value with a private key)

· Encrypt then MAC/sign

· MAC/sign then encrypt

· TR-31

· Extensions

The following encoding options are currently defined:

· No Encoding (i.e., the wrapped un-encoded value of the Byte String Key Material field)
· TTLV Encoding (i.e., the wrapped TTLV-encoded Key Value structure).
	Object
	Encoding
	REQUIRED

	Key Wrapping Data
	Structure
	

	Wrapping Method
	Enumeration, see 9.1.3.2.4
	Yes

	Encryption Key Information
	Structure, see below
	No. Corresponds to the key that was used to encrypt the Key Value.

	MAC/Signature Key Information
	Structure, see below
	No. Corresponds to the symmetric key used to MAC the Key Value or the private key used to sign the Key Value

	MAC/Signature
	Byte String
	No

	IV/Counter/Nonce
	Byte String
	No

	Encoding Option
	Enumeration, see 9.1.3.2.32
	No. Specifies the encoding of the Key Value Byte String. If not present, the wrapped Key Value SHALL be TTLV encoded. 


Table 8: Key Wrapping Data Object Structure

The structures of the Encryption Key Information (see Table 9) and the MAC/Signature Key Information (see Table 10) are as follows:

	Object
	Encoding
	REQUIRED

	Encryption Key Information
	Structure
	

	Unique Identifier
	Text string, see 3.1
	Yes

	Cryptographic Parameters
	Structure, see 3.6
	No


Table 9: Encryption Key Information Object Structure

	Object
	Encoding
	REQUIRED

	MAC/Signature Key Information
	Structure
	

	Unique Identifier
	Text string, see 3.1
	Yes. It SHALL be either the Unique Identifier of the Symmetric Key used to MAC, or of the Private Key (or its corresponding Public Key) used to sign.

	Cryptographic Parameters
	Structure, see 3.6
	No


Table 10: MAC/Signature Key Information Object Structure

2.1.6 Key Wrapping Specification

This is a separate structure (see Table 11) that is defined for operations that provide the option to return wrapped keys. The Key Wrapping Specification SHALL be included inside the operation request if clients request the server to return a wrapped key. If Cryptographic Parameters are specified in the Encryption Key Information and/or the MAC/Signature Key Information of the Key Wrapping Specification, then the server SHALL verify that they match one of the instances of the Cryptographic Parameters attribute of the corresponding key. If Cryptographic Parameters are omitted, then the server SHALL use the Cryptographic Parameters attribute with the lowest Attribute Index of the corresponding key. If the corresponding key does not have any Cryptographic Parameters attribute, or if no match is found, then an error is returned.

This structure contains:

· A Wrapping Method that indicates the method used to wrap the Key Value.

· Encryption Key Information with the Unique Identifier value of the encryption key and associated cryptographic parameters. 

· MAC/Signature Key Information with the Unique Identifier value of the MAC/signature key and associated cryptographic parameters.

· Zero or more Attribute Names to indicate the attributes to be wrapped with the key material.

· An Encoding Option, specifying the encoding of the Key Value before wrapping. If No Encoding is specified, then the Key Value SHALL NOT contain any attributes

	Object
	Encoding
	REQUIRED

	Key Wrapping Specification
	Structure
	

	Wrapping Method
	Enumeration, see 9.1.3.2.4
	Yes

	Encryption Key Information
	Structure, see 2.1.5
	No, SHALL be present if MAC/Signature Key Information is omitted

	MAC/Signature Key Information
	Structure, see 2.1.5
	No, SHALL be present if Encryption Key Information is omitted

	Attribute Name
	Text String
	No, MAY be repeated

	Encoding Option
	Enumeration, see 9.1.3.2.32
	No. If Encoding Option is not present, the wrapped Key Value SHALL be TTLV encoded. 


Table 11: Key Wrapping Specification Object Structure

2.1.7 Transparent Key Structures

Transparent Key structures describe the necessary parameters to obtain the key material. They are used in the Key Value structure. The mapping to the parameters specified in other standards is shown in Table 12.

	Object
	Description
	Mapping

	P
	For DSA and DH, the (large) prime field order. 

For RSA, a prime factor of the modulus.
	p in  [FIPS186-3], [X9.42], [SP800-56A]
p in [PKCS#1], [SP800-56B]

	Q
	For DSA and DH, the (small) prime multiplicative subgroup order.

For RSA, a prime factor of the modulus.
	q in  [FIPS186-3], [X9.42], [SP800-56A]
q in [PKCS#1], [SP800-56B]

	G
	The generator of the subgroup of order Q. 
	g in  [FIPS186-3], [X9.42], [SP800-56A]

	X
	DSA or DH private key.
	x in  [FIPS186-3]
x, xu, xv in [X9.42], [SP800-56A] for static private keys

r, ru, rv in [X9.42], [SP800-56A] for ephemeral private keys

	Y
	DSA or DH public key.
	y in  [FIPS186-3]
y, yu, yv in [X9.42], [SP800-56A] for static public keys

t, tu, tv in [X9.42], [SP800-56A] for ephemeral public keys

	J
	DH cofactor integer, where P = JQ + 1.
	j in [X9.42]

	Modulus
	RSA modulus PQ, where P and Q are distinct primes.
	n in [PKCS#1], [SP800-56B]

	Private Exponent
	RSA private exponent.
	d in [PKCS#1], [SP800-56B]

	Public Exponent
	RSA public exponent.
	e in [PKCS#1], [SP800-56B]

	Prime Exponent P
	RSA private exponent for the prime factor P in the CRT format, i.e., Private Exponent (mod (P-1)).
	dP in [PKCS#1], [SP800-56B]

	Prime Exponent Q
	RSA private exponent for the prime factor Q in the CRT format, i.e., Private Exponent (mod (Q-1)).
	dQ in [PKCS#1], [SP800-56B]

	CRT Coefficient
	The (first) CRT coefficient, i.e., Q-1 mod P.
	qInv in [PKCS#1], [SP800-56B]

	Recommended Curve
	NIST Recommended Curves (e.g., P-192).
	See Appendix D of  [FIPS186-3]

	D
	Elliptic curve private key.
	d; de,U,de,V (ephemeral private keys); ds,U,ds,V  (static private keys) in [X9-63], [SP800-56A]

	Q String
	Elliptic curve public key.
	Q; Qe,U,Qe,V  (ephemeral public keys); Qs,U,Qs,V (static public keys) in [X9-63], [SP800-56A]


Table 12: Parameter mapping.

2.1.7.1 Transparent Symmetric Key

If the Key Format Type in the Key Block is Transparent Symmetric Key, then Key Material is a structure as shown in Table 13.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	Key
	Byte String
	Yes


Table 13: Key Material Object Structure for Transparent Symmetric Keys

2.1.7.2 Transparent DSA Private Key

If the Key Format Type in the Key Block is Transparent DSA Private Key, then Key Material is a structure as shown in Table 14.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	P
	Big Integer
	Yes

	Q
	Big Integer
	Yes

	G
	Big Integer
	Yes

	X
	Big Integer
	Yes


Table 14: Key Material Object Structure for Transparent DSA Private Keys

2.1.7.3 Transparent DSA Public Key

If the Key Format Type in the Key Block is Transparent DSA Public Key, then Key Material is a structure as shown in Table 15.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	P
	Big Integer
	Yes

	Q
	Big Integer
	Yes

	G
	Big Integer
	Yes

	Y
	Big Integer
	Yes


Table 15: Key Material Object Structure for Transparent DSA Public Keys

2.1.7.4 Transparent RSA Private Key

If the Key Format Type in the Key Block is Transparent RSA Private Key, then Key Material is a structure as shown in Table 16.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	Modulus
	Big Integer
	Yes

	Private Exponent
	Big Integer
	No

	Public Exponent
	Big Integer
	No

	P
	Big Integer
	No

	Q
	Big Integer
	No

	Prime Exponent P
	Big Integer
	No

	Prime Exponent Q
	Big Integer
	No

	CRT Coefficient
	Big Integer
	No


Table 16: Key Material Object Structure for Transparent RSA Private Keys

One of the following SHALL be present (refer to [PKCS#1]):

· Private Exponent

· P and Q (the first two prime factors of Modulus)

· Prime Exponent P and Prime Exponent Q.

2.1.7.5 Transparent RSA Public Key

If the Key Format Type in the Key Block is Transparent RSA Public Key, then Key Material is a structure as shown in Table 17.

	Object
	Encoding
	REQUIRED

	Key Material 
	Structure
	

	Modulus
	Big Integer
	Yes

	Public Exponent
	Big Integer
	Yes


Table 17: Key Material Object Structure for Transparent RSA Public Keys

2.1.7.6 Transparent DH Private Key

If the Key Format Type in the Key Block is Transparent DH Private Key, then Key Material is a structure as shown in Table 18.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	P
	Big Integer
	Yes

	Q
	Big Integer
	No

	G
	Big Integer
	Yes

	J
	Big Integer
	No

	X
	Big Integer
	Yes


Table 18: Key Material Object Structure for Transparent DH Private Keys

2.1.7.7 Transparent DH Public Key

If the Key Format Type in the Key Block is Transparent DH Public Key, then Key Material is a structure as shown in Table 19.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	P
	Big Integer
	Yes

	Q
	Big Integer
	No

	G
	Big Integer
	Yes

	J
	Big Integer
	No

	Y
	Big Integer
	Yes


Table 19: Key Material Object Structure for Transparent DH Public Keys

2.1.7.8 Transparent ECDSA Private Key

If the Key Format Type in the Key Block is Transparent ECDSA Private Key, then Key Material is a structure as shown in Table 20.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	Recommended Curve
	Enumeration, see 9.1.3.2.5
	Yes

	D
	Big Integer
	Yes


Table 20: Key Material Object Structure for Transparent ECDSA Private Keys

2.1.7.9 Transparent ECDSA Public Key

If the Key Format Type in the Key Block is Transparent ECDSA Public Key, then Key Material is a structure as shown in Table 21.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	Recommended Curve
	Enumeration, see 9.1.3.2.5
	Yes

	Q String
	Byte String
	Yes


Table 21: Key Material Object Structure for Transparent ECDSA Public Keys

2.1.7.10 Transparent ECDH Private Key

If the Key Format Type in the Key Block is Transparent ECDH Private Key, then Key Material is a structure as shown in Table 22.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	Recommended Curve
	Enumeration, see 9.1.3.2.5
	Yes

	D
	Big Integer
	Yes


Table 22: Key Material Object Structure for Transparent ECDH Private Keys

2.1.7.11 Transparent ECDH Public Key

If the Key Format Type in the Key Block is Transparent ECDH Public Key, then Key Material is a structure as shown in Table 23.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	Recommended Curve
	Enumeration, see 9.1.3.2.5
	Yes

	Q String
	Byte String
	Yes


Table 23: Key Material Object Structure for Transparent ECDH Public Keys

2.1.7.12 Transparent ECMQV Private Key

If the Key Format Type in the Key Block is Transparent ECMQV Private Key, then Key Material is a structure as shown in Table 24.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	Recommended Curve
	Enumeration, see 9.1.3.2.5
	Yes

	D
	Big Integer
	Yes


Table 24: Key Material Object Structure for Transparent ECMQV Private Keys

2.1.7.13 Transparent ECMQV Public Key

If the Key Format Type in the Key Block is Transparent ECMQV Public Key, then Key Material is a structure as shown in Table 25.

	Object
	Encoding
	REQUIRED

	Key Material
	Structure
	

	Recommended Curve
	Enumeration, see 9.1.3.2.5
	Yes

	Q String
	Byte String
	Yes


Table 25: Key Material Object Structure for Transparent ECMQV Public Keys

2.1.8 Template-Attribute Structures

These structures are used in various operations to provide the desired attribute values and/or template names in the request and to return the actual attribute values in the response.

The Template-Attribute, Common Template-Attribute, Private Key Template-Attribute, and Public Key Template-Attribute structures are defined identically as follows:

	Object
	Encoding
	REQUIRED

	Template-Attribute,

Common Template-Attribute, Private Key Template-Attribute,

Public Key Template-Attribute
	Structure
	

	Name
	Structure, see 3.2
	No, MAY be repeated. 

	Attribute
	Attribute Object, see 2.1.1
	No, MAY be repeated


Table 26: Template-Attribute Object Structure

Name is the Name attribute of the Template object defined in Section 2.2.6. 

2.1.9 Extension Information

An Extension Information object is a structure (see Table 27) describing Objects with Item Tag values in the Extensions range. The Extension Name is a Text String that is used to name the Object (first column of Table 213). The Extension Tag is the Item Tag Value of the Object (see Table 213). The Extension Type is the Item Type Value of the Object (see Table 211).
	Object
	Encoding
	REQUIRED

	Extension Information
	Structure
	

	Extension Name
	Text String
	Yes 

	Extension Tag
	Integer
	No

	Extension Type
	Integer
	No


Table 27: Extension Information Structure
2.2 Managed Objects

Managed Objects are objects that are the subjects of key management operations, which are described in Sections 4 and 5. Managed Cryptographic Objects are the subset of Managed Objects that contain cryptographic material (e.g. certificates, keys, and secret data).

2.2.1 Certificate

A Managed Cryptographic Object that is a digital certificate. Its is a DER-encoded X.509 public key certificate. For PGP certificates, it is a transferable public key in the OpenPGP message format.

	Object
	Encoding
	REQUIRED

	Certificate
	Structure
	

	Certificate Type
	Enumeration, see 9.1.3.2.6
	Yes

	Certificate Value
	Byte String
	Yes


Table 28: Certificate Object Structure

2.2.2 Symmetric Key

A Managed Cryptographic Object that is a symmetric key.

	Object
	Encoding
	REQUIRED

	Symmetric Key
	Structure
	

	Key Block
	Structure, see 2.1.3
	Yes


Table 29: Symmetric Key Object Structure

2.2.3 Public Key

A Managed Cryptographic Object that is the public portion of an asymmetric key pair. This is only a public key, not a certificate.

	Object
	Encoding
	REQUIRED

	Public Key
	Structure
	

	Key Block
	Structure, see 2.1.3 
	Yes


Table 30: Public Key Object Structure

2.2.4 Private Key

A Managed Cryptographic Object that is the private portion of an asymmetric key pair.

	Object
	Encoding
	REQUIRED

	Private Key
	Structure
	

	Key Block
	Structure, see 2.1.3
	Yes


Table 31: Private Key Object Structure

2.2.5 Split Key

A Managed Cryptographic Object that is a Split Key. A split key is a secret, usually a symmetric key or a private key that has been split into a number of parts, each of which MAY then be distributed to several key holders, for additional security. The Split Key Parts field indicates the total number of parts, and the Split Key Threshold field indicates the minimum number of parts needed to reconstruct the entire key. The Key Part Identifier indicates which key part is contained in the cryptographic object, and SHALL be at least 1 and SHALL be less than or equal to Split Key Parts.

	Object
	Encoding
	REQUIRED

	Split Key
	Structure
	

	Split Key Parts
	Integer
	Yes

	Key Part Identifier
	Integer
	Yes

	Split Key Threshold
	Integer
	Yes

	Split Key Method
	Enumeration, see 9.1.3.2.7
	Yes 

	Prime Field Size
	Big Integer
	No, REQUIRED only if Split Key Method is Polynomial Sharing Prime Field.

	Key Block
	Structure, see 2.1.3 
	Yes


Table 32: Split Key Object Structure

There are three Split Key Methods for secret sharing: the first one is based on XOR, and the other two are based on polynomial secret sharing, according to [SHAMIR1979]. 

Let L be the minimum number of bits needed to represent all values of the secret.

· When the Split Key Method is XOR, then the Key Material in the Key Value of the Key Block is of length L bits. The number of split keys is Split Key Parts (identical to Split Key Threshold), and the secret is reconstructed by XORing all of the parts.

· When the Split Key Method is Polynomial Sharing Prime Field, then secret sharing is performed in the field GF(Prime Field Size), represented as integers, where Prime Field Size is a prime bigger than 2L.

· When the Split Key Method is Polynomial Sharing GF(216), then secret sharing is performed in the field GF(216). The Key Material in the Key Value of the Key Block is a bit string of length L, and when L is bigger than 216, then secret sharing is applied piecewise in pieces of 16 bits each. The Key Material in the Key Value of the Key Block is the concatenation of the corresponding shares of all pieces of the secret.

Secret sharing is performed in the field GF(216), which is represented as an algebraic extension of GF(28):

GF(216) ≈ GF(28) [y]/(y2+y+m),    where m is defined later.

An element of this field then consists of a linear combination uy + v, where u and v are elements of the smaller field GF(28).

The representation of field elements and the notation in this section rely on [FIPS197], Sections 3 and 4. The field GF(28) is as described in [FIPS197],

GF(28) ≈ GF(2) [x]/(x8+x4+x3+x+1).

An element of GF(28) is represented as a byte. Addition and subtraction in GF(28) is performed as a bit-wise XOR of the bytes. Multiplication and inversion are more complex (see [FIPS197] Section 4.1 and 4.2 for details).

An element of GF(216) is represented as a pair of bytes (u, v). The element m is given by

m = x5+x4+x3+x,

which is represented by the byte 0x3A (or {3A} in notation according to [FIPS197]).

Addition and subtraction in GF(216) both correspond to simply XORing the bytes. The product of two elements ry + s and uy + v  is given by

(ry + s) (uy + v) = ((r + s)(u + v) + sv)y  + (ru + svm).

The inverse of an element uy + v is given by

(uy + v)-1 = ud-1y + (u + v)d-1,  where  d = (u + v)v + mu2.

2.2.6 Template

A Template is a named Managed Object containing the client-settable attributes of a Managed Cryptographic Object (i.e., a stored, named list of attributes). A Template is used to specify the attributes of a new Managed Cryptographic Object in various operations. It is intended to be used to specify the cryptographic attributes of new objects in a standardized or convenient way. None of the client-settable attributes specified in a Template except the Name attribute apply to the template object itself, but instead apply to any object created using the Template.

The Template MAY be the subject of the Register, Locate, Get, Get Attributes, Get Attribute List, Add Attribute, Modify Attribute, Delete Attribute, and Destroy operations.

An attribute specified in a Template is applicable either to the Template itself or to objects created using the Template.

Attributes applicable to the Template itself are: Unique Identifier, Object Type, Name, Initial Date, Archive Date, and Last Change Date.

Attributes applicable to objects created using the Template are:

· Cryptographic Algorithm

· Cryptographic Length

· Cryptographic Domain Parameters

· Cryptographic Parameters

· Certificate Length

· Operation Policy Name

· Cryptographic Usage Mask

· Digital Signature Algorithm

· Usage Limits

· Activation Date

· Process Start Date

· Protect Stop Date

· Deactivation Date
· Object Group

· Application Specific Information

· Contact Information

· Custom Attribute

	Object
	Encoding
	REQUIRED

	Template
	Structure
	

	Attribute
	Attribute Object, see 2.1.1
	Yes. MAY be repeated.


Table 33: Template Object Structure

2.2.7 Secret Data
A Managed Cryptographic Object containing a shared secret value that is not a key or certificate (e.g., a password). The Key Block of the Secret Data object contains a Key Value of the Opaque type. The Key Value MAY be wrapped.

	Object
	Encoding
	REQUIRED

	Secret Data
	Structure
	

	Secret Data Type
	Enumeration, see 9.1.3.2.9
	Yes

	Key Block
	Structure, see 2.1.3 
	Yes


Table 34: Secret Data Object Structure

2.2.8 Opaque Object
A Managed Object that the key management server is possibly not able to interpret. The context information for this object MAY be stored and retrieved using Custom Attributes.

	Object
	Encoding
	REQUIRED

	Opaque Object
	Structure
	

	Opaque Data Type
	Enumeration, see 9.1.3.2.10
	Yes

	Opaque Data Value
	Byte String
	Yes


Table 35: Opaque Object Structure

3 Attributes

The following subsections describe the attributes that are associated with Managed Objects. Attributes that an object MAY have multiple instances of are referred to as multi-instance attributes. All instances of an attribute SHOULD have a different value. Similarly, attributes which an object SHALL only have at most one instance of are referred to as single-instance attributes. Attributes are able to be obtained by a client from the server using the Get Attribute operation. Some attributes are able to be set by the Add Attribute operation or updated by the Modify Attribute operation, and some are able to be deleted by the Delete Attribute operation if they no longer apply to the Managed Object. Read-only attributes are attributes that SHALL NOT be modified by either server or client, and that SHALL NOT be deleted by a client.

When attributes are returned by the server (e.g., via a Get Attributes operation), the attribute value returned MAY differ for different clients (e.g., the Cryptographic Usage Mask value MAY be different for different clients, depending on the policy of the server).

The first table in each subsection contains the attribute name in the first row. This name is the canonical name used when managing attributes using the Get Attributes, Get Attribute List, Add Attribute, Modify Attribute, and Delete Attribute operations.

A server SHALL NOT delete attributes without receiving a request from a client until the object is destroyed. After an object is destroyed, the server MAY retain all, some or none of the object attributes, depending on the object type and server policy. 

The second table in each subsection lists certain attribute characteristics (e.g., “SHALL always have a value”): Table 36 below explains the meaning of each characteristic that may appear in those tables. The server policy MAY further restrict these attribute characteristics.
	SHALL always have a value
	All Managed Objects that are of the Object Types for which this attribute applies, SHALL always have this attribute set once the object has been created or registered, up until the object has been destroyed.

	Initially set by
	Who is permitted to initially set the value of the attribute (if the attribute has never been set, or if all the attribute values have been deleted)?

	Modifiable by server
	Is the server allowed to change an existing value of the attribute without receiving a request from a client?

	Modifiable by client
	Is the client able to change an existing value of the attribute value once it has been set?

	Deletable by client
	Is the client able to delete an instance of the attribute?

	Multiple instances permitted
	Are multiple instances of the attribute permitted?

	When implicitly set
	Which operations MAY cause this attribute to be set even if the attribute is not specified in the operation request itself?

	Applies to Object Types
	Which Managed Objects MAY have this attribute set?


Table 36: Attribute Rules
3.1 Unique Identifier
The Unique Identifier is generated by the key management system to uniquely identify a Managed Object. It is only REQUIRED to be unique within the identifier space managed by a single key management system, however it is RECOMMENDED that this identifier be globally unique in order to allow for a key management domain export of such objects. This attribute SHALL be assigned by the key management system at creation or registration time, and then SHALL NOT be changed or deleted before the object is destroyed. 

	Object
	Encoding
	

	Unique Identifier
	Text String
	


Table 37: Unique Identifier Attribute
	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair 

	Applies to Object Types
	All Objects


Table 38: Unique Identifier Attribute Rules

3.2 Name
The Name attribute is a structure (see Table 39) used to identify and locate the object. This attribute is assigned by the client, and the Name Value is intended to be in a form that humans are able to interpret. The key management system MAY specify rules by which the client creates valid names. Clients are informed of such rules by a mechanism that is not specified by this standard. Names SHALL be unique within a given key management domain, but are not REQUIRED to be globally unique.

	Object
	Encoding
	REQUIRED

	Name
	Structure 
	

	Name Value
	Text String
	Yes

	Name Type
	Enumeration, see 9.1.3.2.11
	Yes


Table 39: Name Attribute Structure

	SHALL always have a value
	No

	Initially set by
	Client

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set 
	Re-key, Re-key Key Pair, Re-certify

	Applies to Object Types
	All Objects


Table 40: Name Attribute Rules

3.3 Object Type
The Object Type of a Managed Object (e.g., public key, private key, symmetric key, etc) SHALL be set by the server when the object is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	

	Object Type
	Enumeration, see 9.1.3.2.12
	


Table 41: Object Type Attribute

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Objects


Table 42: Object Type Attribute Rules

3.4 Cryptographic Algorithm
The Cryptographic Algorithm of an object (e.g., RSA, DSA, DES, 3DES, AES, etc). The Cryptographic Algorithm of a Certificate object identifies the algorithm for the public key contained within the Certificate. The digital signature algorithm used to sign the Certificate is identified in the Digital Signature Algorithm attribute defined in Section 3.16. This attribute SHALL be set by the server when the object is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	

	Cryptographic Algorithm
	Enumeration, see 9.1.3.2.13
	


Table 43: Cryptographic Algorithm Attribute

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Certify, Create, Create Key Pair, Re-certify, Register, Derive Key, Re-key, Re-key Key Pair

	Applies to Object Types
	Keys, Certificates, Templates


Table 44: Cryptographic Algorithm Attribute Rules

3.5 Cryptographic Length
For keys, Cryptographic Length is the length in bits of the clear-text cryptographic key material of the Managed Cryptographic Object. For certificates, Cryptographic Length is the length in bits of the public key contained within the Certificate. This attribute SHALL be set by the server when the object is created or registered, and then SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	

	Cryptographic Length
	Integer
	


Table 45: Cryptographic Length Attribute

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Certify, Create, Create Key Pair, Re-certify, Register, Derive Key, Re-key, Re-key Key Pair

	Applies to Object Types
	Keys, Certificates, Templates


Table 46: Cryptographic Length Attribute Rules

3.6 Cryptographic Parameters

The Cryptographic Parameters attribute is a structure (see Table 47) that contains a set of OPTIONAL fields that describe certain cryptographic parameters to be used when performing cryptographic operations using the object. Specific fields MAY pertain only to certain types of Managed Cryptographic Objects. The Cryptographic Parameters attribute of a Certificate object identifies the cryptographic parameters of the public key contained within the Certificate.
	Object
	Encoding
	REQUIRED

	Cryptographic Parameters
	Structure 
	

	Block Cipher Mode
	Enumeration, see 9.1.3.2.14
	No

	Padding Method
	Enumeration, see 9.1.3.2.15
	No

	Hashing Algorithm
	Enumeration, see 9.1.3.2.16
	No

	Key Role Type
	Enumeration, see 9.1.3.2.17
	No


Table 47: Cryptographic Parameters Attribute Structure

	SHALL always have a value
	No

	Initially set by
	Client

	Modifiable by server
	No

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set
	Re-key, Re-key Key Pair, Re-certify

	Applies to Object Types
	Keys, Certificates, Templates


Table 48: Cryptographic Parameters Attribute Rules

Key Role Type definitions match those defined in ANSI X9 TR-31 [X9 TR-31] and are defined in Table 49:

	BDK
	Base Derivation Key (ANSI X9.24 DUKPT key derivation)

	CVK
	Card Verification Key (CVV/signature strip number validation)

	DEK
	Data Encryption Key (General Data Encryption)

	MKAC
	EMV/chip card Master Key: Application Cryptograms

	MKSMC
	EMV/chip card Master Key: Secure Messaging for Confidentiality

	MKSMI
	EMV/chip card Master Key: Secure Messaging for Integrity

	MKDAC
	EMV/chip card Master Key: Data Authentication Code

	MKDN
	EMV/chip card Master Key: Dynamic Numbers

	MKCP
	EMV/chip card Master Key: Card Personalization

	MKOTH
	EMV/chip card Master Key: Other

	KEK
	Key Encryption or Wrapping Key

	MAC16609
	ISO16609 MAC Algorithm 1

	MAC97971
	ISO9797-1 MAC Algorithm 1

	MAC97972
	ISO9797-1 MAC Algorithm 2

	MAC97973
	ISO9797-1 MAC Algorithm 3 (Note this is commonly known as X9.19 Retail MAC)

	MAC97974
	ISO9797-1 MAC Algorithm 4

	MAC97975
	ISO9797-1 MAC Algorithm 5

	ZPK
	PIN Block Encryption Key

	PVKIBM
	PIN Verification Key, IBM 3624 Algorithm

	PVKPVV
	PIN Verification Key, VISA PVV Algorithm

	PVKOTH
	PIN Verification Key, Other Algorithm


Table 49: Key Role Types

Accredited Standards Committee X9, Inc. - Financial Industry Standards (www.x9.org) contributed to Table 49. Key role names and descriptions are derived from material in the Accredited Standards Committee X9, Inc's Technical Report "TR-31 2005 Interoperable Secure Key Exchange Key Block Specification for Symmetric Algorithms" and used with the permission of Accredited Standards Committee X9, Inc. in an effort to improve interoperability between X9 standards and OASIS KMIP. The complete ANSI X9 TR-31 is available at www.x9.org.

3.7 Cryptographic Domain Parameters

The Cryptographic Domain Parameters attribute is a structure (see Table 50) that contains a set of OPTIONAL fields that MAY need to be specified in the Create Key Pair Request Payload. Specific fields MAY only pertain to certain types of Managed Cryptographic Objects.

The domain parameter Qlength correponds to the bit length of parameter Q (refer to  [FIPS186-3] and [SP800-56A]). Qlength applies to algorithms such as DSA and DH. The bit length of parameter P (refer to  [FIPS186-3] and [SP800-56A]) is specified separately by setting the Cryptographic Length attribute.

Recommended Curve is applicable to elliptic curve algorithms such as ECDSA, ECDH, and ECMQV.

	Object
	Encoding
	Required

	Cryptographic Domain Parameters
	Structure 
	Yes

	Qlength
	Integer
	No

	Recommended Curve
	Enumeration, see 9.1.3.2.5
	No


Table 50: Cryptographic Domain Parameters Attribute Structure

	Shall always have a value
	No

	Initially set by
	Client

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Re-key, Re-key Key Pair

	Applies to Object Types
	Asymmetric Keys, Templates


Table 51: Cryptographic Domain Parameters Attribute Rules

3.8 Certificate Type
The type of a certificate (e.g., X.509, PGP, etc). The Certificate Type value SHALL be set by the server when the certificate is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	

	Certificate Type
	Enumeration, see 9.1.3.2.6
	


Table 52: Certificate Type Attribute

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Register, Certify, Re-certify

	Applies to Object Types
	Certificates


Table 53: Certificate Type Attribute Rules

3.9 Certificate Length

The length in bytes of the Certificate object. The Certificate Length SHALL be set by the server when the object is created or registered, and then SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	

	Certificate Length
	Integer
	


Table 54: Certificate Length Attribute

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Register, Certify, Re-certify

	Applies to Object Types
	Certificates


Table 55: Certificate Length Attribute Rules

3.10 X.509 Certificate Identifier

The X.509 Certificate Identifier attribute is a structure (see Table 56) used to provide the identification of an X.509 public key certificate. The X.509 Certificate Identifier contains the Issuer Distinguished Name (i.e., from the Issuer field of the X.509 certificate) and the Certificate Serial Number (i.e., from the Serial Number field of the X.509 certificate).  The X.509 Certificate Identifier SHALL be set by the server when the X.509 certificate is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	REQUIRED

	X.509 Certificate Identifier
	Structure
	

	Issuer Distinguished Name
	Byte String
	Yes

	Certificate Serial Number
	Byte String
	Yes


Table 56: X.509 Certificate Identifier Attribute Structure
	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Register, Certify, Re-certify

	Applies to Object Types
	X.509 Certificates


Table 57: X.509 Certificate Identifier Attribute Rules
3.11 X.509 Certificate Subject
The X.509 Certificate Subject attribute is a structure (see Table 58) used to identify the subject of a X.509 certificate. The X.509 Certificate Subject contains the Subject Distinguished Name (i.e., from the Subject field of the X.509 certificate). It MAY include one or more alternative names (e.g., email address, IP address, DNS name) for the subject of the X.509 certificate (i.e., from the Subject Alternative Name extension within the X.509 certificate).  The X.509 Certificate Subject SHALL be set by the server based on the information it extracts from the X.509 certificate that is created (as a result of a Certify or a Re-certify operation) or registered (as part of a Register operation) and SHALL NOT be changed or deleted before the object is destroyed.

If the Subject Alternative Name extension is included in the X.509 certificate and is marked critical within the X.509 certificate itself, then an X.509 certificate MAY be issued with the subject field left blank. Therefore an empty string is an acceptable value for the Subject Distinguished Name.

	Object
	Encoding
	REQUIRED

	X.509 Certificate Subject
	Structure
	

	Subject Distinguished Name
	Byte String
	Yes, but MAY be the empty string 

	Subject Alternative Name
	Byte String
	Yes, if the Subject Distinguished Name is an empty string. MAY be repeated


Table 58: X.509 Certificate Subject Attribute Structure
	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Register, Certify, Re-certify

	Applies to Object Types
	X.509 Certificates


Table 59: X.509 Certificate Subject Attribute Rules
3.12 X.509 Certificate Issuer 
The X.509 Certificate Issuer attribute is a structure (see Table 64) used to identify the issuer of a X.509 certificate, containing the Issuer Distinguished Name (i.e., from the Issuer field of the X.509 certificate). It MAY include one or more alternative names (e.g., email address, IP address, DNS name) for the issuer of the certificate (i.e., from the Issuer Alternative Name extension within the X.509 certificate). The server SHALL set these values based on the information it extracts from a X.509 certificate that is created as a result of a Certify or a Re-certify operation or is sent as part of a Register operation. These values SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	REQUIRED

	X.509 Certificate Issuer
	Structure
	

	Issuer Distinguished Name
	Byte String
	Yes

	Issuer Alternative Name
	Byte String
	No, MAY be repeated


Table 60: X.509 Certificate Issuer Attribute Structure
	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Register, Certify, Re-certify

	Applies to Object Types
	X.509 Certificates


Table 61: X.509 Certificate Issuer Attribute Rules
3.13 Certificate Identifier
This attribute is deprecated as of version 1.1 of this specification and MAY be removed from subsequent versions of this specification. The X.509 Certificate Identifier attribute (see Section 3.10) SHOULD be used instead. 

The Certificate Identifier attribute is a structure (see Table 62) used to provide the identification of a certificate. For X.509 certificates, it contains the Issuer Distinguished Name (i.e., from the Issuer field of the certificate) and the Certificate Serial Number (i.e., from the Serial Number field of the certificate). For PGP certificates, the Issuer contains the OpenPGP Key ID of the key issuing the signature (the signature that represents the certificate). The Certificate Identifier SHALL be set by the server when the certificate is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	REQUIRED

	Certificate Identifier
	Structure
	

	Issuer
	Text String
	Yes

	Serial Number
	Text String
	Yes (for X.509 certificates) / No (for PGP certificates since they do not contain a serial number)


Table 62: Certificate Identifier Attribute Structure

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Register, Certify, Re-certify

	Applies to Object Types
	Certificates


Table 63: Certificate Identifier Attribute Rules

3.14 Certificate Subject
This attribute is deprecated as of version 1.1 of this specification and MAY be removed from subsequent versions of this specification. The X.509 Certificate Subject attribute (see Section 3.11) SHOULD be used instead. 

The Certificate Subject attribute is a structure (see Table 64) used to identify the subject of a certificate. For X.509 certificates, it contains the Subject Distinguished Name (i.e., from the Subject field of the certificate). It MAY include one or more alternative names (e.g., email address, IP address, DNS name) for the subject of the certificate (i.e., from the Subject Alternative Name extension within the certificate). For PGP certificates, the Certificate Subject Distinguished Name contains the content of the first User ID packet in the PGP certificate (that is, the first User ID packet after the Public-Key packet in the transferable public key that forms the PGP certificate). These values SHALL be set by the server based on the information it extracts from the certificate that is created (as a result of a Certify or a Re-certify operation) or registered (as part of a Register operation) and SHALL NOT be changed or deleted before the object is destroyed.

If the Subject Alternative Name extension is included in the certificate and is marked CRITICAL (i.e., within the certificate itself), then it is possible to issue an X.509 certificate where the subject field is left blank. Therefore an empty string is an acceptable value for the Certificate Subject Distinguished Name.

	Object
	Encoding
	REQUIRED

	Certificate Subject
	Structure
	

	Certificate Subject Distinguished Name
	Text String
	Yes, but MAY be the empty string

	Certificate Subject Alternative Name
	Text String
	No, MAY be repeated


Table 64: Certificate Subject Attribute Structure
	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Register, Certify, Re-certify

	Applies to Object Types
	Certificates


Table 65: Certificate Subject Attribute Rules

3.15 Certificate Issuer

This attribute is deprecated as of version 1.1 of this specification and MAY be removed from subsequent versions of this specification. The X.509 Certificate Issuer attribute (see Section 3.12) SHOULD be used instead. 

The Certificate Issuer attribute is a structure (see Table 67) used to identify the issuer of a certificate, containing the Issuer Distinguished Name (i.e., from the Issuer field of the certificate). It MAY include one or more alternative names (e.g., email address, IP address, DNS name) for the issuer of the certificate (i.e., from the Issuer Alternative Name extension within the certificate). The server SHALL set these values based on the information it extracts from a certificate that is created as a result of a Certify or a Re-certify operation or is sent as part of a Register operation. These values SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	REQUIRED

	Certificate Issuer
	Structure
	

	Certificate Issuer Distinguished Name
	Text String
	Yes

	Certificate Issuer Alternative Name
	Text String
	No, MAY be repeated


Table 66: Certificate Issuer Attribute Structure

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Register, Certify, Re-certify

	Applies to Object Types
	Certificates


Table 67: Certificate Issuer Attribute Rules

3.16 Digital Signature Algorithm

The Digital Signature Algorithm identifies the digital signature algorithm associated with a digitally signed object (e.g., Certificate).  This attribute SHALL be set by the server when the object is created or registered and then SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	

	Digital Signature Algorithm
	Enumeration, see 9.1.3.2.7
	


Table 68: Digital Signature Algorithm Attribute
	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	Yes for PGP certificates. No for X.509 certificates.

	When implicitly set
	Certify, Re-certify, Register

	Applies to Object Types
	Certificates


Table 69: Digital Signature Algorithm Attribute Rules
3.17 Digest
The Digest attribute is a structure (see Table 70) that contains the digest value of the key or secret data (i.e., digest of the Key Material), certificate (i.e., digest of the Certificate Value), or opaque object (i.e., digest of the Opaque Data Value). If the Key Material is a Byte String, then the Digest Value SHALL be calculated on this Byte String. If the Key Material is a structure, then the Digest Value SHALL be calculated on the TTLV-encoded (see Section 9.1) Key Material structure. The Key Format Type field in the Digest attribute indicates the format of the Managed Object from which the Digest Value was calculated. Multiple digests MAY be calculated using different algorithms listed in Section 9.1.3.2.16 and/or key format types listed in Section 9.1.3.2.3. If this attribute exists, then it SHALL have a mandatory attribute instance computed with the SHA-256 hashing algorithm. For objects registered by a client, the server SHALL compute the digest of the mandatory attribute instance using the Key Format Type of the registered object. In all other cases, the server MAY use any Key Format Type when computing the digest of the mandatory attribute instance, provided it is able to serve the object to clients in that same format. The digest(s) are static and SHALL be set by the server when the object is created or registered, provided that the server has access to the Key Material or the Digest Value (possibly obtained via out-of-band mechanisms). 

	Object
	Encoding
	REQUIRED

	Digest
	Structure 
	

	Hashing Algorithm
	Enumeration, see 9.1.3.2.16
	Yes

	Digest Value
	Byte String
	Yes, if the server has access to the Digest Value or the Key Material (for keys and secret data), the Certificate Value (for certificates) or the Opaque Data Value (for opaque objects).

	Key Format Type
	Enumeration, see 9.1.3.2.3
	Yes, if the Managed Object is a key or secret data object.


Table 70: Digest Attribute Structure

	SHALL always have a value
	Yes, if the server has access to the Digest Value or the Key Material (for keys and secret data), the Certificate Value (for certificates) or the Opaque Data Value (for opaque objects).

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	Yes

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Cryptographic Objects, Opaque Objects


Table 71: Digest Attribute Rules

3.18 Operation Policy Name
An operation policy controls what entities MAY perform which key management operations on the object. The content of the Operation Policy Name attribute is the name of a policy object known to the key management system and, therefore, is server dependent. The named policy objects are created and managed using mechanisms outside the scope of the protocol. The policies determine what entities MAY perform specified operations on the object, and which of the object’s attributes MAY be modified or deleted. The Operation Policy Name attribute SHOULD be set when operations that result in a new Managed Object on the server are executed. It is set either explicitly or via some default set by the server, which then applies the named policy to all subsequent operations on the object.

	Object
	Encoding
	

	Operation Policy Name
	Text String
	


Table 72: Operation Policy Name Attribute

	SHALL always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Objects


Table 73: Operation Policy Name Attribute Rules

3.18.1 Operations outside of operation policy control

Some of the operations SHOULD be allowed for any client at any time, without respect to operation policy. These operations are:

· Create

· Create Key Pair

· Register 

· Certify

· Re-certify

· Validate

· Query

· Cancel

· Poll

3.18.2 Default Operation Policy

A key management system implementation SHALL implement at least one named operation policy, which is used for objects when the Operation Policy attribute is not specified by the Client in operations that result in a new Managed Object on the server, or in a template specified in these operations. This policy is named default. It specifies the following rules for operations on objects created or registered with this policy, depending on the object type. For the profiles defined in [KMIP-Prof], the creator SHALL be as defined in [KMIP-Prof].

3.18.2.1  Default Operation Policy for Secret Objects

This policy applies to Symmetric Keys, Private Keys, Split Keys, Secret Data, and Opaque Objects.

	Default Operation Policy for Secret Objects

	Operation 
	Policy

	Re-key
	Allowed to creator only

	Re-key Key Pair
	Allowed to creator only

	Derive Key
	Allowed to creator only

	Locate
	Allowed to creator only

	Check
	Allowed to creator only

	Get
	Allowed to creator only

	Get Attributes
	Allowed to creator only

	Get Attribute List
	Allowed to creator only

	Add Attribute
	Allowed to creator only

	Modify Attribute
	Allowed to creator only

	Delete Attribute
	Allowed to creator only

	Obtain Lease
	Allowed to creator only

	Get Usage Allocation
	Allowed to creator only

	Activate
	Allowed to creator only

	Revoke
	Allowed to creator only

	Destroy
	Allowed to creator only

	Archive
	Allowed to creator only

	Recover
	Allowed to creator only


Table 74: Default Operation Policy for Secret Objects

3.18.2.2 Default Operation Policy for Certificates and Public Key Objects

This policy applies to Certificates and Public Keys.

	Default Operation Policy for Certificates and Public Key Objects

	Operation 
	Policy

	Locate
	Allowed to all

	Check
	Allowed to all

	Get
	Allowed to all

	Get Attributes
	Allowed to all

	Get Attribute List
	Allowed to all

	Add Attribute
	Allowed to creator only

	Modify Attribute
	Allowed to creator only

	Delete Attribute
	Allowed to creator only

	Obtain Lease
	Allowed to all

	Activate
	Allowed to creator only

	Revoke
	Allowed to creator only

	Destroy
	Allowed to creator only

	Archive
	Allowed to creator only

	Recover
	Allowed to creator only


Table 75: Default Operation Policy for Certificates and Public Key Objects

3.18.2.3 Default Operation Policy for Template Objects

The operation policy specified as an attribute in the Register operation for a template object is the operation policy used for objects created using that template, and is not the policy used to control operations on the template itself. There is no mechanism to specify a policy used to control operations on template objects, so the default policy for template objects is always used for templates created by clients using the Register operation to create template objects.

	Default Operation Policy for Private Template Objects

	Operation 
	Policy

	Locate
	Allowed to creator only

	Get
	Allowed to creator only

	Get Attributes
	Allowed to creator only

	Get Attribute List
	Allowed to creator only

	Add Attribute
	Allowed to creator only

	Modify Attribute
	Allowed to creator only

	Delete Attribute
	Allowed to creator only

	Destroy
	Allowed to creator only

	Any operation referencing the Template using a Template-Attribute
	Allowed to creator only


Table 76: Default Operation Policy for Private Template Objects

In addition to private template objects (which are controlled by the above policy, and which MAY be created by clients or the server), publicly known and usable templates MAY be created and managed by the server, with a default policy different from private template objects.

	Default Operation Policy for Public Template Objects

	Operation 
	Policy

	Locate
	Allowed to all

	Get
	Allowed to all

	Get Attributes
	Allowed to all

	Get Attribute List
	Allowed to all

	Add Attribute
	Disallowed to all

	Modify Attribute
	Disallowed to all

	Delete Attribute
	Disallowed to all

	Destroy
	Disallowed to all

	Any operation referencing the Template using a Template-Attribute
	Allowed to all


Table 77: Default Operation Policy for Public Template Objects

3.19 Cryptographic Usage Mask
The Cryptographic Usage Mask defines the cryptographic usage of a key. This is a bit mask that indicates to the client which cryptographic functions MAY be performed using the key, and which ones SHALL NOT be performed.

· Sign

· Verify

· Encrypt

· Decrypt

· Wrap Key

· Unwrap Key

· Export

· MAC Generate

· MAC Verify

· Derive Key

· Content Commitment

· Key Agreement

· Certificate Sign

· CRL Sign

· Generate Cryptogram

· Validate Cryptogram

· Translate Encrypt

· Translate Decrypt

· Translate Wrap

· Translate Unwrap

This list takes into consideration values that MAY appear in the Key Usage extension in an X.509 certificate. However, the list does not consider the additional usages that MAY appear in the Extended Key Usage extension.

X.509 Key Usage values SHALL be mapped to Cryptographic Usage Mask values in the following manner:

	X.509 Key Usage to Cryptographic Usage Mask Mapping

	X.509 Key Usage Value
	Cryptographic Usage Mask Value

	digitalSignature
	Sign or Verify

	contentCommitment
	Content Commitment

(Non Repudiation)

	keyEncipherment
	Wrap Key or Unwrap Key

	dataEncipherment
	Encrypt or Decrypt

	keyAgreement
	Key Agreement

	keyCertSign
	Certificate Sign

	cRLSign
	CRL Sign

	encipherOnly
	Encrypt

	decipherOnly
	Decrypt


Table 78: X.509 Key Usage to Cryptographic Usage Mask Mapping

	Object
	Encoding
	

	Cryptographic Usage Mask
	Integer
	


Table 79: Cryptographic Usage Mask Attribute

	SHALL always have a value
	Yes

	Initially set by
	Server or Client

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Cryptographic Objects, Templates


Table 80: Cryptographic Usage Mask Attribute Rules

3.20 Lease Time

The Lease Time attribute defines a time interval for a Managed Cryptographic Object beyond which the client SHALL NOT use the object without obtaining another lease. This attribute always holds the initial length of time allowed for a lease, and not the actual remaining time. Once its lease expires, the client is only able to renew the lease by calling Obtain Lease. A server SHALL store in this attribute the maximum Lease Time it is able to serve and a client obtains the lease time (with Obtain Lease) that is less than or equal to the maximum Lease Time. This attribute is read-only for clients. It SHALL be modified by the server only.

	Object
	Encoding
	

	Lease Time
	Interval
	


Table 81: Lease Time Attribute

	SHALL always have a value
	No

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Cryptographic Objects


Table 82: Lease Time Attribute Rules

3.21 Usage Limits
The Usage Limits attribute is a mechanism for limiting the usage of a Managed Cryptographic Object. It only applies to Managed Cryptographic Objects that are able to be used for applying cryptographic protection and it SHALL only reflect their usage for applying that protection (e.g., encryption, signing, etc.). This attribute does not necessarily exist for all Managed Cryptographic Objects, since some objects are able to be used without limit for cryptographically protecting data, depending on client/server policies. Usage for processing cryptographically-protected data (e.g., decryption, verification, etc.) is not limited. The Usage Limits attribute has the three following fields:

· Usage Limits Total – the total number of Usage Limits Units allowed to be protected. This is the total value for the entire life of the object and SHALL NOT be changed once the object begins to be used for applying cryptographic protection.

· Usage Limits Count – the currently remaining number of Usage Limits Units allowed to be protected by the object.

· Usage Limits Unit – The type of quantity for which this structure specifies a usage limit (e.g., byte, object).

When the attribute is initially set (usually during object creation or registration), the Usage Limits Count is set to the Usage Limits Total value allowed for the useful life of the object, and are decremented when the object is used. The server SHALL ignore the Usage Limits Count value if the attribute is specified in an operation that creates a new object. Changes made via the Modify Attribute operation reflect corrections to the Usage Limits Total value, but they SHALL NOT be changed once the Usage Limits Count value has changed by a Get Usage Allocation operation. The Usage Limits Count value SHALL NOT be set or modified by the client via the Add Attribute or Modify Attribute operations.

	Object
	Encoding
	REQUIRED

	Usage Limits
	Structure
	

	Usage Limits Total 
	Long Integer
	Yes

	Usage Limits Count
	Long Integer
	Yes

	Usage Limits Unit
	Enumeration, see 9.1.3.2.31
	Yes


Table 83: Usage Limits Attribute Structure

	SHALL always have a value
	No

	Initially set by
	Server (Total, Count, and Unit) or Client (Total and/or Unit only)

	Modifiable by server
	Yes

	Modifiable by client
	Yes (Total and/or Unit only, as long as Get Usage Allocation has not been performed)

	Deletable by client
	Yes, as long as Get Usage Allocation has not been performed

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Re-key, Re-key Key Pair, Get Usage Allocation

	Applies to Object Types
	Keys, Templates


Table 84: Usage Limits Attribute Rules

3.22 State
This attribute is an indication of the State of an object as known to the key management server. The State SHALL NOT be changed by using the Modify Attribute operation on this attribute. The state SHALL only be changed by the server as a part of other operations or other server processes. An object SHALL be in one of the following states at any given time. (Note: These states correspond to those described in [SP800-57-1]). 

Figure 1: Cryptographic Object States and Transitions
· [image: image1.png]OASIS )



Pre-Active: The object exists but is not yet usable for any cryptographic purpose.

· Active: The object MAY be used for all cryptographic purposes that are allowed by its Cryptographic Usage Mask attribute and, if applicable, by its Process Start Date (see 3.25) and Protect Stop Date (see 3.26) attributes.

· Deactivated: The object SHALL NOT be used for applying cryptographic protection (e.g., encryption or signing), but, if permitted by the Cryptographic Usage Mask attribute, then the object MAY be used to process cryptographically-protected information (e.g., decryption or verification), but only under extraordinary circumstances and when special permission is granted.

· Compromised: It is possible that the object has been compromised, and SHOULD only be used to process cryptographically-protected information in a client that is trusted to use managed objects that have been compromised.

· Destroyed: The object is no longer usable for any purpose.

· Destroyed Compromised: The object is no longer usable for any purpose; however its compromised status MAY be retained for audit or security purposes.

State transitions occur as follows:

1. The transition from a non-existent key to the Pre-Active state is caused by the creation of the object. When an object is created or registered, it automatically goes from non-existent to Pre-Active. If, however, the operation that creates or registers the object contains an Activation Date that has already occurred, then the state immediately transitions from Pre-Active to Active. In this case, the server SHALL set the Activation Date attribute to the value specified in the request, or fail the request attempting to create or register the object, depending on server policy. If the operation contains an Activation Date attribute that is in the future, or contains no Activation Date, then the Cryptographic Object is initialized in the key management system in the Pre-Active state.

2. The transition from Pre-Active to Destroyed is caused by a client issuing a Destroy operation. The server destroys the object when (and if) server policy dictates.

3. The transition from Pre-Active to Compromised is caused by a client issuing a Revoke operation with a Revocation Reason of Compromised.

4. The transition from Pre-Active to Active SHALL occur in one of three ways:
· The Activation Date is reached.

· A client successfully issues a Modify Attribute operation, modifying the Activation Date to a date in the past, or the current date.

· A client issues an Activate operation on the object. The server SHALL set the Activation Date to the time the Activate operation is received.

5. The transition from Active to Compromised is caused by a client issuing a Revoke operation with a Revocation Reason of Compromised.

6. The transition from Active to Deactivated SHALL occur in one of three ways:

· The object's Deactivation Date is reached.

· A client issues a Revoke operation, with a Revocation Reason other than Compromised.

· The client successfully issues a Modify Attribute operation, modifying the Deactivation Date to a date in the past, or the current date.

7. The transition from Deactivated to Destroyed is caused by a client issuing a Destroy operation, or by a server, both in accordance with server policy. The server destroys the object when (and if) server policy dictates.

8. The transition from Deactivated to Compromised is caused by a client issuing a Revoke operation with a Revocation Reason of Compromised.

9. The transition from Compromised to Destroyed Compromised is caused by a client issuing a Destroy operation, or by a server, both in accordance with server policy. The server destroys the object when (and if) server policy dictates.

10. The transition from Destroyed to Destroyed Compromised is caused by a client issuing a Revoke operation with a Revocation Reason of Compromised.

Only the transitions described above are permitted.

	Object
	Encoding
	

	State
	Enumeration, see 9.1.3.2.18
	


Table 85: State Attribute

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No, but only by the server in response to certain requests (see above)

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Activate, Revoke, Destroy, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Cryptographic Objects


Table 86: State Attribute Rules

3.23 Initial Date
The Initial Date is the date and time when the Managed Object was first created or registered at the server. This time corresponds to state transition 1 (see Section 3.22). This attribute SHALL be set by the server when the object is created or registered, and then SHALL NOT be changed or deleted before the object is destroyed. This attribute is also set for non-cryptographic objects (e.g., templates) when they are first registered with the server.

	Object
	Encoding
	

	Initial Date
	Date-Time
	


Table 87: Initial Date Attribute

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Objects


Table 88: Initial Date Attribute Rules

3.24 Activation Date
This is the date and time when the Managed Cryptographic Object MAY begin to be used. This time corresponds to state transition 4 (see Section 3.22). The object SHALL NOT be used for any cryptographic purpose before the Activation Date has been reached. Once the state transition from Pre-Active has occurred, then this attribute SHALL NOT be changed or deleted before the object is destroyed. 

	Object
	Encoding
	

	Activation Date
	Date-Time
	


Table 89: Activation Date Attribute
	SHALL always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes, only while in Pre-Active state

	Modifiable by client
	Yes, only while in Pre-Active state

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Activate Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Cryptographic Objects, Templates


Table 90: Activation Date Attribute Rules

3.25 Process Start Date
This is the date and time when a Managed Symmetric Key Object MAY begin to be used to process cryptographically-protected information (e.g., decryption or unwrapping), depending on the value of its Cryptographic Usage Mask attribute. The object SHALL NOT be used for these cryptographic purposes before the Process Start Date has been reached. This value MAY be equal to or later than, but SHALL NOT precede, the Activation Date. Once the Process Start Date has occurred, then this attribute SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	

	Process Start Date
	Date-Time
	


Table 91: Process Start Date Attribute
	SHALL always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes, only while in Pre-Active or Active state and as long as the Process Start Date has been not reached.

	Modifiable by client
	Yes, only while in Pre-Active or Active state and as long as the Process Start Date has been not reached.

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Register, Derive Key, Re-key

	Applies to Object Types
	Symmetric Keys, Split Keys of symmetric keys, Templates


Table 92: Process Start Date Attribute Rules

3.26 Protect Stop Date
This is the date and time when a Managed Symmetric Key Object SHALL NOT be used for applying cryptographic protection (e.g., encryption or wrapping), depending on the value of its Cryptographic Usage Mask attribute. This value MAY be equal to or earlier than, but SHALL NOT be later than the Deactivation Date. Once the Protect Stop Date has occurred, then this attribute SHALL NOT be changed or deleted before the object is destroyed.

	Object
	Encoding
	

	Protect Stop Date
	Date-Time
	


Table 93: Protect Stop Date Attribute

	SHALL always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes, only while in Pre-Active or Active state and as long as the Protect Stop Date has not been reached.

	Modifiable by client
	Yes, only while in Pre-Active or Active state and as long as the Protect Stop Date has not been reached.

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Register, Derive Key, Re-key

	Applies to Object Types
	Symmetric Keys, Split Keys of symmetric keys, Templates


Table 94: Protect Stop Date Attribute Rules

3.27 Deactivation Date
The Deactivation Date is the date and time when the Managed Cryptographic Object SHALL NOT be used for any purpose, except for decryption, signature verification, or unwrapping, but only under extraordinary circumstances and only when special permission is granted. This time corresponds to state transition 6 (see Section 3.22). This attribute SHALL NOT be changed or deleted before the object is destroyed, unless the object is in the Pre-Active or Active state.

	Object
	Encoding
	

	Deactivation Date
	Date-Time
	


Table 95: Deactivation Date Attribute
	SHALL always have a value
	No

	Initially set by
	Server or Client

	Modifiable by server
	Yes, only while in Pre-Active or Active state

	Modifiable by client
	Yes, only while in Pre-Active or Active state

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Revoke Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Cryptographic Objects, Templates


Table 96: Deactivation Date Attribute Rules

3.28 Destroy Date
The Destroy Date is the date and time when the Managed Object was destroyed. This time corresponds to state transitions 2, 7, or 9 (see Section 3.22). This value is set by the server when the object is destroyed due to the reception of a Destroy operation, or due to server policy or out-of-band administrative action.

	Object
	Encoding
	

	Destroy Date
	Date-Time
	


Table 97: Destroy Date Attribute
	SHALL always have a value
	No

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Destroy

	Applies to Object Types
	All Cryptographic Objects, Opaque Objects


Table 98: Destroy Date Attribute Rules

3.29 Compromise Occurrence Date
The Compromise Occurrence Date is the date and time when the Managed Cryptographic Object was first believed to be compromised. If it is not possible to estimate when the compromise occurred, then this value SHOULD be set to the Initial Date for the object.

	Object
	Encoding
	

	Compromise Occurrence Date
	Date-Time
	


Table 99: Compromise Occurrence Date Attribute
	SHALL always have a value
	No

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Revoke

	Applies to Object Types
	All Cryptographic Objects, Opaque Object


Table 100: Compromise Occurrence Date Attribute Rules

3.30 Compromise Date
The Compromise Date is the date and time when the Managed Cryptographic Object entered into the compromised state. This time corresponds to state transitions 3, 5, 8, or 10 (see Section 3.22). This time indicates when the key management system was made aware of the compromise, not necessarily when the compromise occurred. This attribute is set by the server when it receives a Revoke operation with a Revocation Reason of Compromised, or due to server policy or out-of-band administrative action.

	Object
	Encoding
	

	Compromise Date
	Date-Time
	


Table 101: Compromise Date Attribute
	SHALL always have a value
	No

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Revoke

	Applies to Object Types
	All Cryptographic Objects, Opaque Object


Table 102: Compromise Date Attribute Rules

3.31 Revocation Reason
The Revocation Reason attribute is a structure (see Table 103) used to indicate why the Managed Cryptographic Object was revoked (e.g., “compromised”, “expired”, “no longer used”, etc). This attribute is only set by the server as a part of the Revoke Operation.

The Revocation Message is an OPTIONAL field that is used exclusively for audit trail/logging purposes and MAY contain additional information about why the object was revoked (e.g., “Laptop stolen”, or “Machine decommissioned”).

	Object
	Encoding
	REQUIRED

	Revocation Reason
	Structure
	

	Revocation Reason Code
	Enumeration, see 9.1.3.2.19 
	Yes

	Revocation Message
	Text String
	No


Table 103: Revocation Reason Attribute Structure

	SHALL always have a value
	No

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Revoke

	Applies to Object Types
	All Cryptographic Objects, Opaque Object


Table 104: Revocation Reason Attribute Rules

3.32 Archive Date
The Archive Date is the date and time when the Managed Object was placed in archival storage. This value is set by the server as a part of the Archive operation. The server SHALL delete this attribute whenever a Recover operation is performed.

	Object
	Encoding
	

	Archive Date
	Date-Time
	


Table 105: Archive Date Attribute

	SHALL always have a value
	No

	Initially set by
	Server

	Modifiable by server
	No

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Archive

	Applies to Object Types
	All Objects


Table 106: Archive Date Attribute Rules

3.33 Object Group
An object MAY be part of a group of objects. An object MAY belong to more than one group of objects. To assign an object to a group of objects, the object group name SHOULD be set into this attribute. “default” is a reserved Text String for Object Group. 

	Object
	Encoding
	

	Object Group
	Text String
	


Table 107: Object Group Attribute

	SHALL always have a value
	No

	Initially set by
	Client or Server

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Objects


Table 108: Object Group Attribute Rules 

3.34 Fresh
The Fresh attribute is a Boolean attribute that indicates if the object has not yet been served to a client. The Fresh attribute SHOULD be set to True when a new object is created on the server. The server SHALL change the attribute value to False as soon as the object has been served to a client.

	Object
	Encoding
	

	Fresh
	Boolean
	


Table 109: Fresh Attribute

	SHALL always have a value
	No

	Initially set by
	Client or Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair, Re-key Key Pair

	Applies to Object Types
	All Cryptographic Objects


Table 110: Fresh Attribute Rules

3.35 Link
The Link attribute is a structure (see Table 111) used to create a link from one Managed Cryptographic Object to another, closely related target Managed Cryptographic Object. The link has a type, and the allowed types differ, depending on the Object Type of the Managed Cryptographic Object, as listed below. The Linked Object Identifier identifies the target Managed Cryptographic Object by its Unique Identifier. The link contains information about the association between the Managed Cryptographic Objects (e.g., the private key corresponding to a public key; the parent certificate for a certificate in a chain; or for a derived symmetric key, the base key from which it was derived).

Possible values of Link Type in accordance with the Object Type of the Managed Cryptographic Object are:

· Private Key Link. For a Public Key object: the private key corresponding to the public key.

· Public Key Link. For a Private Key object: the public key corresponding to the private key. For a Certificate object: the public key contained in the certificate.

· Certificate Link. For Certificate objects: the parent certificate for a certificate in a certificate chain. For Public Key objects: the corresponding certificate(s), containing the same public key. 

· Derivation Base Object Link for a derived Symmetric Key object: the object(s) from which the current symmetric key was derived.

· Derived Key Link: the symmetric key(s) that were derived from the current object.

· Replacement Object Link. For a Symmetric Key, an Asymmetric Private Key, or an Asymmetric Public Key object: the key that resulted from the re-key of the current key. For a Certificate object: the certificate that resulted from the re-certify. Note that there SHALL be only one such replacement object per Managed Object.

· Replaced Object Link. For a Symmetric Key, an Asymmetric Private Key, or an Asymmetric Public Key object: the key that was re-keyed to obtain the current key. For a Certificate object: the certificate that was re-certified to obtain the current certificate.

The Link attribute SHOULD be present for private keys and public keys for which a certificate chain is stored by the server, and for certificates in a certificate chain.

Note that it is possible for a Managed Object to have multiple instances of the Link attribute (e.g., a Private Key has links to the associated certificate, as well as the associated public key; a Certificate object has links to both the public key and to the certificate of the certification authority (CA) that signed the certificate).

It is also possible that a Managed Object does not have links to associated cryptographic objects. This MAY occur in cases where the associated key material is not available to the server or client (e.g., the registration of a CA Signer certificate with a server, where the corresponding private key is held in a different manner).

	Object
	Encoding
	REQUIRED

	Link
	Structure
	

	Link Type
	Enumeration, see 9.1.3.2.20
	Yes

	Linked Object Identifier, see 3.1
	Text String
	Yes


Table 111: Link Attribute Structure

	SHALL always have a value
	No

	Initially set by
	Client or Server

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set
	Create Key Pair, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Cryptographic Objects


Table 112: Link Attribute Structure Rules

3.36 Application Specific Information
The Application Specific Information attribute is a structure (see Table 113) used to store data specific to the application(s) using the Managed Object. It consists of the following fields: an Application Namespace and Application Data specific to that application namespace.

Clients MAY request to set (i.e., using any of the operations that result in new Managed Object(s) on the server or adding/modifying the attribute of an existing Managed Object) an instance of this attribute with a particular Application Namespace while omitting Application Data. In that case, if the server supports this namespace (as indicated by the Query operation in Section 4.25), then it SHALL return a suitable Application Data value. If the server does not support this namespace, then an error SHALL be returned.

	Object
	Encoding
	REQUIRED

	Application Specific Information 
	Structure
	

	Application Namespace
	Text String
	Yes

	Application Data
	Text String
	Yes


Table 113: Application Specific Information Attribute

	SHALL always have a value
	No

	Initially set by
	Client or Server (only if the Application Data is omitted, in the client request)

	Modifiable by server
	Yes (only if the Application Data is omitted in the client request)

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	Yes

	When implicitly set
	Re-key, Re-key Key Pair, Re-certify

	Applies to Object Types
	All Objects


Table 114: Application Specific Information Attribute Rules

3.37 Contact Information

The Contact Information attribute is OPTIONAL, and its content is used for contact purposes only. It is not used for policy enforcement. The attribute is set by the client or the server. 

	Object
	Encoding
	

	Contact Information
	Text String
	


Table 115: Contact Information Attribute

	SHALL always have a value
	No

	Initially set by
	Client or Server

	Modifiable by server
	Yes

	Modifiable by client
	Yes

	Deletable by client
	Yes

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Objects


Table 116: Contact Information Attribute Rules

3.38 Last Change Date

The Last Change Date attribute is a meta attribute that contains the date and time of the last change to the contents or attributes of the specified object. 

	Object
	Encoding
	

	Last Change Date
	Date-Time
	


Table 117: Last Change Date Attribute

	SHALL always have a value
	Yes

	Initially set by
	Server

	Modifiable by server
	Yes

	Modifiable by client
	No

	Deletable by client
	No

	Multiple instances permitted
	No

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Activate, Revoke, Destroy, Archive, Recover, Certify, Re-certify, Re-key, Re-key Key Pair, Add Attribute, Modify Attribute, Delete Attribute, Get Usage Allocation

	Applies to Object Types
	All Objects


Table 118: Last Change Date Attribute Rules

3.39 Custom Attribute
A Custom Attribute is a client- or server-defined attribute intended for vendor-specific purposes. It is created by the client and not interpreted by the server, or is created by the server and MAY be interpreted by the client. All custom attributes created by the client SHALL adhere to a naming scheme, where the name of the attribute SHALL have a prefix of 'x-'. All custom attributes created by the key management server SHALL adhere to a naming scheme where the name of the attribute SHALL have a prefix of 'y-'. The server SHALL NOT accept a client-created or modified attribute, where the name of the attribute has a prefix of ‘y-‘. The tag type Custom Attribute is not able to identify the particular attribute; hence such an attribute SHALL only appear in an Attribute Structure with its name as defined in Section 2.1.1.

	Object
	Encoding
	

	Custom Attribute
	Any data type or structure. If a structure, then the structure SHALL NOT include sub structures
	The name of the attribute SHALL start with 'x-' or 'y-'.


Table 119 Custom Attribute
	SHALL always have a value
	No

	Initially set by
	Client or Server

	Modifiable by server
	Yes, for server-created attributes

	Modifiable by client
	Yes, for client-created attributes

	Deletable by client
	Yes, for client-created attributes

	Multiple instances permitted
	Yes

	When implicitly set
	Create, Create Key Pair, Register, Derive Key, Activate, Revoke, Destroy, Certify, Re-certify, Re-key, Re-key Key Pair

	Applies to Object Types
	All Objects


Table 120: Custom Attribute Rules

4 Client-to-Server Operations

The following subsections describe the operations that MAY be requested by a key management client. Not all clients have to be capable of issuing all operation requests; however any client that issues a specific request SHALL be capable of understanding the response to the request. All Object Management operations are issued in requests from clients to servers, and results obtained in responses from servers to clients. Multiple operations MAY be combined within a batch, resulting in a single request/response message pair.

A number of the operations whose descriptions follow are affected by a mechanism referred to as the ID Placeholder.

The key management server SHALL implement a temporary variable called the ID Placeholder. This value consists of a single Unique Identifier. It is a variable stored inside the server that is only valid and preserved during the execution of a batch of operations. Once the batch of operations has been completed, the ID Placeholder value SHALL be discarded and/or invalidated by the server, so that subsequent requests do not find this previous ID Placeholder available.

The ID Placeholder is obtained from the Unique Identifier returned in response to the Create, Create Pair, Register, Derive Key, Re-key, Re-key Key Pair, Certify, Re-Certify, Locate, and Recover operations. If any of these operations successfully completes and returns a Unique Identifier, then the server SHALL copy this Unique Identifier into the ID Placeholder variable, where it is held until the completion of the operations remaining in the batched request or until a subsequent operation in the batch causes the ID Placeholder to be replaced. If the Batch Error Continuation Option is set to Stop and the Batch Order Option is set to true, then subsequent operations in the batched request MAY make use of the ID Placeholder by omitting the Unique Identifier field from the request payloads for these operations.

Requests MAY contain attribute values to be assigned to the object. This information is specified with a Template-Attribute (see Section 2.1.8) that contains zero or more template names and zero or more individual attributes. If more than one template name is specified, and there is a conflict between the single-instance attributes in the templates, then the value in the last of the conflicting templates takes precedence. If there is a conflict between the single-instance attributes in the request and the single-instance attributes in a specified template, then the attribute values in the request take precedence. For multi-instance attributes, the union of attribute values is used when the attributes are specified more than once. 

Responses MAY contain attribute values that were not specified in the request, but have been implicitly set by the server. This information is specified with a Template-Attribute that contains one or more individual attributes.

For any operations that operate on Managed Objects already stored on the server, any archived object SHALL first be made available by a Recover operation (see Section 4.23) before they MAY be specified (i.e., as on-line objects).

4.1 Create

This operation requests the server to generate a new symmetric key as a Managed Cryptographic Object. This operation is not used to create a Template object (see Register operation, Section 4.3).

The request contains information about the type of object being created, and some of the attributes to be assigned to the object (e.g., Cryptographic Algorithm, Cryptographic Length, etc). This information MAY be specified by the names of Template objects that already exist.

The response contains the Unique Identifier of the created object. The server SHALL copy the Unique Identifier returned by this operation into the ID Placeholder variable. 

	Request Payload

	Object
	REQUIRED
	Description 

	Object Type, see 3.3
	Yes
	Determines the type of object to be created.

	Template-Attribute, see 2.1.8
	Yes
	Specifies desired object attributes using templates and/or individual attributes.


Table 121: Create Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Object Type, see 3.3
	Yes
	Type of object created.

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the newly created object.

	Template-Attribute, see 2.1.8
	No
	An OPTIONAL list of object attributes with values that were not specified in the request, but have been implicitly set by the key management server.


Table 122: Create Response Payload

Table 123 indicates which attributes SHALL be included in the Create request using the Template-Attribute object.

	Attribute
	REQUIRED

	Cryptographic Algorithm, see 3.4
	Yes

	Cryptographic Usage Mask, see 3.19
	Yes


Table 123: Create Attribute Requirements

4.2 Create Key Pair
This operation requests the server to generate a new public/private key pair and register the two corresponding new Managed Cryptographic Objects.

The request contains attributes to be assigned to the objects (e.g., Cryptographic Algorithm, Cryptographic Length, etc). Attributes and Template Names MAY be specified for both keys at the same time by specifying a Common Template-Attribute object in the request. Attributes not common to both keys (e.g., Name, Cryptographic Usage Mask) MAY be specified using the Private Key Template-Attribute and Public Key Template-Attribute objects in the request, which take precedence over the Common Template-Attribute object.

A Link Attribute is automatically created by the server for each object, pointing to the corresponding object. The response contains the Unique Identifiers of both created objects. The ID Placeholder value SHALL be set to the Unique Identifier of the Private Key.

	Request Payload

	Object
	REQUIRED
	Description 

	Common Template-Attribute, see 2.1.8
	No
	Specifies desired attributes in templates and/or as individual attributes that apply to both the Private and Public Key Objects.

	Private Key Template-Attribute, see 2.1.8
	No
	Specifies templates and/or attributes that apply to the Private Key Object. Order of precedence applies.

	Public Key Template-Attribute, see 2.1.8
	No
	Specifies templates and/or attributes that apply to the Public Key Object. Order of precedence applies.


Table 124: Create Key Pair Request Payload

For multi-instance attributes, the union of the values found in the templates and attributes of the Common, Private, and Public Key Template-Attribute is used. For single-instance attributes, the order of precedence is as follows:

1. attributes specified explicitly in the Private and Public Key Template-Attribute, then

2. attributes specified via templates in the Private and Public Key Template-Attribute, then

3. attributes specified explicitly in the Common Template-Attribute, then

4. attributes specified via templates in the Common Template-Attribute

If there are multiple templates in the Common, Private, or Public Key Template-Attribute, then the last value of the single-instance attribute that conflicts takes precedence.

	Response Payload

	Object
	REQUIRED
	Description 

	Private Key Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the newly created Private Key object.

	Public Key Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the newly created Public Key object.

	Private Key Template-Attribute, see 2.1.8 
	No
	An OPTIONAL list of attributes, for the Private Key Object, with values that were not specified in the request, but have been implicitly set by the key management server.

	Public Key Template-Attribute, see 2.1.8 
	No
	An OPTIONAL list of attributes, for the Public Key Object, with values that were not specified in the request, but have been implicitly set by the key management server.


Table 125: Create Key Pair Response Payload

Table 126 indicates which attributes SHALL be included in the Create Key pair request using Template-Attribute objects, as well as which attributes SHALL have the same value for the Private and Public Key.

	Attribute
	REQUIRED
	SHALL contain the same value for both Private and Public Key

	Cryptographic Algorithm, see 3.4
	Yes
	Yes

	Cryptographic Length, see 3.5
	No
	Yes

	Cryptographic Usage Mask, see 3.19
	Yes
	No

	Cryptographic Domain Parameters, see 3.7
	No
	Yes

	Cryptographic Parameters, see 3.6 
	No
	Yes


Table 126: Create Key Pair Attribute Requirements

Setting the same Cryptographic Length value for both private and public key does not imply that both keys are of equal length. For RSA, Cryptographic Length corresponds to the bit length of the Modulus. For DSA and DH algorithms, Cryptographic Length corresponds to the bit length of parameter P, and the bit length of Q is set separately in the Cryptographic Domain Parameters attribute. For ECDSA, ECDH, and ECMQV algorithms, Cryptographic Length corresponds to the bit length of parameter Q.

4.3 Register

This operation requests the server to register a Managed Object that was created by the client or obtained by the client through some other means, allowing the server to manage the object. The arguments in the request are similar to those in the Create operation, but also MAY contain the object itself for storage by the server. Optionally, objects that are not to be stored by the key management system MAY be omitted from the request (e.g., private keys).

The request contains information about the type of object being registered and some of the attributes to be assigned to the object (e.g., Cryptographic Algorithm, Cryptographic Length, etc). This information MAY be specified by the use of a Template-Attribute object.

The response contains the Unique Identifier assigned by the server to the registered object. The server SHALL copy the Unique Identifier returned by this operations into the ID Placeholder variable. The Initial Date attribute of the object SHALL be set to the current time.

	Request Payload

	Object
	REQUIRED
	Description 

	Object Type, see 3.3
	Yes
	Determines the type of object being registered.

	Template-Attribute, see 2.1.8
	Yes
	Specifies desired object attributes using templates and/or individual attributes.

	Certificate, Symmetric Key, Private Key, Public Key, Split Key, Template Secret Data or Opaque Object, see 2.2
	No
	The object being registered. The object and attributes MAY be wrapped. Some objects (e.g., Private Keys), MAY be omitted from the request.


Table 127: Register Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the newly registered object.

	Template-Attribute, see 2.1.8
	No
	An OPTIONAL list of object attributes with values that were not specified in the request, but have been implicitly set by the key management server.


Table 128: Register Response Payload

If a Managed Cryptographic Object is registered, then the following attributes SHALL be included in the Register request, either explicitly, or via specification of a template that contains the attribute.

	Attribute
	REQUIRED

	Cryptographic Algorithm, see 3.4
	Yes, MAY be omitted only if this information is encapsulated in the Key Block. Does not apply to Secret Data. If present, then Cryptographic Length below SHALL also be present. 

	Cryptographic Length, see 3.5

	Yes, MAY be omitted only if this information is encapsulated in the Key Block. Does not apply to Secret Data. If present, then Cryptographic Algorithm above SHALL also be present. 

	Certificate Length, see 3.9
	Yes. Only applies to Certificates.

	Cryptographic Usage Mask, see 3.19
	Yes.

	Digital Signature Algorithm, see 3.16
	Yes, MAY be omitted only if this information is encapsulated in the Certificate object. Only applies to Certificates.


Table 129: Register Attribute Requirements

4.4 Re-key
This request is used to generate a replacement key for an existing symmetric key. It is analogous to the Create operation, except that attributes of the replacement key are copied from the existing key, with the exception of the attributes listed in Table 131. 

As the replacement key takes over the name attribute of the existing key, Re-key SHOULD only be performed once on a given key.

The server SHALL copy the Unique Identifier of the replacement key returned by this operation into the ID Placeholder variable.

As a result of Re-key, the Link attribute of the existing key is set to point to the replacement key and vice versa.

An Offset MAY be used to indicate the difference between the Initialization Date and the Activation Date of the replacement key. If no Offset is specified, the Activation Date, Process Start Date, Protect Stop Date and Deactivation Date values are copied from the existing key. If Offset is set and dates exist for the existing key, then the dates of the replacement key SHALL be set based on the dates of the existing key as follows:

	Attribute in Existing Key
	Attribute in Replacement Key

	Initial Date (IT1)
	Initial Date (IT2) > IT1

	Activation Date (AT1)
	Activation Date (AT2) =  IT2+ Offset

	Process Start Date (CT1)
	Process Start Date = CT1+(AT2- AT1)

	Protect Stop Date (TT1)
	Protect Stop Date = TT1+(AT2- AT1)

	Deactivation Date (DT1)
	Deactivation Date = DT1+(AT2- AT1)


Table 130: Computing New Dates from Offset during Re-key

Attributes that are not copied from the existing key and are handled in a specific way for the replacement key are:

	Attribute
	Action

	Initial Date, see 3.23
	Set to the current time

	Destroy Date, see 3.28
	Not set

	Compromise Occurrence Date, see 3.29
	Not set

	Compromise Date, see 3.30
	Not set

	Revocation Reason, see 3.31
	Not set

	Unique Identifier, see 3.1
	New value generated

	Usage Limits, see 3.21
	The Total value is copied from the existing key, and the Count value is set to the Total value.

	Name, see 3.2
	Set to the name(s) of the existing key; all name attributes are removed from the existing key.

	State, see 3.22
	Set based on attributes values, such as dates, as shown in Table 130

	Digest, see 3.16
	Recomputed from the replacement key value

	Link, see 3.35
	Set to point to the existing key as the replaced key

	Last Change Date, see 3.38
	Set to current time


Table 131: Re-key Attribute Requirements

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the existing Symmetric Key being re-keyed. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.

	Offset
	No
	An Interval object indicating the difference between the Initialization Date and the Activation Date of the replacement key to be created.

	Template-Attribute, see 2.1.8
	No
	Specifies desired object attributes using templates and/or individual attributes.


Table 132: Re-key Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the newly-created replacement Symmetric Key.

	Template-Attribute, see 2.1.8
	No
	An OPTIONAL list of object attributes with values that were not specified in the request, but have been implicitly set by the key management server.


Table 133: Re-key Response Payload

4.5 Re-key Key Pair

This request is used to generate a replacement key pair for an existing public/private key pair.  It is analogous to the Create Key Pair operation, except that attributes of the replacement key pair are copied from the existing key pair, with the exception of the attributes listed in Table 135.

As the replacement of the key pair takes over the name attribute for the existing public/private key pair, Re-key Key Pair SHOULD only be performed once on a given key pair.

As a result of the Re-key Key Pair operation the Link Attribute for both the existing public key and private key objects are updated to point to the replacement public and private key, respectively, and vice-versa .

The server SHALL copy the Private Key Unique Identifier of the replacement private key returned by this operation into the ID Placeholder variable. 

An Offset MAY be used to indicate the difference between the Initialization Date and Activation Date of the replacement key pair.  If the Offset is set and the dates exist for the existing key pair, then the dates of the replacement key pair SHALL be set based on the dates of the existing key pair as follows:

	Attribute in Existing Key Pair
	Attribute in Replacement Key Pair

	Initial Date (IT1)
	Initial Date (IT2) > IT1

	Activation Date (AT1)
	Activation Date (AT2) =  IT2+ Offset

	Deactivation Date (DT1)
	Deactivation Date = DT1+(AT2- AT1)


Table 134: Computing New Dates from Offset during Re-key Key Pair

Attributes that are not copied from the existing key pair and which are handled in a specific way are:

	Attribute
	Action

	Private Key Unique Identifier, see 3.1 
	New value generated

	Public Key Unique Identifier, see 3.1
	New value generated

	Name, see 3.2
	Set to the name(s) of the existing public/private keys; all name attributes of the existing public/private keys are removed.

	Digest, see 3.17
	Recomputed for both replacement public and private keys from the new public and private key values

	Usage Limits, see 3.21
	The Total Bytes/Total Objects value is copied from the existing key pair, while the Byte Count/Object Count values are set to the Total Bytes/Total Objects.

	State, see 3.22
	Set based on attributes values, such as dates, as shown in Table xx

	Initial Date, see 3.23
	Set to the current time

	Destroy Date, see 3.28
	Not set

	Compromise Occurrence Date, see 3.29
	Not set

	Compromise Date, see 3.30
	Not set

	Revocation Reason, see 3.31
	Not set

	Link, see 3.35
	Set to point to the existing public/private keys as the replaced public/private keys

	Last Change Date, see 3.38
	Set to current time


Table 135: Re-key Key Pair Attribute Requirements

	Request Payload

	Object
	REQUIRED
	Description 

	Private Key Unique Identifier, see 3.1
	No
	Determines the existing Asymmetric key pair to be re-keyed.  If omitted, then the ID Placeholder is substituted by the server.

	Offset
	No
	An Interval object indicating the difference between the Initialization date and the Activation Date of the replacement key pair to be created.

	Common Template-Attribute, see 2.1.8
	No
	Specifies desired attributes in templates and/or as individual attributes that apply to both the Private and Public Key Objects.

	Private Key Template-Attribute, see 2.1.8
	No
	Specifies templates and/or attributes that apply to the Private Key Object. Order of precedence applies.

	Public Key Template-Attribute, see 2.1.8
	No
	Specifies templates and/or attributes that apply to the Public Key Object. Order of precedence applies.


Table 136: Re-key Key Pair Request Payload

For multi-instance attributes, the union of the values found in the templates and attributes of the Common, Private, and Public Key Template-Attribute is used. For single-instance attributes, the order of precedence is as follows:

1. attributes specified explicitly in the Private and Public Key Template-Attribute, then

2. attributes specified via templates in the Private and Public Key Template-Attribute, then

3. attributes specified explicitly in the Common Template-Attribute, then

4. attributes specified via templates in the Common Template-Attribute

If there are multiple templates in the Common, Private, or Public Key Template-Attribute, then the subsequent value of the single-instance attribute takes precedence.

	Response Payload

	Object
	REQUIRED
	Description 

	Private Key Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the newly created replacement Private Key object.

	Public Key Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the newly created replacement Public Key object.

	Private Key Template-Attribute, see 2.1.8
	No
	An OPTIONAL list of attributes, for the Private Key Object, with values that were not specified in the request, but have been implicitly set by the key management server.

	Public Key Template-Attribute, see 2.1.8
	No
	An OPTIONAL list of attributes, for the Public Key Object, with values that were not specified in the request, but have been implicitly set by the key management server.


Table 137: Re-key Key Pair Response Payload

4.6 Derive Key 
This request is used to derive a symmetric key or Secret Data object from a key or secret data that is already known to the key management system. The request SHALL only apply to Managed Cryptographic Objects that have the Derive Key bit set in the Cryptographic Usage Mask attribute of the specified Managed Object (i.e., are able to be used for key derivation). If the operation is issued for an object that does not have this bit set, then the server SHALL return an error. For all derivation methods, the client SHALL specify the desired length of the derived key or Secret Data object using the Cryptographic Length attribute. If a key is created, then the client SHALL specify both its Cryptographic Length and Cryptographic Algorithm. If the specified length exceeds the output of the derivation method, then the server SHALL return an error. Clients MAY derive multiple keys and IVs by requesting the creation of a Secret Data object and specifying a Cryptographic Length that is the total length of the derived object. The length SHALL NOT exceed the length of the output returned by the chosen derivation method.

The fields in the request specify the Unique Identifiers of the keys or Secret Data objects to be used for derivation (e.g., some derivation methods MAY require multiple keys or Secret Data objects to derive the result), the method to be used to perform the derivation, and any parameters needed by the specified method. The method is specified as an enumerated value. Currently defined derivation methods include:

· PBKDF2 – This method is used to derive a symmetric key from a password or pass phrase. The PBKDF2 method is published in [PKCS#5] and [RFC2898].

· HASH – This method derives a key by computing a hash over the derivation key or the derivation data.

· HMAC – This method derives a key by computing an HMAC over the derivation data.

· ENCRYPT – This method derives a key by encrypting the derivation data. 

· NIST800-108-C – This method derives a key by computing the KDF in Counter Mode as specified in [SP800-108].

· NIST800-108-F – This method derives a key by computing the KDF in Feedback Mode as specified in [SP800-108].

· NIST800-108-DPI – This method derives a key by computing the KDF in Double-Pipeline Iteration Mode as specified in [SP800-108].

· Extensions

The server SHALL perform the derivation function, and then register the derived object as a new Managed Object, returning the new Unique Identifier for the new object in the response. The server SHALL copy the Unique Identifier returned by this operation into the ID Placeholder variable. 

As a result of Derive Key, the Link attributes (i.e., Derived Key Link in the objects from which the key is derived, and the Derivation Base Object Link in the derived key) of all objects involved SHALL be set to point to the corresponding objects.
	Request Payload

	Object
	REQUIRED
	Description 

	Object Type, see 3.3
	Yes
	Determines the type of object to be created.

	Unique Identifier, see 3.1
	Yes. MAY be repeated
	Determines the object or objects to be used to derive a new key. At most, two identifiers MAY be specified: one for the derivation key and another for the secret data. Note that the current value of the ID Placeholder SHALL NOT be used in place of a Unique Identifier in this operation.

	Derivation Method, see 9.1.3.2.21
	Yes
	An Enumeration object specifying the method to be used to derive the new key.

	Derivation Parameters, see below
	Yes
	A Structure object containing the parameters needed by the specified derivation method.

	Template-Attribute, see 2.1.8
	Yes
	Specifies desired object attributes using templates and/or individual attributes; the length and algorithm SHALL always be specified for the creation of a symmetric key. 


Table 138: Derive Key Request Payload
	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the newly derived key or Secret Data object.

	Template-Attribute, see 2.1.8
	No
	An OPTIONAL list of object attributes with values that were not specified in the request, but have been implicitly set by the key management server.


Table 139: Derive Key Response Payload

The Derivation Parameters for all derivation methods consist of the following parameters, except PBKDF2, which requires two additional parameters.

	Object
	Encoding
	REQUIRED

	Derivation Parameters
	Structure 
	Yes

	Cryptographic Parameters, see 3.6
	Structure
	Yes, except for HMAC derivation keys.

	Initialization Vector
	Byte String
	No, depends on PRF and mode of operation: empty IV is assumed if not provided.

	Derivation Data
	Byte String
	Yes, unless the Unique Identifier of a Secret Data object is provided.


Table 140: Derivation Parameters Structure (Except PBKDF2)

Cryptographic Parameters identify the Pseudorandom Function (PRF) or the mode of operation of the PRF (e.g., if a key is to be derived using the HASH derivation method, then clients are REQUIRED to indicate the hash algorithm inside Cryptographic Parameters; similarly, if a key is to be derived using AES in CBC mode, then clients are REQUIRED to indicate the Block Cipher Mode). The server SHALL verify that the specified mode matches one of the instances of Cryptographic Parameters set for the corresponding key. If Cryptographic Parameters are omitted, then the server SHALL select the Cryptographic Parameters with the lowest Attribute Index for the specified key. If the corresponding key does not have any Cryptographic Parameters attribute, or if no match is found, then an error is returned.

If a key is derived using HMAC, then the attributes of the derivation key provide enough information about the PRF and the Cryptographic Parameters are ignored.

Derivation Data is either the data to be encrypted, hashed, or HMACed. For the NIST SP 800-108 methods [SP800-108], Derivation Data is Label||{0x00}||Context, where the all-zero byte is OPTIONAL. 

Most derivation methods (e.g., ENCRYPT) require a derivation key and the derivation data to be used. The HASH derivation method requires either a derivation key or derivation data. Derivation data MAY either be explicitly provided by the client with the Derivation Data field or implicitly provided by providing the Unique Identifier of a Secret Data object. If both are provided, then an error SHALL be returned.

The PBKDF2 derivation method requires two additional parameters:

	Object
	Encoding
	REQUIRED

	Derivation Parameters
	Structure 
	Yes

	Cryptographic Parameters, see 3.6
	Structure
	No, depends on the PRF

	Initialization Vector
	Byte String
	No, depends on the PRF (if different than those defined in [PKCS#5]) and mode of operation: an empty IV is assumed if not provided.

	Derivation Data
	Byte String
	Yes, unless the Unique Identifier of a Secret Data object is provided.

	Salt
	Byte String
	Yes

	Iteration Count
	Integer
	Yes


Table 141: PBKDF2 Derivation Parameters Structure

4.7 Certify
This request is used to generate a Certificate object for a public key. This request supports certification of a new public key as well as certification of a public key that has already been certified (i.e., certificate update). Only a single certificate SHALL be requested at a time. Server support for this operation is OPTIONAL, as it requires that the key management system have access to a certification authority (CA). If the server does not support this operation, an error SHALL be returned.

The Certificate Request object MAY be omitted, in which case the public key for which a Certificate object is generated SHALL be specified by its Unique Identifier only. If the Certificate Request Type and the Certificate Request objects are omitted from the request, then the Certificate Type SHALL be specified using the Template-Attribute object.

The Certificate Request is passed as a Byte String, which allows multiple certificate request types for X.509 certificates (e.g., PKCS#10, PEM, etc) or PGP certificates to be submitted to the server.

The generated Certificate object whose Unique Identifier is returned MAY be obtained by the client via a Get operation in the same batch, using the ID Placeholder mechanism.

As a result of Certify, the Link attribute of the Public Key and of the generated certificate SHALL be set to point at each other.

The server SHALL copy the Unique Identifier of the generated certificate returned by this operation into the ID Placeholder variable.

If the information in the Certificate Request conflicts with the attributes specified in the Template-Attribute, then the information in the Certificate Request takes precedence.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	The Unique Identifier of the Public Key being certified. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.

	Certificate Request Type, see 9.1.3.2.22
	No
	An Enumeration object specifying the type of certificate request. It is REQUIRED if the Certificate Request is present.

	Certificate Request
	No
	A Byte String object with the certificate request.

	Template-Attribute, see 2.1.8
	No
	Specifies desired object attributes using templates and/or individual attributes.


Table 142: Certify Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the generated Certificate object.

	Template-Attribute, see 2.1.8
	No
	An OPTIONAL list of object attributes with values that were not specified in the request, but have been implicitly set by the key management server.


Table 143: Certify Response Payload

4.8 Re-certify
This request is used to renew an existing certificate for the same key pair. Only a single certificate SHALL be renewed at a time. Server support for this operation is OPTIONAL, as it requires that the key management system to have access to a certification authority (CA). If the server does not support this operation, an error SHALL be returned.

The Certificate Request object MAY be omitted, in which case the public key for which a Certificate object is generated SHALL be specified by its Unique Identifier only. If the Certificate Request Type and the Certificate Request objects are omitted and the Certificate Type is not specified using the Template-Attribute object in the request, then the Certificate Type of the new certificate SHALL be the same as that of the existing certificate.

The Certificate Request is passed as a Byte String, which allows multiple certificate request types for X.509 certificates (e.g., PKCS#10, PEM, etc) or PGP certificates to be submitted to the server.

The server SHALL copy the Unique Identifier of the new certificate returned by this operation into the ID Placeholder variable. 

If the information in the Certificate Request field in the request conflicts with the attributes specified in the Template-Attribute, then the information in the Certificate Request takes precedence.

As the new certificate takes over the name attribute of the existing certificate, Re-certify SHOULD only be performed once on a given (existing) certificate. 

The Link attribute of the existing certificate and of the new certificate are set to point at each other. The Link attribute of the Public Key is changed to point to the new certificate. 

An Offset MAY be used to indicate the difference between the Initialization Date and the Activation Date of the new certificate. If Offset is set, then the dates of the new certificate SHALL be set based on the dates of the existing certificate (if such dates exist) as follows:

	Attribute in Existing Certificate
	Attribute in New Certificate

	Initial Date (IT1)
	Initial Date (IT2) > IT1

	Activation Date (AT1)
	Activation Date (AT2) =  IT2+ Offset

	Deactivation Date (DT1)
	Deactivation Date = DT1+(AT2- AT1)


Table 144: Computing New Dates from Offset during Re-certify

Attributes that are not copied from the existing certificate and that are handled in a specific way for the new certificate are:

	Attribute
	Action

	Initial Date, see 3.23
	Set to current time

	Destroy Date, see 3.28
	Not set

	Revocation Reason, see 3.31
	Not set

	Unique Identifier, see 3.2
	New value generated

	Name, see 3.2
	Set to the name(s) of the existing certificate; all name attributes are removed from the existing certificate.

	State, see 3.22
	Set based on attributes values, such as dates, as shown in Table 144

	Digest, see 3.16
	Recomputed from the new certificate value.

	Link, see 3.35
	Set to point to the existing certificate as the replaced certificate.

	Last Change Date, see 3.38
	Set to current time


Table 145: Re-certify Attribute Requirements

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	The Unique Identifier of the Certificate being renewed. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier. 

	Certificate Request Type, see 9.1.3.2.22
	No
	An Enumeration object specifying the type of certificate request. It is REQUIRED if the Certificate Request is present.

	Certificate Request
	No
	A Byte String object with the certificate request.

	Offset
	No
	An Interval object indicating the difference between the Initial Date of the new certificate and the Activation Date of the new certificate.

	Template-Attribute, see 2.1.8
	No
	Specifies desired object attributes using templates and/or individual attributes.


Table 146: Re-certify Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the new certificate.

	Template-Attribute, see 2.1.8
	No
	An OPTIONAL list of object attributes with values that were not specified in the request, but have been implicitly set by the key management server.


Table 147: Re-certify Response Payload

4.9 Locate
This operation requests that the server search for one or more Managed Objects depending on the attributes specified in the request. All attributes are allowed to be used. However, Attribute Index values SHOULD NOT be specified in the request. Attribute Index values that are provided SHALL be ignored by the Locate operation. The request MAY also contain a Maximum Items field, which specifies the maximum number of objects to be returned. If the Maximum Items field is omitted, then the server MAY return all objects matched, or MAY impose an internal maximum limit due to resource limitations.

If more than one object satisfies the identification criteria specified in the request, then the response MAY contain Unique Identifiers for multiple Managed Objects. Returned objects SHALL match all of the attributes in the request. If no objects match, then an empty response payload is returned. If no attribute is specified in the request, any object SHALL be deemed to match the Locate request.

The server returns a list of Unique Identifiers of the found objects, which then MAY be retrieved using the Get operation. If the objects are archived, then the Recover and Get operations are REQUIRED to be used to obtain those objects. If a single Unique Identifier is returned to the client, then the server SHALL copy the Unique Identifier returned by this operation into the ID Placeholder variable.  If the Locate operation matches more than one object, and the Maximum Items value is omitted in the request, or is set to a value larger than one, then the server SHALL empty the ID Placeholder, causing any subsequent operations that are batched with the Locate, and which do not specify a Unique Identifier explicitly, to fail. This ensures that these batched operations SHALL proceed only if a single object is returned by Locate.

Wild-cards or regular expressions (defined, e.g., in [ISO/IEC 9945-2]) MAY be supported by specific key management system implementations for matching attribute fields when the field type is a Text String or a Byte String.

The Date attributes in the Locate request (e.g., Initial Date, Activation Date, etc) are used to specify a time or a time range for the search. If a single instance of a given Date attribute is used in the request (e.g., the Activation Date), then objects with the same Date attribute are considered to be matching candidate objects. If two instances of the same Date attribute are used (i.e., with two different values specifying a range), then objects for which the Date attribute is inside or at a limit of the range are considered to be matching candidate objects. If a Date attribute is set to its largest possible value, then it is equivalent to an undefined attribute. The KMIP Usage Guide [KMIP-UG] provides examples.

When the Cryptographic Usage Mask attribute is specified in the request, candidate objects are compared against this field via an operation that consists of a logical AND of the requested mask with the mask in the candidate object, and then a comparison of the resulting value with the requested mask. For example, if the request contains a mask value of 10001100010000, and a candidate object mask contains 10000100010000, then the logical AND of the two masks is 10000100010000, which is compared against the mask value in the request (10001100010000) and the match fails. This means that a matching candidate object has all of the bits set in its mask that are set in the requested mask, but MAY have additional bits set.

When the Usage Limits attribute is specified in the request, matching candidate objects SHALL have an Usage Limits Count and Usage Limits Total equal to or larger than the values specified in the request.

When an attribute that is defined as a structure is specified, all of the structure fields are not REQUIRED to be specified. For instance, for the Link attribute, if the Linked Object Identifier value is specified without the Link Type value, then matching candidate objects have the Linked Object Identifier as specified, irrespective of their Link Type.

When the Object Group attribute and the Object Group Member flag are specified in the request, and the value specified for Object Group Member is ‘Group Member Fresh’, matching candidate objects SHALL be fresh objects (see 3.34) from the object group. If there are no more fresh objects in the group, the server MAY choose to generate a new object on the fly based on server policy. If the value specified for Object Group Member is ‘Group Member Default’, the server locates the default object as defined by server policy.

The Storage Status Mask field (see Section 9.1.3.3.2) is used to indicate whether only on-line objects, only archived objects, or both on-line and archived objects are to be searched. Note that the server MAY store attributes of archived objects in order to expedite Locate operations that search through archived objects.

	Request Payload

	Object
	REQUIRED
	Description 

	Maximum Items
	No
	An Integer object that indicates the maximum number of object identifiers the server MAY return.

	Storage Status Mask, see 9.1.3.3.2
	No
	An Integer object (used as a bit mask) that indicates whether only on-line objects, only archived objects, or both on-line and archived objects are to be searched. If omitted, then on-line only is assumed.

	Object Group Member, see 9.1.3.2.33
	No
	An Enumeration object that indicates the object group member type.

	Attribute, see 3
	No, MAY be repeated
	Specifies an attribute and its value(s) that are REQUIRED to match those in a candidate object (according to the matching rules defined above).


Table 148: Locate Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No, MAY be repeated
	The Unique Identifier of the located objects.


Table 149: Locate Response Payload

4.10 Check
This operation requests that the server check for the use of a Managed Object according to values specified in the request. This operation SHOULD only be used when placed in a batched set of operations, usually following a Locate, Create, Create Pair, Derive Key, Certify, Re-Certify, Re-key or Re-key Key Pair operation, and followed by a Get operation.

If the server determines that the client is allowed to use the object according to the specified attributes, then the server returns the Unique Identifier of the object.

If the server determines that the client is not allowed to use the object according to the specified attributes, then the server empties the ID Placeholder and does not return the Unique Identifier, and the operation returns the set of attributes specified in the request that caused the server policy denial. The only attributes returned are those that resulted in the server determining that the client is not allowed to use the object, thus allowing the client to determine how to proceed.  

In a batch containing Check operation the Batch Order Option SHOULD be set to true. Only STOP or UNDO Batch Error Continuation Option values SHOULD be used by the client in such a batch.Additional attributes that MAY be specified in the request are limited to:

· Usage Limits Count (see Section 3.21) – The request MAY contain the usage amount that the client deems necessary to complete its needed function. This does not require that any subsequent Get Usage Allocation operations request this amount. It only means that the client is ensuring that the amount specified is available.

· Cryptographic Usage Mask – This is used to specify the cryptographic operations for which the client intends to use the object (see Section 3.19). This allows the server to determine if the policy allows this client to perform these operations with the object. Note that this MAY be a different value from the one specified in a Locate operation that precedes this operation. Locate, for example, MAY specify a Cryptographic Usage Mask requesting a key that MAY be used for both Encryption and Decryption, but the value in the Check operation MAY specify that the client is only using the key for Encryption at this time.

· Lease Time – This specifies a desired lease time (see Section 3.20). The client MAY use this to determine if the server allows the client to use the object with the specified lease or longer. Including this attribute in the Check operation does not actually cause the server to grant a lease, but only indicates that the requested lease time value MAY be granted if requested by a subsequent, batched, Obtain Lease operation.

Note that these objects are not encoded in an Attribute structure as shown in Section 2.1.1
	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object being checked. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.

	Usage Limits Count, see 3.21
	No
	Specifies the number of Usage Limits Units to be protected to be checked against server policy.

	Cryptographic Usage Mask, see 3.19
	No
	Specifies the Cryptographic Usage for which the client intends to use the object.

	Lease Time, see 3.20
	No
	Specifies a Lease Time value that the Client is asking the server to validate against server policy.


Table 150: Check Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes, unless a failure,
	The Unique Identifier of the object.

	Usage Limits Count, see 3.21
	No
	Returned by the Server if the Usage Limits value specified in the Request Payload is larger than the value that the server policy allows.

	Cryptographic Usage Mask, see 3.19
	No
	Returned by the Server if the Cryptographic Usage Mask specified in the Request Payload is rejected by the server for policy violation.

	Lease Time, see 3.20
	No
	Returned by the Server if the Lease Time value in the Request Payload is larger than a valid Lease Time that the server MAY grant.


Table 151: Check Response Payload

4.11 Get
This operation requests that the server returns the Managed Object specified by its Unique Identifier. 

Only a single object is returned. The response contains the Unique Identifier of the object, along with the object itself, which MAY be wrapped using a wrapping key as specified in the request.

The following key format capabilities SHALL be assumed by the client restrictions apply when the client  requests the server to return an object in a particular format:

· If a client registered a key in a given format, the server SHALL be able to return the key during the Get operation in the same format that was used when the key was registered. 

· Any other format conversion MAY optionally be supported by the server.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object being requested. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.

	Key Format Type, see 9.1.3.2.3
	No
	Determines the key format type to be returned.

	Key Compression Type, see 9.1.3.2.2
	No
	Determines the compression method for elliptic curve public keys.

	Key Wrapping Specification, see 2.1.6
	No
	Specifies keys and other information for wrapping the returned object. This field SHALL NOT be specified if the requested object is a Template.


Table 152: Get Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Object Type, see 3.3
	Yes
	Type of object. 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.

	Certificate, Symmetric Key, Private Key, Public Key, Split Key, Template, Secret Data, or Opaque Object, see 2.2
	Yes
	The cryptographic object being returned.


Table 153: Get Response Payload

4.12 Get Attributes
This operation requests one or more attributes of a Managed Object. The object is specified by its Unique Identifier and the attributes are specified by their name in the request. If a specified attribute has multiple instances, then all instances are returned. If a specified attribute does not exist (i.e., has no value), then it SHALL NOT be present in the returned response. If no requested attributes exist, then the response SHALL consist only of the Unique Identifier. If no attribute name is specified in the request, all attributes SHALL be deemed to match the Get Attributes request. The same attribute name SHALL NOT be present more than once in a request.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object whose attributes are being requested. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.  

	Attribute Name, see 2.1.1
	No, MAY be repeated
	Specifies a desired attribute of the object. 


Table 154: Get Attributes Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.

	Attribute, see 2.1.1 
	No, MAY be repeated
	The requested attribute for the object. 


Table 155: Get Attributes Response Payload

4.13 Get Attribute List
This operation requests a list of the attribute names associated with a Managed Object. The object is specified by its Unique Identifier.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object whose attribute names are being requested. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.  


Table 156: Get Attribute List Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.

	Attribute Name, see 2.1.1
	Yes, MAY be repeated
	The names of the available attributes for the object. 


Table 157: Get Attribute List Response Payload

4.14 Add Attribute
This request adds a new attribute instance to a Managed Object and sets its value. The request contains the Unique Identifier of the Managed Object to which the attribute pertains, along with the attribute name and value. For single-instance attributes, this is how the attribute value is created. For multi-instance attributes, this is how the first and subsequent values are created. Existing attribute values SHALL only be changed by the Modify Attribute operation. Read-Only attributes SHALL NOT be added using the Add Attribute operation. The Attribute Index SHALL NOT be specified in the request. The response returns a new Attribute Index and the Attribute Index MAY be omitted if the index of the added attribute instance is 0. Multiple Add Attribute requests MAY be included in a single batched request to add multiple attributes.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	The Unique Identifier of the object. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.  

	Attribute, see 2.1.1
	Yes
	Specifies the attribute to be added for the object. 


Table 158: Add Attribute Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.

	Attribute, see 2.1.1 
	Yes
	The added attribute.


Table 159: Add Attribute Response Payload

4.15 Modify Attribute
This request modifies the value of an existing attribute instance associated with a Managed Object. The request contains the Unique Identifier of the Managed Object whose attribute is to be modified, and the attribute name, the optional Attribute Index, and the new value. If no Attribute Index is specified in the request, then the Attribute Index SHALL be assumed to be 0. Only existing attributes MAY be changed via this operation. New attributes SHALL only be added by the Add Attribute operation.Only the specified instance of the attribute SHALL be modified. Specifying an Attribute Index for which there exists no Attribute Value SHALL result in an error. The response returns the modified Attribute (new value) and the Attribute Index MAY be omitted if the index of the modified attribute instance is 0. Multiple Modify Attribute requests MAY be included in a single batched request to modify multiple attributes.
	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	The Unique Identifier of the object. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier. 

	Attribute, see 2.1.1
	Yes
	Specifies the attribute of the object to be modified.


Table 160: Modify Attribute Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.

	Attribute, see 2.1.1 
	Yes
	The modified attribute with the new value.


Table 161: Modify Attribute Response Payload

4.16 Delete Attribute
This request deletes an attribute associated with a Managed Object. The request contains the Unique Identifier of the Managed Object whose attribute is to be deleted, the attribute name, and the optional Attribute Index of the attribute. If no Attribute Index is specified in the request, then the Attribute Index SHALL be assumed to be 0. Attributes that are always required to have a value SHALL never be deleted by this operation. Attempting to delete a non-existent attribute or specifying an Attribute Index for which there exists no Attribute Value SHALL result in an error. The response returns the deleted Attribute and the Attribute Index MAY be omitted if the index of the deleted attribute instance is 0. Multiple Delete Attribute requests MAY be included in a single batched request to delete multiple attributes.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object whose attributes are being deleted. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.  

	Attribute Name, see 2.1.1
	Yes
	Specifies the name of the attribute to be deleted.

	Attribute Index, see 2.1.1
	No
	Specifies the Index of the Attribute. 


Table 162: Delete Attribute Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.

	Attribute, see 2.1.1
	Yes
	The deleted attribute.


Table 163: Delete Attribute Response Payload

4.17 Obtain Lease
This request is used to obtain a new Lease Time for a specified Managed Object. The Lease Time is an interval value that determines when the client's internal cache of information about the object expires and needs to be renewed. If the returned value of the lease time is zero, then the server is indicating that no lease interval is effective, and the client MAY use the object without any lease time limit.  If a client's lease expires, then the client SHALL NOT use the associated cryptographic object until a new lease is obtained. If the server determines that a new lease SHALL NOT be issued for the specified cryptographic object, then the server SHALL respond to the Obtain Lease request with an error. 

The response payload for the operation contains the current value of the Last Change Date attribute for the object. This MAY be used by the client to determine if any of the attributes cached by the client need to be refreshed, by comparing this time to the time when the attributes were previously obtained.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object for which the lease is being obtained. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier. 


Table 164: Obtain Lease Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.

	Lease Time, see 3.20
	Yes
	An interval (in seconds) that specifies the amount of time that the object MAY be used until a new lease needs to be obtained.

	Last Change Date, see 3.38
	Yes
	The date and time indicating when the latest change was made to the contents or any attribute of the specified object.


Table 165: Obtain Lease Response Payload

4.18 Get Usage Allocation
This request is used to obtain an allocation from the current Usage Limits value to allow the client to use the Managed Cryptographic Object for applying cryptographic protection. The allocation only applies to Managed Cryptographic Objects that are able to be used for applying protection (e.g., symmetric keys for encryption, private keys for signing, etc.) and is only valid if the Managed Cryptographic Object has a Usage Limits attribute. Usage for processing cryptographically-protected information (e.g., decryption, verification, etc.) is not limited and is not able to be allocated. A Managed Cryptographic Object that has a Usage Limits attribute SHALL NOT be used by a client for applying cryptographic protection unless an allocation has been obtained using this operation. The operation SHALL only be requested during the time that protection is enabled for these objects (i.e., after the Activation Date and before the Protect Stop Date). If the operation is requested for an object that has no Usage Limits attribute, or is not an object that MAY be used for applying cryptographic protection, then the server SHALL return an error. 

The field in the request specifies the number of units that the client needs to protect. If the requested amount is not available or if the Managed Object is not able to be used for applying cryptographic protection at this time, then the server SHALL return an error. The server SHALL assume that the entire allocated amount is going to be consumed. Once the entire allocated amount has been consumed, the client SHALL NOT continue to use the Managed Cryptographic Object for applying cryptographic protection until a new allocation is obtained.
	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object whose usage allocation is being requested. If omitted, then the ID Placeholder is substituted by the server.

	Usage Limits Count, see Usage Limits Count field in 3.21
	Yes
	The number of Usage Limits Units to be protected.


Table 166: Get Usage Allocation Request Payload
	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.


Table 167: Get Usage Allocation Response Payload

4.19 Activate
This request is used to activate a Managed Cryptographic Object. The request SHALL NOT specify a Template object. The operation SHALL only be performed on an object in the Pre-Active state and has the effect of changing its state to Active, and setting its Activation Date to the current date and time.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object being activated. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.


Table 168: Activate Request Payload 

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.


Table 169: Activate Response Payload

4.20 Revoke
This request is used to revoke a Managed Cryptographic Object or an Opaque Object. The request SHALL NOT specify a Template object. The request contains a reason for the revocation (e.g., “key compromise”, “cessation of operation”, etc). Special authentication and authorization SHOULD be enforced to perform this request (see [KMIP-UG]). Only the object creator or an authorized security officer SHOULD be allowed to issue this request. The operation has one of two effects. If the revocation reason is “key compromise”, then the object is placed into the “compromised” state, and the Compromise Date attribute is set to the current date and time. Otherwise, the object is placed into the “deactivated” state, and the Deactivation Date attribute is set to the current date and time.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object being revoked. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.

	Revocation Reason, see 3.31
	Yes
	Specifies the reason for revocation.

	Compromise Occurrence Date, see 3.29
	No
	SHALL be specified if the Revocation Reason is 'compromised'.


Table 170: Revoke Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.


Table 171: Revoke Response Payload

4.21 Destroy
This request is used to indicate to the server that the key material for the specified Managed Object SHALL be destroyed. The meta-data for the key material MAY be retained by the server (e.g., used to ensure that an expired or revoked private signing key is no longer available). Special authentication and authorization SHOULD be enforced to perform this request (see [KMIP-UG]). Only the object creator or an authorized security officer SHOULD be allowed to issue this request. If the Unique Identifier specifies a Template object, then the object itself, including all meta-data, SHALL be destroyed. Cryptographic Objects MAY only be destroyed if they are in either Pre-Active or Deactivated state. A Cryptographic  Object in the Active state MAY be destroyed if the server sets the Deactivation date (the state of the object transitions to Deactivated) prior to destroying the object.
	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object being destroyed. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.


Table 172: Destroy Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.


Table 173: Destroy Response Payload

4.22 Archive
This request is used to specify that a Managed Object MAY be archived. The actual time when the object is archived, the location of the archive, or level of archive hierarchy is determined by the policies within the key management system and is not specified by the client. The request contains the unique identifier of the Managed Object. Special authentication and authorization SHOULD be enforced to perform this request (see [KMIP-UG]). Only the object creator or an authorized security officer SHOULD be allowed to issue this request. This request is only an indication from a client that from its point of view it is possible for the key management system to archive the object.

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object being archived. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.


Table 174: Archive Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.


Table 175: Archive Response Payload

4.23 Recover
This request is used to obtain access to a Managed Object that has been archived. This request MAY require asynchronous polling to obtain the response due to delays caused by retrieving the object from the archive. Once the response is received, the object is now on-line, and MAY be obtained (e.g., via a Get operation). Special authentication and authorization SHOULD be enforced to perform this request (see [KMIP-UG]).

	Request Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	No
	Determines the object being recovered. If omitted, then the ID Placeholder value is used by the server as the Unique Identifier.


Table 176: Recover Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.


Table 177: Recover Response Payload

4.24 Validate
This requests that the server validate a certificate chain and return information on its validity. Only a single certificate chain SHALL be included in each request. Support for this operation at the server is OPTIONAL. If the server does not support this operation, an error SHALL be returned.
The request may contain a list of certificate objects, and/or a list of Unique Identifiers that identify Managed Certificate objects. Together, the two lists compose a certificate chain to be validated. The request MAY also contain a date for which all certificates in the certificate chain are REQUIRED to be valid.

The method or policy by which validation is conducted is a decision of the server and is outside of the scope of this protocol. Likewise, the order in which the supplied certificate chain is validated and the specification of trust anchors used to terminate validation are also controlled by the server.

	Request Payload

	Object
	REQUIRED
	Description 

	Certificate, see 2.2.1 
	No, MAY be repeated
	One or more Certificates.

	Unique Identifier, see 3.1
	No, MAY be repeated
	One or more Unique Identifiers of Certificate Objects.

	Validity Date
	No
	A Date-Time object indicating when the certificate chain needs to be valid. If omitted, the current date and time SHALL be assumed.


Table 178: Validate Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Validity Indicator, see 9.1.3.2.23 
	Yes
	An Enumeration object indicating whether the certificate chain is valid, invalid, or unknown.


Table 179: Validate Response Payload

4.25 Query
This request is used by the client to interrogate the server to determine its capabilities and/or protocol mechanisms. The Query operation SHOULD be invocable by unauthenticated clients to interrogate server features and functions. The Query Function field in the request SHALL contain one or more of the following items:

· Query Operations

· Query Objects

· Query Server Information

· Query Application Namespaces

· Query Extension List

· Query Extension Map

The Operation fields in the response contain Operation enumerated values, which SHALL list all the operations that the server supports. If the request contains a Query Operations value in the Query Function field, then these fields SHALL be returned in the response.

The Object Type fields in the response contain Object Type enumerated values, which SHALL list all the object types that the server supports. If the request contains a Query Objects value in the Query Function field, then these fields SHALL be returned in the response.

The Server Information field in the response is a structure containing vendor-specific fields and/or substructures. If the request contains a Query Server Information value in the Query Function field, then this field SHALL be returned in the response.

The Application Namespace fields in the response contain the namespaces that the server SHALL generate values for if requested by the client (see Section 3.36). These fields SHALL only be returned in the response if the request contains a Query Application Namespaces value in the Query Function field.

The Extension Information fields in the response contain the descriptions of Objects with Item Tag values in the Extensions range that are supported by the server (see Section 2.1.9). If the request contains a Query Extension List and/or Query Extension Map value in the Query Function field, then the Extensions Information fields SHALL be returned in the response. If the Query Function field contains the Query Extension Map value, then the Extension Tag and Extension Type fields SHALL be specified in the Extension Information values.

Note that the response payload is empty if there are no values to return.

	Request Payload

	Object
	REQUIRED
	Description 

	Query Function, see 9.1.3.2.24 
	Yes, MAY be Repeated
	Determines the information being queried


Table 180: Query Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Operation, see 9.1.3.2.27
	No, MAY be repeated
	Specifies an Operation that is supported by the server.

	Object Type, see 3.3
	No, MAY be repeated
	Specifies a Managed Object Type that is supported by the server.

	Vendor Identification
	No
	SHALL be returned if Query Server Information is requested. The Vendor Identification SHALL be a text string that uniquely identifies the vendor.

	Server Information
	No
	Contains vendor-specific information possibly be of interest to the client.

	Application Namespace, see 3.36
	No, MAY be repeated
	Specifies an Application Namespace supported by the server.

	Extension Information, see 2.1.9
	No, MAY be repeated
	SHALL be returned if Query Extension List or Query Extension Map is requested and supported by the server. 


Table 181: Query Response Payload 

4.26 Discover Versions
This request is used by the client to determine a list of protocol versions that is supported by the server. The request payload contains an optional list of protocol versions that is supported by the client. The protocol versions SHALL be ranked in order of preference (highest preference first).

The response payload contains a list of protocol versions that is supported by the server. The protocol versions are ranked in order of preference (highest preference first). If the client provides the server with a list of supported protocol versions in the request payload, the server SHALL return only the protocol versions that are supported by both the client and server. The server SHOULD list all the protocol versions supported by both client and server. If the protocol version specified in the request header is not specified in the request payload and the server does not support any protocol version specified in the request payload, the server SHALL return an empty list in the response payload. If no protocol versions are specified in the request payload, the server SHOULD simply return all the protocol versions that are supported by the server.

	Request Payload

	Object
	REQUIRED
	Description 

	Protocol Version, see 6.1
	No, MAY be Repeated
	The list of protocol versions supported by the client ordered in highest preference first.


Table 182: Discover Versions Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Protocol Version, see 6.1
	No, MAY be repeated
	The list of protocol versions supported by the server ordered in highest preference first.


Table 183: Discover Versions Response Payload

4.27 Cancel

This request is used to cancel an outstanding asynchronous operation. The correlation value (see Section 6.8) of the original operation SHALL be specified in the request. The server SHALL respond with a Cancellation Result that contains one of the following values:

· Canceled – The cancel operation succeeded in canceling the pending operation.

· Unable To Cancel – The cancel operation is unable to cancel the pending operation.

· Completed – The pending operation completed successfully before the cancellation operation was able to cancel it.

· Failed – The pending operation completed with a failure before the cancellation operation was able to cancel it.

· Unavailable – The specified correlation value did not match any recently pending or completed asynchronous operations.

 The response to this operation is not able to be asynchronous.

	Request Payload

	Object
	REQUIRED
	Description 

	Asynchronous Correlation Value, see 6.8
	Yes
	Specifies the request being canceled.


Table 184: Cancel Request Payload

	Response Payload

	Object
	REQUIRED
	Description 

	Asynchronous Correlation Value, see 6.8
	Yes
	Specified in the request.

	Cancellation Result, see 9.1.3.2.25
	Yes
	Enumeration indicating the result of the cancellation.


Table 185: Cancel Response Payload

4.28 Poll

This request is used to poll the server in order to obtain the status of an outstanding asynchronous operation. The correlation value (see Section 6.8) of the original operation SHALL be specified in the request. The response to this operation SHALL NOT be asynchronous.

	Request Payload

	Object
	REQUIRED
	Description 

	Asynchronous Correlation Value, see 6.8
	Yes
	Specifies the request being polled.


Table 186: Poll Request Payload

The server SHALL reply with one of two responses:

If the operation has not completed, the response SHALL contain no payload and a Result Status of Pending.

If the operation has completed, the response SHALL contain the appropriate payload for the operation. This response SHALL be identical to the response that would have been sent if the operation had completed synchronously.

5 Server-to-Client Operations

Server-to-client operations are used by servers to send information or Managed Cryptographic Objects to clients via means outside of the normal client-server request-response mechanism. These operations are used to send Managed Cryptographic Objects directly to clients without a specific request from the client.

5.1 Notify
This operation is used to notify a client of events that resulted in changes to attributes of an object. This operation is only ever sent by a server to a client via means outside of the normal client request/response protocol, using information known to the server via unspecified configuration or administrative mechanisms. It contains the Unique Identifier of the object to which the notification applies, and a list of the attributes whose changed values have triggered the notification. The message uses the same format as a Request message (see 7.1, Table 205), except that the Maximum Response Size, Asynchronous Indicator, Batch Error Continuation Option, and Batch Order Option fields are not allowed. The client SHALL send a response in the form of a Response Message (see 7.1, Table 206) containing no payload, unless both the client and server have prior knowledge (obtained via out-of-band mechanisms) that the client is not able to respond.

	Message Payload

	Object
	REQUIRED
	Description

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.

	Attribute, see 3
	Yes, MAY be repeated
	The attributes that have changed. This includes at least the Last Change Date attribute. In case an attribute was deleted, the Attribute structure (see 2.1.1) in question SHALL NOT contain the Attribute Value field.


Table 187: Notify Message Payload

5.2 Put
This operation is used to “push” Managed Cryptographic Objects to clients. This operation is only ever sent by a server to a client via means outside of the normal client request/response protocol, using information known to the server via unspecified configuration or administrative mechanisms. It contains the Unique Identifier of the object that is being sent, and the object itself. The message uses the same format as a Request message (see 7.1, Table 205), except that the Maximum Response Size, Asynchronous Indicator, Batch Error Continuation Option, and Batch Order Option fields are not allowed. The client SHALL send a response in the form of a Response Message (see 7.1, Table 206) containing no payload, unless both the client and server have prior knowledge (obtained via out-of-band mechanisms) that the client is not able to respond.

The Put Function field indicates whether the object being “pushed” is a new object, or is a replacement for an object already known to the client (e.g., when pushing a certificate to replace one that is about to expire, the Put Function field would be set to indicate replacement, and the Unique Identifier of the expiring certificate would be placed in the Replaced Unique Identifier field). The Put Function SHALL contain one of the following values:

· New – which indicates that the object is not a replacement for another object.

· Replace – which indicates that the object is a replacement for another object, and that the Replaced Unique Identifier field is present and contains the identification of the replaced object. In case the object with the Replaced Unique Identifier does not exist at the client, the client SHALL interpret this as if the Put Function contained the value New.

The Attribute field contains one or more attributes that the server is sending along with the object. The server MAY include attributes with the object to specify how the object is to be used by the client. The server MAY include a Lease Time attribute that grants a lease to the client.

If the Managed Object is a wrapped key, then the key wrapping specification SHALL be exchanged prior to the transfer via out-of-band mechanisms.

	Message Payload

	Object
	REQUIRED
	Description 

	Unique Identifier, see 3.1
	Yes
	The Unique Identifier of the object.

	Put Function, see 9.1.3.2.26
	Yes
	Indicates function for Put message.

	Replaced Unique Identifier, see 3.1 
	No
	Unique Identifier of the replaced object. SHALL be present if the Put Function is Replace.

	Certificate, Symmetric Key, Private Key, Public Key, Split Key, Template, Secret Data, or Opaque Object, see 2.2
	Yes
	The object being sent to the client.

	Attribute, see 3
	No, MAY be repeated
	The additional attributes that the server wishes to send with the object.


Table 188: Put Message Payload

6 Message Contents

The messages in the protocol consist of a message header, one or more batch items (which contain OPTIONAL message payloads), and OPTIONAL message extensions. The message headers contain fields whose presence is determined by the protocol features used (e.g., asynchronous responses). The field contents are also determined by whether the message is a request or a response. The message payload is determined by the specific operation being requested or to which is being replied.

The message headers are structures that contain some of the following objects.

6.1 Protocol Version

This field contains the version number of the protocol, ensuring that the protocol is fully understood by both communicating parties. The version number SHALL be specified in two parts, major and minor. Servers and clients SHALL support backward compatibility with versions of the protocol with the same major version. Support for backward compatibility with different major versions is OPTIONAL.

	Object
	Encoding

	Protocol Version
	Structure 

	Protocol Version Major
	Integer

	Protocol Version Minor
	Integer


Table 189: Protocol Version Structure in Message Header

6.2 Operation

This field indicates the operation being requested or the operation for which the response is being returned. The operations are defined in Sections 4 and 5.

	Object
	Encoding

	Operation 
	Enumeration, see 9.1.3.2.27


Table 190: Operation in Batch Item

6.3 Maximum Response Size

This field is optionally contained in a request message, and is used to indicate the maximum size of a response, in bytes, that the requester SHALL handle. It SHOULD only be sent in requests that possibly return large replies.

	Object
	Encoding

	Maximum Response Size 
	Integer


Table 191: Maximum Response Size in Message Request Header

6.4 Unique Batch Item ID

This field is optionally contained in a request, and is used for correlation between requests and responses. If a request has a Unique Batch Item ID, then responses to that request SHALL have the same Unique Batch Item ID.

	Object
	Encoding

	Unique Batch Item ID 
	Byte String


Table 192: Unique Batch Item ID in Batch Item

6.5 Time Stamp

This field is optionally contained in a client request. It is REQUIRED in a server request and response. It is used for time stamping, and MAY be used to enforce reasonable time usage at a client (e.g., a server MAY choose to reject a request if a client's time stamp contains a value that is too far off the server’s time). Note that the time stamp MAY be used by a client that has no real-time clock, but has a countdown timer, to obtain useful “seconds from now” values from all of the Date attributes by performing a subtraction.

	Object
	Encoding

	Time Stamp 
	Date-Time


Table 193: Time Stamp in Message Header

6.6 Authentication

This is used to authenticate the requester. It is an OPTIONAL information item, depending on the type of request being issued and on server policies. Servers MAY require authentication on no requests, a subset of the requests, or all requests, depending on policy. Query operations used to interrogate server features and functions SHOULD NOT require authentication. The Authentication structure SHALL contain a Credential structure.

The authentication mechanisms are described and discussed in Section 8.

	Object
	Encoding

	Authentication 
	Structure

	Credential
	Structure, see 2.1.2


Table 194: Authentication Structure in Message Header 

6.7 Asynchronous Indicator

This Boolean flag indicates whether the client is able to accept an asynchronous response. It SHALL have the Boolean value True if the client is able to handle asynchronous responses, and the value False otherwise. If not present in a request, then False is assumed. If a client indicates that it is not able to handle asynchronous responses (i.e., flag is set to False), and the server is not able to process the request synchronously, then the server SHALL respond to the request with a failure. 

	Object
	Encoding

	Asynchronous Indicator 
	Boolean


Table 195: Asynchronous Indicator in Message Request Header

6.8 Asynchronous Correlation Value

This is returned in the immediate response to an operation that is pending and that requires asynchronous polling. Note: the server decides which operations are performed synchronously or asynchronously. A server-generated correlation value SHALL be specified in any subsequent Poll or Cancel operations that pertain to the original operation. 

	Object
	Encoding

	Asynchronous Correlation Value 
	Byte String


Table 196: Asynchronous Correlation Value in Response Batch Item

6.9 Result Status

This is sent in a response message and indicates the success or failure of a request. The following values MAY be set in this field:

· Success – The requested operation completed successfully.

· Operation Pending – The requested operation is in progress, and it is necessary to obtain the actual result via asynchronous polling. The asynchronous correlation value SHALL be used for the subsequent polling of the result status.

· Operation Undone – The requested operation was performed, but had to be undone (i.e., due to a failure in a batch for which the Error Continuation Option (see 6.13 and 7.2) was set to Undo).

· Operation Failed – The requested operation failed.

	Object
	Encoding

	Result Status 
	Enumeration, see 9.1.3.2.28


Table 197: Result Status in Response Batch Item

6.10 Result Reason

This field indicates a reason for failure or a modifier for a partially successful operation and SHALL be present in responses that return a Result Status of Failure. In such a case, the Result Reason SHALL be set as specified in Section 11. It is OPTIONAL in any response that returns a Result Status of Success. The following defined values are defined for this field:

· Item not found – A requested object was not found or did not exist.

· Response too large – The response to a request would exceed the Maximum Response Size in the request.

· Authentication not successful – The authentication information in the request could not be validated, or was not found.

· Invalid message – The request message was not understood by the server.

· Operation not supported – The operation requested by the request message is not supported by the server.

· Missing data – The operation requires additional OPTIONAL information in the request, which was not present.

· Invalid field – Some data item in the request has an invalid value.

· Feature not supported – An OPTIONAL feature specified in the request is not supported.

· Operation canceled by requester – The operation was asynchronous, and the operation was canceled by the Cancel operation before it completed successfully.

· Cryptographic failure – The operation failed due to a cryptographic error.

· Illegal operation – The client requested an operation that was not able to be performed with the specified parameters.

· Permission denied – The client does not have permission to perform the requested operation.

· Object archived – The object SHALL be recovered from the archive before performing the operation.

· Index Out of Bounds – The client tried to set more instances than the server supports of an attribute that MAY have multiple instances.

· Application Namespace Not Supported – The particular Application Namespace is not supported, and server was not able to generate the Application Data field of an Application Specific Information attribute if the field was omitted from the client request.

· Key Format Type and/or Key Compression Type Not Supported – The object exists but the server is unable to provide it in the desired Key Format Type and/or Key Compression Type.

· General failure – The request failed for a reason other than the defined reasons above.

	Object
	Encoding

	Result Reason 
	Enumeration, see 9.1.3.2.29


Table 198: Result Reason in Response Batch Item

6.11 Result Message

This field MAY be returned in a response. It contains a more descriptive error message, which MAY be provided to an end user or used for logging/auditing purposes.

	Object
	Encoding

	Result Message 
	Text String


Table 199: Result Message in Response Batch Item

6.12 Batch Order Option

A Boolean value used in requests where the Batch Count is greater than 1. If True, then batched operations SHALL be executed in the order in which they appear within the request. If False, then the server MAY choose to execute the batched operations in any order. If not specified, then False is assumed (i.e., no implied ordering). Server support for this feature is OPTIONAL, but if the server does not support the feature, and a request is received with the batch order option set to True, then the entire request SHALL be rejected.

	Object
	Encoding

	Batch Order Option
	Boolean


Table 200: Batch Order Option in Message Request Header

6.13 Batch Error Continuation Option

This option SHALL only be present if the Batch Count is greater than 1. This option SHALL have one of three values:

· Undo – If any operation in the request fails, then the server SHALL undo all the previous operations.

· Stop – If an operation fails, then the server SHALL NOT continue processing subsequent operations in the request. Completed operations SHALL NOT be undone.

· Continue – Return an error for the failed operation, and continue processing subsequent operations in the request.

If not specified, then Stop is assumed. 

Server support for this feature is OPTIONAL, but if the server does not support the feature, and a request is received containing the Batch Error Continuation Option with a value other than the default Stop, then the entire request SHALL be rejected.

	Object
	Encoding

	Batch Error Continuation Option
	Enumeration, see 9.1.3.2.30


Table 201: Batch Error Continuation Option in Message Request Header

6.14 Batch Count

This field contains the number of Batch Items in a message and is REQUIRED. If only a single operation is being requested, then the batch count SHALL be set to 1. The Message Payload, which follows the Message Header, contains one or more batch items.

	Object
	Encoding

	Batch Count 
	Integer


Table 202: Batch Count in Message Header

6.15 Batch Item

This field consists of a structure that holds the individual requests or responses in a batch, and is REQUIRED. The contents of the batch items are described in Section 7.2.

	Object
	Encoding

	Batch Item 
	Structure 


Table 203: Batch Item in Message

6.16 Message Extension

The Message Extension is an OPTIONAL structure that MAY be appended to any Batch Item. It is used to extend protocol messages for the purpose of adding vendor-specified extensions. The Message Extension is a structure that SHALL contain the Vendor Identification, Criticality Indicator, and Vendor Extension fields. The Vendor Identification SHALL be a text string that uniquely identifies the vendor, allowing a client to determine if it is able to parse and understand the extension. If a client or server receives a protocol message containing a message extension that it does not understand, then its actions depend on the Criticality Indicator. If the indicator is True (i.e., Critical), and the receiver does not understand the extension, then the receiver SHALL reject the entire message. If the indicator is False (i.e., Non-Critical), and the receiver does not understand the extension, then the receiver MAY process the rest of the message as if the extension were not present. The Vendor Extension structure SHALL contain vendor-specific extensions.

	Object
	Encoding

	Message Extension 
	Structure 

	Vendor Identification
	Text String

	Criticality Indicator
	Boolean

	Vendor Extension 
	Structure 


Table 204: Message Extension Structure in Batch Item

7 Message Format

Messages contain the following objects and fields. All fields SHALL appear in the order specified.

7.1 Message Structure
	Object
	Encoding
	REQUIRED

	Request Message
	Structure
	

	Request Header
	Structure, see Table 207
	Yes

	Batch Item
	Structure, see Table 208
	Yes, MAY be repeated


Table 205: Request Message Structure

	Object
	Encoding
	REQUIRED

	Response Message
	Structure
	

	Response Header
	Structure, see Table 209
	Yes

	Batch Item
	Structure, see Table 210
	Yes, MAY be repeated


Table 206: Response Message Structure

7.2 Operations

If the client is capable of accepting asynchronous responses, then it MAY set the Asynchronous Indicator in the header of a batched request. The batched responses MAY contain a mixture of synchronous and asynchronous responses.

	Request Header

	Object
	REQUIRED in Message
	Comment

	Request Header
	Yes
	Structure 

	Protocol Version
	Yes
	See 6.1

	Maximum Response Size
	No
	See 6.3

	Asynchronous Indicator
	No
	If present, SHALL be set to True, see 6.7

	Authentication
	No
	See 6.6

	Batch Error Continuation Option
	No
	If omitted, then Stop is assumed, see 6.13

	Batch Order Option 
	No
	If omitted, then False is assumed, see 6.12  

	Time Stamp
	No
	See 6.5

	Batch Count
	Yes
	See 6.14


Table 207: Request Header Structure
	Request Batch Item

	Object
	REQUIRED in Message
	Comment

	Batch Item
	Yes
	Structure, see 6.15

	Operation
	Yes
	See 6.2

	Unique Batch Item ID
	No
	REQUIRED if Batch Count > 1, see 6.4

	Request Payload
	Yes
	Structure, contents depend on the Operation, see 4and 5

	Message Extension
	No
	See 6.16


Table 208: Request Batch Item Structure
	Response Header

	Object
	REQUIRED in Message
	Comment

	Response Header
	Yes
	Structure 

	Protocol Version
	Yes
	See 6.1

	Time Stamp 
	Yes
	See 6.5

	Batch Count
	Yes
	See 6.14


Table 209: Response Header Structure
	Response Batch Item

	Object
	REQUIRED in Message
	Comment

	Batch Item
	Yes
	Structure, see 6.15 

	Operation
	Yes, if specified in Request Batch Item
	See 6.2

	Unique Batch Item ID
	No
	REQUIRED if present in Request Batch Item, see 6.4

	Result Status
	Yes
	See 6.9

	Result Reason
	Yes, if Result Status is Failure
	REQUIRED if Result Status is Failure, otherwise OPTIONAL, see 6.10 

	Result Message
	No
	OPTIONAL if Result Status is not Pending or Success, see 6.11 

	Asynchronous Correlation Value
	No
	REQUIRED if Result Status is Pending, see 6.8

	Response Payload
	Yes, if not a failure
	Structure, contents depend on the Operation, see 4and 5

	Message Extension
	No
	See 6.16


Table 210: Response Batch Item Structure

8 Authentication
The mechanisms used to authenticate the client to the server and the server to the client are not part of the message definitions, and are external to the protocol. The KMIP Server SHALL support authentication as defined in [KMIP-Prof].

9 Message Encoding

To support different transport protocols and different client capabilities, a number of message-encoding mechanisms are supported. 

9.1 TTLV Encoding

In order to minimize the resource impact on potentially low-function clients, one encoding mechanism to be used for protocol messages is a simplified TTLV (Tag, Type, Length, Value) scheme.

The scheme is designed to minimize the CPU cycle and memory requirements of clients that need to encode or decode protocol messages, and to provide optimal alignment for both 32-bit and 64-bit processors. Minimizing bandwidth over the transport mechanism is considered to be of lesser importance.

9.1.1 TTLV Encoding Fields

Every Data object encoded by the TTLV scheme consists of four items, in order:

9.1.1.1 Item Tag

An Item Tag is a three-byte binary unsigned integer, transmitted big endian, which contains a number that designates the specific Protocol Field or Object that the TTLV object represents. To ease debugging, and to ensure that malformed messages are detected more easily, all tags SHALL contain either the value 42 in hex or the value 54 in hex as the high order (first) byte. Tags defined by this specification contain hex 42 in the first byte. Extensions, which are permitted, but are not defined in this specification, contain the value 54 hex in the first byte. A list of defined Item Tags is in Section 9.1.3.1
9.1.1.2 Item Type

An Item Type is a byte containing a coded value that indicates the data type of the data object. The allowed values are:

	Data Type
	Coded Value in Hex

	 Structure
	01

	 Integer
	02 

	 Long Integer
	03

	 Big Integer
	04

	 Enumeration
	05

	 Boolean 
	06 

	 Text String
	07 

	 Byte String
	08

	 Date-Time
	09

	 Interval
	0A


Table 211: Allowed Item Type Values

9.1.1.3 Item Length

An Item Length is a 32-bit binary integer, transmitted big-endian, containing the number of bytes in the Item Value. The allowed values are:

	Data Type
	Length

	 Structure
	Varies, multiple of 8

	 Integer
	4

	 Long Integer
	8

	 Big Integer
	Varies, multiple of 8

	 Enumeration
	4

	 Boolean 
	8 

	 Text String
	Varies

	 Byte String
	Varies

	 Date-Time
	8

	 Interval
	4


Table 212: Allowed Item Length Values

If the Item Type is Structure, then the Item Length is the total length of all of the sub-items contained in the structure, including any padding. If the Item Type is Integer, Enumeration, Text String, Byte String, or Interval, then the Item Length is the number of bytes excluding the padding bytes. Text Strings and Byte Strings SHALL be padded with the minimal number of bytes following the Item Value to obtain a multiple of eight bytes. Integers, Enumerations, and Intervals SHALL be padded with four bytes following the Item Value.

9.1.1.4 Item Value

The item value is a sequence of bytes containing the value of the data item, depending on the type:

· Integers are encoded as four-byte long (32 bit) binary signed numbers in 2's complement notation, transmitted big-endian.

· Long Integers are encoded as eight-byte long (64 bit) binary signed numbers in 2's complement notation, transmitted big-endian.

· Big Integers are encoded as a sequence of eight-bit bytes, in two's complement notation, transmitted big-endian. If the length of the sequence is not a multiple of eight bytes, then Big Integers SHALL be padded with the minimal number of leading sign-extended bytes to make the length a multiple of eight bytes. These padding bytes are part of the Item Value and SHALL be counted in the Item Length.

· Enumerations are encoded as four-byte long (32 bit) binary unsigned numbers transmitted big-endian. Extensions, which are permitted, but are not defined in this specification, contain the value 8 hex in the first nibble of the first byte.
· Booleans are encoded as an eight-byte value that SHALL either contain the hex value 0000000000000000, indicating the Boolean value False, or the hex value 0000000000000001, transmitted big-endian, indicating the Boolean value True. 
· Text Strings are sequences of bytes that encode character values according to the UTF-8 encoding standard. There SHALL NOT be null-termination at the end of such strings. 

· Byte Strings are sequences of bytes containing individual unspecified eight-bit binary values, and are interpreted in the same sequence order.

· Date-Time values are POSIX Time values encoded as Long Integers. POSIX Time, as described in IEEE Standard 1003.1 [IEEE1003-1], is the number of seconds since the Epoch (1970 Jan 1, 00:00:00 UTC), not counting leap seconds.

· Intervals are encoded as four-byte long (32 bit) binary unsigned numbers, transmitted big-endian. They have a resolution of one second.

· Structure Values are encoded as the concatenated encodings of the elements of the structure. All structures defined in this specification SHALL have all of their fields encoded in the order in which they appear in their respective structure descriptions.

9.1.2 Examples

These examples are assumed to be encoding a Protocol Object whose tag is 420020. The examples are shown as a sequence of bytes in hexadecimal notation:

· An Integer containing the decimal value 8:

42 00 20 | 02 | 00 00 00 04 | 00 00 00 08 00 00 00 00
· A Long Integer containing the decimal value 123456789000000000:

42 00 20 | 03 | 00 00 00 08 | 01 B6 9B 4B A5 74 92 00
· A Big Integer containing the decimal value 1234567890000000000000000000:

42 00 20 | 04 | 00 00 00 10 | 00 00 00 00 03 FD 35 EB 6B C2 DF 46 18 08 00 00
· An Enumeration with value 255:

42 00 20 | 05 | 00 00 00 04 | 00 00 00 FF 00 00 00 00
· A Boolean with the value True:

42 00 20 | 06 | 00 00 00 08 | 00 00 00 00 00 00 00 01
· A Text String with the value "Hello World":

42 00 20 | 07 | 00 00 00 0B | 48 65 6C 6C 6F 20 57 6F 72 6C 64 00 00 00 00 00 

· A Byte String with the value { 0x01, 0x02, 0x03 }:

42 00 20 | 08 | 00 00 00 03 | 01 02 03 00 00 00 00 00
· A Date-Time, containing the value for Friday, March 14, 2008, 11:56:40 GMT:

42 00 20 | 09 | 00 00 00 08 | 00 00 00 00 47 DA 67 F8
· An Interval, containing the value for 10 days:

42 00 20 | 0A | 00 00 00 04 | 00 0D 2F 00 00 00 00 00
· A Structure containing an Enumeration, value 254, followed by an Integer, value 255, having tags 420004 and 420005 respectively:

42 00 20 | 01 | 00 00 00 20 | 42 00 04 | 05 | 00 00 00 04 | 00 00 00 FE 00 00 00 00 | 42 00 05 | 02 | 00 00 00 04 | 00 00 00 FF 00 00 00 00
9.1.3 Defined Values

This section specifies the values that are defined by this specification. In all cases where an extension mechanism is allowed, this extension mechanism is only able to be used for communication between parties that have pre-agreed understanding of the specific extensions.

9.1.3.1 Tags

The following table defines the tag values for the objects and primitive data values for the protocol messages.

	Tag

	Object
	Tag Value

	(Unused)
	000000 - 420000

	Activation Date
	420001

	Application Data
	420002

	Application Namespace
	420003

	Application Specific Information
	420004

	Archive Date
	420005

	Asynchronous Correlation Value
	420006

	Asynchronous Indicator
	420007

	Attribute
	420008

	Attribute Index
	420009

	Attribute Name
	42000A

	Attribute Value
	42000B

	Authentication
	42000C

	Batch Count
	42000D

	Batch Error Continuation Option 
	42000E

	Batch Item
	42000F

	Batch Order Option 
	420010

	Block Cipher Mode
	420011

	Cancellation Result
	420012

	Certificate
	420013

	Certificate Identifier
	420014 (deprecated as of version 1.1)

	Certificate Issuer
	420015 (deprecated as of version 1.1)

	Certificate Issuer Alternative Name
	420016 (deprecated as of version 1.1)

	Certificate Issuer Distinguished Name
	420017 (deprecated as of version 1.1)

	Certificate Request
	420018

	Certificate Request Type
	420019

	Certificate Subject
	42001A (deprecated as of version 1.1)

	Certificate Subject  Alternative Name
	42001B (deprecated as of version 1.1)

	Certificate Subject Distinguished Name
	42001C (deprecated as of version 1.1)

	Certificate Type
	42001D

	Certificate Value
	42001E

	Common Template-Attribute
	42001F

	Compromise  Date
	420020

	Compromise Occurrence Date
	420021

	Contact Information
	420022

	Credential
	420023

	Credential Type
	420024

	Credential Value
	420025

	Criticality Indicator
	420026

	CRT Coefficient
	420027

	Cryptographic Algorithm
	420028

	Cryptographic Domain Parameters
	420029

	Cryptographic Length
	42002A

	Cryptographic Parameters
	42002B

	Cryptographic Usage Mask
	42002C

	Custom Attribute
	42002D

	D
	42002E

	Deactivation Date
	42002F

	Derivation Data
	420030

	Derivation Method 
	420031

	Derivation Parameters
	420032

	Destroy Date
	420033

	Digest
	420034

	Digest Value
	420035

	Encryption Key Information
	420036

	G
	420037

	Hashing Algorithm
	420038

	Initial Date
	420039

	Initialization Vector
	42003A

	Issuer
	42003B (deprecated as of version 1.1)

	Iteration Count
	42003C

	IV/Counter/Nonce
	42003D

	J
	42003E

	Key
	42003F

	Key Block
	420040

	Key Compression Type
	420041

	Key Format Type
	420042

	Key Material
	420043

	Key Part Identifier
	420044

	Key Value
	420045

	Key Wrapping Data
	420046

	Key Wrapping Specification
	420047

	Last Change Date
	420048

	Lease Time
	420049

	Link
	42004A

	Link Type
	42004B

	Linked Object Identifier
	42004C

	MAC/Signature
	42004D

	MAC/Signature Key Information
	42004E

	Maximum Items
	42004F

	Maximum Response Size
	420050

	Message Extension 
	420051

	Modulus
	420052

	Name
	420053

	Name Type
	420054

	Name Value
	420055

	Object Group
	420056

	Object Type
	420057

	Offset
	420058

	Opaque Data Type
	420059

	Opaque Data Value
	42005A

	Opaque Object
	42005B

	Operation 
	42005C

	Operation Policy Name
	42005D

	P
	42005E

	Padding Method
	42005F

	Prime Exponent P
	420060

	Prime Exponent Q
	420061

	Prime Field Size
	420062

	Private Exponent
	420063

	Private Key
	420064

	Private Key Template-Attribute
	420065

	Private Key Unique Identifier
	420066

	Process Start Date
	420067

	Protect Stop Date
	420068

	Protocol Version
	420069

	Protocol Version Major
	42006A

	Protocol Version Minor
	42006B

	Public Exponent
	42006C

	Public Key
	42006D

	Public Key Template-Attribute
	42006E

	Public Key Unique Identifier
	42006F

	Put Function 
	420070

	Q
	420071

	Q String
	420072

	Qlength
	420073

	Query Function
	420074

	Recommended Curve
	420075

	Replaced Unique Identifier
	420076

	Request Header
	420077

	Request Message
	420078

	Request Payload
	420079

	Response Header
	42007A

	Response Message
	42007B

	Response Payload
	42007C

	Result Message
	42007D

	Result Reason
	42007E

	Result Status
	42007F

	Revocation Message
	420080

	Revocation Reason
	420081

	Revocation Reason Code
	420082

	Key Role Type
	420083

	Salt
	420084

	Secret Data
	420085

	Secret Data Type
	420086

	Serial Number
	420087 (deprecated as of version 1.1)

	Server Information
	420088

	Split Key
	420089

	Split Key Method
	42008A

	Split Key Parts
	42008B

	Split Key Threshold
	42008C

	State
	42008D

	Storage Status Mask
	42008E

	Symmetric Key
	42008F

	Template
	420090

	Template-Attribute
	420091

	Time Stamp
	420092

	Unique Batch Item ID
	420093

	Unique Identifier
	420094

	Usage Limits
	420095

	Usage Limits Count
	420096

	Usage Limits Total
	420097

	Usage Limits Unit
	420098

	Username
	420099

	Validity Date
	42009A

	Validity Indicator
	42009B

	Vendor Extension 
	42009C

	Vendor Identification
	42009D

	Wrapping Method
	42009E 

	X
	42009F 

	Y
	4200A0 

	Password
	4200A1

	Device Identifier
	4200A2

	Encoding Option
	4200A3

	Extension Information
	4200A4

	Extension Name
	4200A5

	Extension Tag
	4200A6

	Extension Type
	4200A7

	Fresh
	4200A8

	Machine Identifier
	4200A9

	Media Identifier
	4200AA

	Network Identifier
	4200AB

	Object Group Member
	4200AC

	Certificate Length
	4200AD

	Digital Signature Algorithm
	4200AE

	Certificate Serial Number
	4200AF

	Device Serial Number
	4200B0

	Issuer Alternative Name
	4200B1

	Issuer Distinguished Name
	4200B2

	Subject Alternative Name
	4200B3

	Subject Distinguished Name
	4200B4

	X.509 Certificate Identifier
	4200B5

	X.509 Certificate Issuer
	4200B6

	X.509 Certificate Subject
	4200B7

	(Reserved)
	4200B8 – 42FFFF

	(Unused)
	430000 – 53FFFF

	Extensions
	540000 – 54FFFF

	(Unused)
	550000 - FFFFFF


Table 213: Tag Values

9.1.3.2 Enumerations

The following tables define the values for enumerated lists. Values not listed (outside the range 80000000 to 8FFFFFFF) are reserved for future KMIP versions. 

9.1.3.2.1 Credential Type Enumeration

	Credential Type

	Name
	Value

	Username and Password
	00000001

	Device
	00000002

	Extensions
	8XXXXXXX


Table 214: Credential Type Enumeration

9.1.3.2.2 Key Compression Type Enumeration

	Key Compression Type

	Name
	Value

	EC Public Key Type Uncompressed
	00000001

	EC Public Key Type X9.62 Compressed Prime
	00000002

	EC Public Key Type X9.62 Compressed Char2
	00000003

	EC Public Key Type X9.62 Hybrid
	00000004

	Extensions
	8XXXXXXX



Table 215: Key Compression Type Enumeration

9.1.3.2.3 Key Format Type Enumeration

	Key Format Type

	Name
	Value

	Raw 
	00000001

	Opaque
	00000002

	PKCS#1
	00000003

	PKCS#8
	00000004

	X.509
	00000005

	ECPrivateKey
	00000006

	Transparent Symmetric Key
	00000007

	Transparent DSA Private Key
	00000008

	Transparent DSA Public Key
	00000009

	Transparent RSA Private Key
	0000000A

	Transparent RSA Public Key
	0000000B

	Transparent DH Private Key
	0000000C

	Transparent DH Public Key
	0000000D

	Transparent ECDSA Private Key
	0000000E

	Transparent ECDSA Public Key
	0000000F

	Transparent ECDH Private Key
	00000010

	Transparent ECDH Public Key
	00000011

	Transparent ECMQV Private Key
	00000012

	Transparent ECMQV Public Key
	00000013

	Extensions
	8XXXXXXX


Table 216: Key Format Type Enumeration

9.1.3.2.4 Wrapping Method Enumeration

	Wrapping Method

	Name
	Value

	Encrypt
	00000001

	MAC/sign
	00000002

	Encrypt then MAC/sign
	00000003

	MAC/sign then encrypt
	00000004

	TR-31
	00000005

	Extensions
	8XXXXXXX


Table 217: Wrapping Method Enumeration

9.1.3.2.5 Recommended Curve Enumeration for ECDSA, ECDH, and ECMQV
Recommended curves are defined in  [FIPS186-3].

	Recommended Curve Enumeration

	Name
	Value

	P-192
	00000001

	K-163
	00000002

	B-163
	00000003

	P-224
	00000004

	K-233
	00000005

	B-233
	00000006

	P-256
	00000007

	K-283
	00000008

	B-283
	00000009

	P-384
	0000000A

	K-409
	0000000B

	B-409
	0000000C

	P-521
	0000000D

	K-571
	0000000E

	B-571
	0000000F

	Extensions
	8XXXXXXX


Table 218: Recommended Curve Enumeration for ECDSA, ECDH, and ECMQV

9.1.3.2.6 Certificate Type Enumeration

	Certificate Type

	Name
	Value

	X.509 
	00000001

	PGP
	00000002

	Extensions
	8XXXXXXX


Table 219: Certificate Type Enumeration

9.1.3.2.7 Digital Signature Algorithm Enumeration
	Digital Signature Algorithm

	Name
	Value

	MD2 with RSA Encryption

(PKCS#1 v1.5)
	00000001

	MD5 with RSA Encryption (PKCS#1 v1.5)
	00000002

	SHA-1 with RSA Encryption (PKCS#1 v1.5)
	00000003

	SHA-224 with RSA Encryption (PKCS#1 v1.5)
	00000004

	SHA-256 with RSA Encryption (PKCS#1 v1.5)
	00000005

	SHA-384 with RSA Encryption (PKCS#1 v1.5)
	00000006

	SHA-512 with RSA Encryption (PKCS#1 v1.5)
	00000007

	RSASSA-PSS

(PKCS#1 v2.1)
	00000008

	DSA with SHA-1
	00000009

	DSA with SHA224
	0000000A

	DSA with SHA256
	0000000B

	ECDSA with SHA-1
	0000000C

	ECDSA with SHA224
	0000000D

	ECDSA with SHA256
	0000000E

	ECDSA with SHA384
	0000000F

	ECDSA with SHA512
	00000010

	Extensions
	8XXXXXXX


Table 220: Digital Signature Algorithm Enumeration
9.1.3.2.8 Split Key Method Enumeration

	Split Key Method

	Name
	Value

	XOR
	00000001

	Polynomial Sharing GF(216)
	00000002

	Polynomial Sharing Prime Field
	00000003

	Extensions
	8XXXXXXX


Table 221: Split Key Method Enumeration

9.1.3.2.9 Secret Data Type Enumeration

	Secret Data Type

	Name
	Value

	Password 
	00000001

	Seed
	00000002

	Extensions
	8XXXXXXX


Table 222: Secret Data Type Enumeration

9.1.3.2.10 Opaque Data Type Enumeration

	Opaque Data Type

	Name
	Value

	Extensions
	8XXXXXXX


Table 223: Opaque Data Type Enumeration

9.1.3.2.11 Name Type Enumeration

	Name Type

	Name
	Value

	Uninterpreted Text String 
	00000001

	URI
	00000002

	Extensions
	8XXXXXXX


Table 224: Name Type Enumeration

9.1.3.2.12 Object Type Enumeration

	Object Type

	Name
	Value

	Certificate
	00000001

	Symmetric Key
	00000002

	Public Key
	00000003

	Private Key
	00000004

	Split Key
	00000005

	Template
	00000006

	Secret Data
	00000007

	Opaque Object
	00000008

	Extensions
	8XXXXXXX


Table 225: Object Type Enumeration

9.1.3.2.13 Cryptographic Algorithm Enumeration

	Cryptographic Algorithm

	Name
	Value

	DES 
	00000001

	3DES
	00000002

	AES
	00000003

	RSA
	00000004

	DSA
	00000005

	ECDSA
	00000006

	HMAC-SHA1
	00000007

	HMAC-SHA224
	00000008

	HMAC-SHA256
	00000009

	HMAC-SHA384
	0000000A

	HMAC-SHA512
	0000000B

	HMAC-MD5
	0000000C

	DH
	0000000D

	ECDH
	0000000E

	ECMQV
	0000000F

	Blowfish
	00000010

	Camellia
	00000011

	CAST5
	00000012

	IDEA
	00000013

	MARS
	00000014

	RC2
	00000015

	RC4
	00000016

	RC5
	00000017

	SKIPJACK
	00000018

	Twofish
	00000019

	Extensions
	8XXXXXXX


Table 226: Cryptographic Algorithm Enumeration

9.1.3.2.14 Block Cipher Mode Enumeration

	Block Cipher Mode

	Name
	Value

	CBC
	00000001

	ECB
	00000002

	PCBC
	00000003

	CFB
	00000004

	OFB
	00000005

	CTR
	00000006

	CMAC
	00000007

	CCM
	00000008

	GCM
	00000009

	CBC-MAC
	0000000A

	XTS
	0000000B

	AESKeyWrapPadding
	0000000C

	NISTKeyWrap
	0000000D

	X9.102 AESKW
	0000000E

	X9.102 TDKW
	0000000F

	X9.102 AKW1
	00000010

	X9.102 AKW2
	00000011

	Extensions
	8XXXXXXX


Table 227: Block Cipher Mode Enumeration

9.1.3.2.15 Padding Method Enumeration

	Padding Method

	Name
	Value

	None
	00000001

	OAEP
	00000002

	PKCS5
	00000003

	SSL3
	00000004

	Zeros
	00000005

	ANSI X9.23
	00000006

	ISO 10126
	00000007

	PKCS1 v1.5
	00000008

	X9.31
	00000009

	PSS
	0000000A

	Extensions
	8XXXXXXX


Table 228: Padding Method Enumeration

9.1.3.2.16 Hashing Algorithm Enumeration

	Hashing Algorithm

	Name
	Value

	MD2
	00000001

	MD4
	00000002

	MD5
	00000003

	SHA-1
	00000004

	SHA-224
	00000005

	SHA-256
	00000006

	SHA-384
	00000007

	SHA-512
	00000008

	RIPEMD-160
	00000009

	Tiger
	0000000A

	Whirlpool
	0000000B

	Extensions
	8XXXXXXX


Table 229: Hashing Algorithm Enumeration

9.1.3.2.17 Key Role Type Enumeration
	Key Role Type

	Name
	Value

	BDK
	00000001

	CVK
	00000002

	DEK
	00000003

	MKAC
	00000004

	MKSMC
	00000005

	MKSMI
	00000006

	MKDAC
	00000007

	MKDN
	00000008

	MKCP
	00000009

	MKOTH
	0000000A

	KEK
	0000000B

	MAC16609
	0000000C

	MAC97971
	0000000D

	MAC97972
	0000000E

	MAC97973
	0000000F

	MAC97974
	00000010

	MAC97975
	00000011

	ZPK
	00000012

	PVKIBM
	00000013

	PVKPVV
	00000014

	PVKOTH
	00000015

	Extensions
	8XXXXXXX


Table 230: Key Role Type Enumeration

Note that while the set and definitions of key role types are chosen to match TR-31 there is no necessity to match binary representations.

9.1.3.2.18 State Enumeration

	State

	Name
	Value

	Pre-Active
	00000001

	Active
	00000002

	Deactivated
	00000003

	Compromised
	00000004

	Destroyed
	00000005

	Destroyed Compromised
	00000006

	Extensions
	8XXXXXXX


Table 231: State Enumeration

9.1.3.2.19 Revocation Reason Code Enumeration

	Revocation Reason Code

	Name
	Value

	Unspecified
	00000001

	Key Compromise
	00000002

	CA Compromise
	00000003

	Affiliation Changed
	00000004

	Superseded
	00000005

	Cessation of Operation
	00000006

	Privilege Withdrawn 
	00000007

	Extensions
	8XXXXXXX


Table 232: Revocation Reason Code Enumeration

9.1.3.2.20 Link Type Enumeration

	Link Type

	Name
	Value

	Certificate Link
	00000101

	Public Key Link
	00000102

	Private Key Link
	00000103

	Derivation Base Object Link
	00000104

	Derived Key Link
	00000105

	Replacement Object Link
	00000106

	Replaced Object Link
	00000107

	Extensions
	8XXXXXXX


Table 233: Link Type Enumeration

Note: Link Types start at 101 to avoid any confusion with Object Types.

9.1.3.2.21 Derivation Method Enumeration

	Derivation Method

	Name
	Value

	PBKDF2 
	00000001

	HASH
	00000002

	HMAC
	00000003

	ENCRYPT
	00000004

	NIST800-108-C
	00000005

	NIST800-108-F
	00000006

	NIST800-108-DPI
	00000007

	Extensions
	8XXXXXXX


Table 234: Derivation Method Enumeration

9.1.3.2.22 Certificate Request Type Enumeration

	Certificate Request Type

	Name
	Value

	CRMF
	00000001

	PKCS#10
	00000002

	PEM
	00000003

	PGP
	00000004

	Extensions
	8XXXXXXX


Table 235: Certificate Request Type Enumeration

9.1.3.2.23 Validity Indicator Enumeration

	Validity Indicator

	Name
	Value

	Valid 
	00000001

	Invalid
	00000002

	Unknown
	00000003

	Extensions
	8XXXXXXX


Table 236: Validity Indicator Enumeration

9.1.3.2.24 Query Function Enumeration

	Query Function

	Name
	Value

	Query Operations
	00000001

	Query Objects
	00000002

	Query Server Information
	00000003

	Query Application Namespaces
	00000004

	Query Extension List
	00000005

	Query Extension Map
	00000006

	Extensions
	8XXXXXXX


Table 237: Query Function Enumeration

9.1.3.2.25 Cancellation Result Enumeration

	Cancellation Result 

	Name
	Value

	Canceled
	00000001

	Unable to Cancel
	00000002

	Completed
	00000003

	Failed
	00000004

	Unavailable
	00000005

	Extensions
	8XXXXXXX


Table 238: Cancellation Result Enumeration

9.1.3.2.26 Put Function Enumeration

	Put Function 

	Name
	Value

	New 
	00000001

	Replace 
	00000002

	Extensions
	8XXXXXXX


Table 239: Put Function Enumeration

9.1.3.2.27 Operation Enumeration

	Operation

	Name
	Value

	Create
	00000001

	Create Key Pair
	00000002

	Register 
	00000003

	Re-key
	00000004

	Derive Key
	00000005

	Certify
	00000006

	Re-certify
	00000007

	Locate
	00000008

	Check
	00000009

	Get
	0000000A

	Get Attributes
	0000000B

	Get Attribute List
	0000000C

	Add Attribute
	0000000D

	Modify Attribute
	0000000E

	Delete Attribute
	0000000F

	Obtain Lease
	00000010

	Get Usage Allocation
	00000011

	Activate
	00000012

	Revoke
	00000013

	Destroy
	00000014

	Archive
	00000015

	Recover 
	00000016

	Validate
	00000017

	Query
	00000018

	Cancel
	00000019

	Poll
	0000001A

	Notify
	0000001B

	Put
	0000001C

	Re-key Key Pair
	0000001D

	Discover Versions
	0000001E

	Extensions
	8XXXXXXX


Table 240: Operation Enumeration

9.1.3.2.28 Result Status Enumeration

	Result Status

	Name
	Value

	Success
	00000000

	Operation Failed
	00000001

	Operation Pending
	00000002

	Operation Undone
	00000003

	Extensions
	8XXXXXXX


Table 241: Result Status Enumeration

9.1.3.2.29 Result Reason Enumeration 

	Result Reason

	Name
	Value

	Item Not Found
	00000001

	Response Too Large
	00000002

	Authentication Not Successful
	00000003

	Invalid Message
	00000004

	Operation Not Supported
	00000005

	Missing Data
	00000006

	Invalid Field
	00000007

	Feature Not Supported
	00000008

	Operation Canceled By Requester
	00000009

	Cryptographic Failure
	0000000A

	Illegal Operation
	0000000B

	Permission Denied
	0000000C

	Object archived
	0000000D

	Index Out of Bounds
	0000000E

	Application Namespace Not Supported
	0000000F

	Key Format Type Not Supported
	00000010

	Key Compression Type Not Supported
	00000011

	Encoding Option Error
	00000012

	General Failure
	00000100

	Extensions
	8XXXXXXX


Table 242: Result Reason Enumeration

9.1.3.2.30 Batch Error Continuation Option Enumeration 

	Batch Error Continuation

	Name
	Value

	Continue
	00000001

	Stop
	00000002

	Undo
	00000003

	Extensions
	8XXXXXXX


Table 243: Batch Error Continuation Option Enumeration

9.1.3.2.31 Usage Limits Unit Enumeration

	Usage Limits Unit

	Name
	Value

	Byte
	00000001

	Object
	00000002

	Extensions
	8XXXXXXX


Table 244: Usage Limits Unit Enumeration 

9.1.3.2.32 Encoding Option Enumeration

	Key Wrap Encoding Option

	Name
	Value

	No Encoding
	00000001

	TTLV Encoding
	00000002

	Extensions
	8XXXXXXX


Table 245: Encoding Option Enumeration 

9.1.3.2.33 Object Group Member Enumeration

	Object Group Member Option

	Name
	Value

	Group Member Fresh
	00000001

	Group Member Default
	00000002

	Extensions
	8XXXXXXX


Table 246: Object Group Member Enumeration

9.1.3.3 Bit Masks

9.1.3.3.1 Cryptographic Usage Mask 

	Cryptographic Usage Mask

	Name
	Value

	Sign
	00000001

	Verify
	00000002

	Encrypt
	00000004

	Decrypt
	00000008

	Wrap Key
	00000010

	Unwrap Key
	00000020

	Export
	00000040

	MAC Generate
	00000080

	MAC Verify
	00000100

	Derive Key
	00000200

	Content Commitment

(Non Repudiation)
	00000400

	Key Agreement
	00000800

	Certificate Sign
	00001000

	CRL Sign
	00002000

	Generate Cryptogram
	00004000

	Validate Cryptogram
	00008000

	Translate Encrypt
	00010000

	Translate Decrypt
	00020000

	Translate Wrap
	00040000

	Translate Unwrap
	00080000

	Extensions
	XXX00000


Table 247: Cryptographic Usage Mask 

This list takes into consideration values which MAY appear in the Key Usage extension in an X.509 certificate.

9.1.3.3.2 Storage Status Mask

	Storage Status Mask

	Name
	Value

	On-line storage
	00000001

	Archival storage
	00000002

	Extensions
	XXXXXXX0


Table 248: Storage Status Mask

10 Transport 

KMIP Servers and Clients SHALL establish and maintain channel confidentiality and integrity, and provide assurance of authenticity for KMIP messaging as specified in [KMIP-Prof]. 

11 Error Handling

This section details the specific Result Reasons that SHALL be returned for errors detected.

11.1 General

These errors MAY occur when any protocol message is received by the server or client (in response to server-to-client operations).

	Error Definition
	Action
	Result Reason

	Protocol major version mismatch
	Response message containing a header and a Batch Item without Operation, but with the Result Status field set to Operation Failed
	Invalid Message

	Error parsing batch item or payload within batch item
	Batch item fails; Result Status is Operation Failed
	Invalid Message

	The same field is contained in a header/batch item/payload more than once
	Result Status is Operation Failed
	Invalid Message

	Same major version, different minor versions; unknown fields/fields the server does not understand
	Ignore unknown fields, process rest normally
	N/A

	Same major & minor version, unknown field
	Result Status is Operation Failed
	Invalid Field

	Client is not allowed to perform the specified operation
	Result Status is Operation Failed
	Permission Denied

	Operation is not able to be completed synchronously and client does not support asynchronous requests
	Result Status is Operation Failed
	Operation Not Supported 

	Maximum Response Size has been exceeded
	Result Status is Operation Failed
	Response Too Large

	Server does not support operation
	Result Status is Operation Failed
	Operation Not Supported

	The Criticality Indicator in a Message Extension structure is set to True, but the server does not understand the extension
	Result Status is Operation Failed
	Feature Not Supported

	Message cannot be parsed
	Response message containing a header and a Batch Item without Operation, but with the Result Status field set to Operation Failed
	Invalid Message


Table 249: General Errors

11.2 Create

	Error Definition
	Result Status
	Result Reason

	Object Type is not recognized
	Operation Failed
	Invalid Field

	Templates that do not exist are given in request
	Operation Failed
	Item Not Found

	Incorrect attribute value(s) specified
	Operation Failed
	Invalid Field

	Error creating cryptographic object
	Operation Failed
	Cryptographic Failure

	Trying to set more instances than the server supports of an attribute that MAY have multiple instances
	Operation Failed
	Index Out of Bounds

	Trying to create a new object with the same Name attribute value as an existing object
	Operation Failed
	Invalid Field

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	Template object is archived
	Operation Failed
	Object Archived


Table 250: Create Errors

11.3 Create Key Pair

	Error Definition
	Result Status
	Result Reason

	Templates that do not exist are given in request
	Operation Failed
	Item Not Found

	Incorrect attribute value(s) specified
	Operation Failed
	Invalid Field

	Error creating cryptographic object
	Operation Failed
	Cryptographic Failure

	Trying to create a new object with the same Name attribute value as an existing object
	Operation Failed
	Invalid Field

	Trying to set more instances than the server supports of an attribute that MAY have multiple instances
	Operation Failed
	Index Out of Bounds

	REQUIRED field(s) missing
	Operation Failed
	Invalid Message

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	Template object is archived
	Operation Failed
	Object Archived


Table 251: Create Key Pair Errors

11.4 Register

	Error Definition
	Result Status
	Result Reason

	Object Type is not recognized
	Operation Failed
	Invalid Field

	Object Type does not match type of cryptographic object provided
	Operation Failed
	Invalid Field

	Templates that do not exist are given in request
	Operation Failed
	Item Not Found

	Incorrect attribute value(s) specified
	Operation Failed
	Invalid Field

	Trying to register a new object with the same Name attribute value as an existing object
	Operation Failed
	Invalid Field

	Trying to set more instances than the server supports of an attribute that MAY have multiple instances
	Operation Failed
	Index Out of Bounds

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	Template object is archived
	Operation Failed
	Object Archived

	Encoding Option not permitted when Key Wrapping Specification contains attribute names
	Operation Failed
	Encoding Option Error


Table 252: Register Errors

11.5 Re-key

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object specified is not able to be re-keyed
	Operation Failed
	Permission Denied

	Offset field is not permitted to be specified at the same time as any of the Activation Date, Process Start Date, Protect Stop Date, or Deactivation Date attributes
	Operation Failed
	Invalid Message

	Cryptographic error during re-key
	Operation Failed
	Cryptographic Failure

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	Object is archived
	Operation Failed
	Object Archived

	An offset cannot be used to specify new Process Start, Protect Stop and/or Deactivation Date attribute values since no Activation Date has been specified for the existing key
	Operation Failed
	Illegal Operation


Table 253: Re-key Errors

11.6 Re-key Key Pair

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object specified is not able to be re-keyed
	Operation Failed
	Permission Denied

	Offset field is not permitted to be specified at the same time as any of the Activation Date or Deactivation Date attributes
	Operation Failed
	Invalid Message

	Cryptographic error during re-key
	Operation Failed
	Cryptographic Failure

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	Object is archived
	Operation Failed
	Object Archived

	An offset cannot be used to specify new Process Start, Protect Stop and/or Deactivation Date attribute values since no Activation Date has been specified for the existing key
	Operation Failed
	Illegal Operation


Table 254: Re-key Key Pair Errors
11.7 Derive Key

	Error Definition
	Result Status
	Result Reason

	One or more of the objects specified do not exist
	Operation Failed
	Item Not Found

	One or more of the objects specified are not of the correct type
	Operation Failed
	Invalid Field

	Templates that do not exist are given in request
	Operation Failed
	Item Not Found

	Invalid Derivation Method
	Operation Failed
	Invalid Field

	Invalid Derivation Parameters
	Operation Failed
	Invalid Field

	Ambiguous derivation data provided both with Derivation Data and Secret Data object. 
	Operation Failed
	Invalid Message

	Incorrect attribute value(s) specified
	Operation Failed
	Invalid Field

	One or more of the specified objects are not able to be used to derive a new key
	Operation Failed
	Invalid Field

	Trying to derive a new key with the same Name attribute value as an existing object
	Operation Failed
	Invalid Field

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	One or more of the objects is archived
	Operation Failed
	Object Archived

	The specified length exceeds the output of the derivation method or other cryptographic error during derivation.
	Operation Failed
	Cryptographic Failure


Table 255: Derive Key Errors-

11.8 Certify

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object specified is not able to be certified
	Operation Failed
	Permission Denied

	The Certificate Request does not contain a signed certificate request of the specified Certificate Request Type
	Operation Failed
	Invalid Field

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	Object is archived
	Operation Failed
	Object Archived


Table 256: Certify Errors

11.9 Re-certify

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object specified is not able to be certified
	Operation Failed
	Permission Denied

	The Certificate Request does not contain a signed certificate request of the specified Certificate Request Type
	Operation Failed
	Invalid Field

	Offset field is not permitted to be specified at the same time as any of the Activation Date or Deactivation Date attributes
	Operation Failed
	Invalid Message

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	Object is archived
	Operation Failed
	Object Archived


Table 257: Re-certify Errors

11.10 Locate

	Error Definition
	Result Status
	Result Reason

	Non-existing attributes, attributes that the server does not understand or templates that do not exist are given in the request
	Operation Failed
	Invalid Field


Table 258: Locate Errors

11.11  Check

	Error Definition
	Result Status
	Result Reason

	Object does not exist
	Operation Failed
	Item Not Found

	Object is archived
	Operation Failed
	Object Archived

	Check cannot be performed on this object
	Operation Failed
	Illegal Operation

	The client is not allowed to use the object according to the specified attributes
	Operation Failed
	Permission Denied


Table 259: Check Errors

11.12  Get

	Error Definition
	Result Status
	Result Reason

	Object does not exist
	Operation Failed
	Item Not Found

	Wrapping key does not exist
	Operation Failed
	Item Not Found

	Object with Encryption Key Information exists,  but it is not a key
	Operation Failed
	Illegal Operation

	Object with Encryption Key Information exists,  but it is not able to be used for wrapping
	Operation Failed
	Permission Denied

	Object with MAC/Signature Key Information exists, but it is not a key
	Operation Failed
	Illegal Operation

	Object with MAC/Signature Key Information exists, but it is not able to be used for MACing/signing
	Operation Failed
	Permission Denied

	Object exists but cannot be provided in the desired Key Format Type and/or Key Compression Type 
	Operation Failed
	Key Format Type and/or Key Compression Type Not Supported

	Object exists and is not a Template, but the server only has attributes for this object
	Operation Failed
	Illegal Operation

	Cryptographic Parameters associated with the object do not exist or do not match those provided in the Encryption Key Information and/or Signature Key Information
	Operation Failed
	Item Not Found

	Object is archived
	Operation Failed
	Object Archived

	Object exists but cannot be provided in the desired Encoding Option
	Operation Failed
	Encoding Option Error

	Encoding Option not permitted when Key Wrapping Specification contains attribute names
	Operation Failed
	Encoding Option Error


Table 260: Get Errors

11.13  Get Attributes

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	The same Attribute Name is present more than once
	Operation Failed
	Invalid Message

	Object is archived
	Operation Failed
	Object Archived


Table 261: Get Attributes Errors

11.14  Get Attribute List

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object is archived
	Operation Failed
	Object Archived


Table 262: Get Attribute List Errors

11.15  Add Attribute

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Attempt to add a read-only attribute
	Operation Failed
	Permission Denied

	Attempt to add an attribute that is not supported for this object
	Operation Failed
	Permission Denied

	The specified attribute already exists
	Operation Failed
	Illegal Operation

	New attribute contains Attribute Index
	Operation Failed
	Invalid Field

	Trying to add a Name attribute with the same value that another object already has
	Operation Failed
	Illegal Operation

	Trying to add a new instance to an attribute with multiple instances but the server limit on instances has been reached
	Operation Failed
	Index Out of Bounds

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	Object is archived
	Operation Failed
	Object Archived


Table 263: Add Attribute Errors

11.16  Modify Attribute

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	A specified attribute does not exist (i.e., it needs to first be added)
	Operation Failed
	Invalid Field

	No matching attribute instance exists
	Operation Failed
	Item Not Found

	The specified attribute is read-only
	Operation Failed
	Permission Denied

	Trying to set the Name attribute value to a value already used by another object
	Operation Failed
	Illegal Operation

	The particular Application Namespace is not supported, and Application Data cannot be generated if it was omitted from the client request
	Operation Failed
	Application Namespace Not Supported

	Object is archived
	Operation Failed
	Object Archived


Table 264: Modify Attribute Errors

11.17  Delete Attribute

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Attempt to delete a read-only/REQUIRED attribute
	Operation Failed
	Permission Denied

	No matching attribute instance exists
	Operation Failed
	Item Not Found

	No attribute with the specified name exists
	Operation Failed
	Item Not Found

	Object is archived
	Operation Failed
	Object Archived


Table 265: Delete Attribute Errors

11.18  Obtain Lease

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	The server determines that a new lease is not permitted to be issued for the specified cryptographic object
	Operation Failed
	Permission Denied

	Object is archived
	Operation Failed
	Object Archived


Table 266: Obtain Lease Errors

11.19  Get Usage Allocation

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object has no Usage Limits attribute, or the object is not able to be used for applying cryptographic protection
	Operation Failed
	Illegal Operation

	No Usage Limits Count is specified
	Operation Failed
	Invalid Message

	Object is archived
	Operation Failed
	Object Archived

	The server was not able to grant the requested amount of usage allocation
	Operation Failed
	Permission Denied


Table 267: Get Usage Allocation Errors

11.20  Activate

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Unique Identifier specifies a template or other object that is not able to be activated
	Operation Failed
	Illegal Operation 

	Object is not in Pre-Active state
	Operation Failed
	Permission Denied

	Object is archived
	Operation Failed
	Object Archived


Table 268: Activate Errors

11.21  Revoke

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Revocation Reason is not recognized
	Operation Failed
	Invalid Field

	Unique Identifier specifies a template or other object that is not able to be revoked
	Operation Failed
	Illegal Operation 

	Object is archived
	Operation Failed
	Object Archived


Table 269: Revoke Errors

11.22  Destroy

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object exists, but has already been destroyed
	Operation Failed
	Permission Denied

	Object is not in Pre-Active, Deactivated or Compromised state
	Operation Failed
	Permission Denied

	Object is archived
	Operation Failed
	Object Archived


Table 270: Destroy Errors

11.23  Archive

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found

	Object is already archived
	Operation Failed
	Object Archived


Table 271: Archive Errors

11.24  Recover

	Error Definition
	Result Status
	Result Reason

	No object with the specified Unique Identifier exists
	Operation Failed
	Item Not Found


Table 272: Recover Errors

11.25  Validate

	Error Definition
	Result Status
	Result Reason

	The combination of Certificate Objects and Unique Identifiers does not specify a certificate list
	Operation Failed
	Invalid Message

	One or more of the objects is archived
	Operation Failed
	Object Archived


Table 273: Validate Errors

11.26  Query

N/A

11.27  Cancel

N/A

11.28  Poll

	Error Definition
	Result Status
	Result Reason

	No outstanding operation with the specified Asynchronous Correlation Value exists
	Operation Failed
	 Item Not Found


Table 274: Poll Errors

11.29  Batch Items

These errors MAY occur when a protocol message with one or more batch items is processed by the server. If a message with one or more batch items was parsed correctly, then the response message SHOULD include response(s) to the batch item(s) in the request according to the table below.

	Error Definition
	Action
	Result Reason

	Processing of batch item fails with Batch Error Continuation Option set to Stop
	Batch item fails and Result Status is set to Operation Failed. Responses to batch items that have already been processed are returned normally. Responses to batch items that have not been processed are not returned.
	See tables above, referring to the operation being performed in the batch item that failed 

	Processing of batch item fails with Batch Error Continuation Option set to Continue
	Batch item fails and Result Status is set to Operation Failed. Responses to other batch items are returned normally.
	See tables above, referring to the operation being performed in the batch item that failed

	Processing of batch item fails with Batch Error Continuation Option set to Undo
	Batch item fails and Result Status is set to Operation Failed. Batch items that had been processed have been undone and their responses are returned with Undone result status.
	See tables above, referring to the operation being performed in the batch item that failed


Table 275: Batch Items Errors

12 KMIP Server and Client Implementation Conformance
12.1 KMIP Server Implementation Conformance 

An implementation is a conforming KMIP Server if the implementation meets the conditions specified in one or more server profiles specified in [KMIP-Prof].

A KMIP server implementation SHALL be a conforming KMIP Server.

If a KMIP server implementation claims support for a particular server profile, then the implementation SHALL conform to all normative statements within the clauses specified for that profile and for any subclauses to each of those clauses.

12.2 KMIP Client Implementation Conformance 

An implementation is a conforming KMIP Client if the implementation meets the conditions specified in one or more client profiles specified in [KMIP-Prof].

A KMIP client implementation SHALL be a conforming KMIP Client.

If a KMIP client implementation claims support for a particular client profile, then the implementation SHALL conform to all normative statements within the clauses specified for that profile and for any subclauses to each of those clauses.

Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Original Authors of the initial contribution:

David Babcock, HP

Steven Bade, IBM

Paolo Bezoari, NetApp

Mathias Björkqvist, IBM

Bruce Brinson, EMC

Christian Cachin, IBM

Tony Crossman, Thales/nCipher

Stan Feather, HP

Indra Fitzgerald, HP

Judy Furlong, EMC

Jon Geater, Thales/nCipher

Bob Griffin, EMC

Robert Haas, IBM (editor)

Timothy Hahn, IBM

Jack Harwood, EMC

Walt Hubis, LSI

Glen Jaquette, IBM

Jeff Kravitz, IBM (editor emeritus)

Michael McIntosh, IBM

Brian Metzger, HP

Anthony Nadalin, IBM

Elaine Palmer, IBM

Joe Pato, HP

René Pawlitzek, IBM

Subhash Sankuratripati, NetApp

Mark Schiller, HP

Martin Skagen, Brocade

Marcus Streets, Thales/nCipher

John Tattan, EMC

Karla Thomas, Brocade

Marko Vukolić, IBM

Steve Wierenga, HP

Participants:


Hal Aldridge, Sypris Electronics

Mike Allen, Symantec 

Gordon Arnold, IBM

Todd Arnold, IBM

Matthew Ball, Oracle Corporation

Elaine Barker, NIST

Peter Bartok, Venafi, Inc.

Mathias Björkqvist, IBM

Kelley Burgin, National Security Agency

John Clark, Hewlett-Packard

Tom Clifford, Symantec Corp.

Graydon Dodson, Lexmark International Inc.

Chris Dunn, SafeNet, Inc.

Michael Duren, Sypris Electronics

Paul Earsy, SafeNet, Inc.

Stan Feather, Hewlett-Packard

Indra Fitzgerald, Hewlett-Packard

Alan Frindell, SafeNet, Inc.

Judith Furlong, EMC Corporation

Jonathan Geater, Thales e-Security

Susan Gleeson, Oracle
Robert Griffin, EMC Corporation

Paul Grojean, Individual

Robert Haas, IBM

Thomas Hardjono, M.I.T.

Steve He, Vormetric
Kurt Heberlein, Hewlett-Packard

Joel Hockey, Cryptsoft Pty Ltd.

Larry Hofer, Emulex Corporation

Brandon Hoff, Emulex Corporation

Walt Hubis, NetApp

Tim Hudson, Cryptsoft Pty Ltd.

Jay Jacobs, Target Corporation

Glen Jaquette, IBM

Scott Kipp, Brocade Communications Systems, Inc.

Kathy Kriese, Symantec Corporation

David Lawson, Emulex Corporation

John Leiseboer, Quintenssence Labs

Hal Lockhart, Oracle Corporation

Robert Lockhart, Thales e-Security

Anne Luk, Cryptsoft Pty Ltd.

Shyam Mankala, EMC Corporation

Upendra Mardikar, PayPal Inc.

Luther Martin, Voltage Security
Hyrum Mills, Mitre Corporation

Bob Nixon, Emulex Corporation

René Pawlitzek, IBM

John Peck, IBM

Rob Philpott, EMC Corporation

Denis Pochuev, SafeNet, Inc.
Ajai Puri, SafeNet, Inc.

Peter Reed, SafeNet, Inc.
Bruce Rich, IBM

Warren Robbins, Credant Systems

Saikat Saha, SafeNet, Inc.

Subhash Sankuratripati, NetApp

Mark Schiller, Hewlett-Packard

Brian Spector, Certivox
Terence Spies, Voltage Security

Marcus Streets, Thales e-Security

Kiran Thota, VMware
Sean Turner, IECA, Inc.

Paul Turner, Venafi, Inc.

Marko Vukolić, Eurécom

Rod Wideman, Quantum Corporation

Steven Wierenga, Hewlett-Packard

Peter Yee, EMC Corporation

Krishna Yellepeddy, IBM

Michael Yoder, Voremetric. Inc.

Magda Zdunkiewicz, Cryptsoft Pty Ltd.

Peter Zelechoski, Election Systems & Software

Appendix B. Attribute Cross-Reference

The following table of Attribute names indicates the Managed Object(s) for which each attribute applies. This table is not normative.

	Attribute Name
	Managed Object

	
	Certificate
	Symmetric Key
	Public Key
	Private Key
	Split Key
	Template
	Secret Data
	Opaque Object

	Unique Identifier
	x
	x
	x
	x
	x
	x
	x
	x

	Name
	x
	x
	x
	x
	x
	x
	x
	x

	Object Type
	x
	x
	x
	x
	x
	x
	x
	x

	Cryptographic Algorithm
	x
	x
	x
	x
	x
	x
	
	

	Cryptographic Domain Parameters
	
	
	x
	x
	
	x
	
	

	Cryptographic Length
	x
	x
	x
	x
	x
	x
	
	

	Cryptographic Parameters
	x
	x
	x
	x
	x
	x
	
	

	Certificate Type
	x
	
	
	
	
	
	
	

	Certificate Identifier
	x
	
	
	
	
	
	
	

	Certificate Issuer
	x
	
	
	
	
	
	
	

	Certificate Length
	x
	
	
	
	
	
	
	

	Certificate Subject
	x
	
	
	
	
	
	
	

	Digital Signature Algorithm
	x
	
	
	
	
	
	
	

	Digest
	x
	x
	x
	x
	x
	
	x
	

	Operation Policy Name
	x
	x
	x
	x
	x
	x
	x
	x

	Cryptographic Usage Mask
	x
	x
	x
	x
	x
	x
	x
	

	Lease Time
	x
	x
	x
	x
	x
	
	x
	x

	Usage Limits
	
	x
	x
	x
	x
	x
	
	

	State
	x
	x
	x
	x
	x
	
	x
	

	Initial Date
	x
	x
	x
	x
	x
	x
	x
	x

	Activation Date
	x
	x
	x
	x
	x
	x
	x
	

	Process Start Date
	
	x
	
	
	x
	x
	
	

	Protect Stop Date
	
	x
	
	
	x
	x
	
	

	Deactivation Date
	x
	x
	x
	x
	x
	x
	x
	x

	Destroy Date
	x
	x
	x
	x
	x
	
	x
	x

	Compromise Occurrence Date
	x
	x
	x
	x
	x
	
	x
	x

	Compromise Date
	x
	x
	x
	x
	x
	
	x
	x

	Revocation Reason
	x
	x
	x
	x
	x
	
	x
	x

	Archive Date
	x
	x
	x
	x
	x
	x
	x
	x

	Object Group
	x
	x
	x
	x
	x
	x
	x
	x

	Fresh
	x
	x
	x
	x
	x
	
	
	

	Link
	x
	x
	x
	x
	x
	
	x
	

	Application Specific Information
	x
	x
	x
	x
	x
	x
	x
	x

	Contact Information
	x
	x
	x
	x
	x
	x
	x
	x

	Last Change Date
	x
	x
	x
	x
	x
	x
	x
	x

	Custom Attribute
	x
	x
	x
	x
	x
	x
	x
	x


Table 276: Attribute Cross-reference

Appendix C. Tag Cross-Reference

This table is not normative.

	Object
	Defined
	Type
	Notes

	Activation Date
	3.24
	Date-Time
	

	Application Data
	3.36
	Text String
	

	Application Namespace
	3.36
	Text String
	

	Application Specific Information
	3.36
	Structure
	

	Archive Date
	3.32
	Date-Time
	

	Asynchronous Correlation Value
	6.8
	Byte String
	

	Asynchronous Indicator
	6.7
	Boolean
	

	Attribute
	2.1.1
	Structure
	

	Attribute Index
	2.1.1
	Integer
	

	Attribute Name
	2.1.1
	Text String
	

	Attribute Value
	2.1.1
	*
	type varies

	Authentication
	6.6
	Structure
	

	Batch Count
	6.14
	Integer
	

	Batch Error Continuation Option
	6.13, 9.1.3.2.30
	Enumeration
	

	Batch Item
	6.15
	Structure
	

	Batch Order Option
	6.12
	Boolean
	

	Block Cipher Mode
	3.6, 9.1.3.2.14
	Enumeration
	

	Cancellation Result
	4.27, 9.1.3.2.25
	Enumeration
	

	Certificate
	2.2.1
	Structure
	

	Certificate Identifier
	3.13
	Structure
	deprecated as of version 1.1

	Certificate Issuer
	3.13
	Structure
	deprecated as of version 1.1

	Certificate Issuer Alternative Name
	3.15
	Text String
	deprecated as of version 1.1

	Certificate Issuer Distinguished Name
	3.15
	Text String
	deprecated as of version 1.1

	Certificate Length
	3.9
	Integer
	

	Certificate Request
	4.7, 4.8
	Byte String
	

	Certificate Request Type
	4.7, 4.8, 9.1.3.2.22
	Enumeration
	

	Certificate Serial Number
	3.9
	Byte String
	

	Certificate Subject
	3.14
	Structure
	deprecated as of version 1.1

	Certificate Subject Alternative Name
	3.14
	Text String
	deprecated as of version 1.1

	Certificate Subject Distinguished Name
	3.14
	Text String
	deprecated as of version 1.1

	Certificate Type
	2.2.1, 3.8 , 9.1.3.2.6
	Enumeration
	

	Certificate Value
	2.2.1
	Byte String
	

	Common Template-Attribute
	2.1.8
	Structure
	

	Compromise Occurrence Date
	3.29
	Date-Time
	

	Compromise Date
	3.30
	Date-Time
	

	Contact Information
	3.37
	Text String
	

	Credential
	2.1.2
	Structure
	

	Credential Type
	2.1.2, 9.1.3.2.1
	Enumeration
	

	Credential Value
	2.1.2
	*
	type varies

	Criticality Indicator
	6.16
	Boolean
	

	CRT Coefficient
	2.1.7
	Big Integer
	

	Cryptographic Algorithm
	3.4, 9.1.3.2.13
	Enumeration
	

	Cryptographic Length
	3.5
	Integer
	

	Cryptographic Parameters
	3.6
	Structure
	

	Cryptographic Usage Mask
	3.19, 9.1.3.3.1
	Integer
	Bit mask

	Custom Attribute
	3.39
	*
	type varies

	D
	2.1.7
	Big Integer
	

	Deactivation Date
	3.27
	Date-Time
	

	Derivation Data
	4.6
	Byte String
	

	Derivation Method
	4.6, 9.1.3.2.21
	Enumeration
	

	Derivation Parameters
	4.6
	Structure
	

	Destroy Date
	3.28
	Date-Time
	

	Device Identifier
	2.1.2
	Text String
	

	Device Serial Number
	2.1.2
	Text String
	

	Digest
	3.17
	Structure
	

	Digest Value
	3.17
	Byte String
	

	Digital Signature Algorithm
	3.16
	Enumeration
	

	Encoding Option
	2.1.5, 2.1.6, 9.1.3.2.32
	Enumeration
	

	Encryption Key Information
	2.1.5
	Structure
	

	Extension Information
	2.1.9
	Structure
	

	Extension Name
	2.1.9
	Text String
	

	Extension Tag
	2.1.9
	Integer
	

	Extension Type
	2.1.9
	Integer
	

	Extensions
	9.1.3
	
	

	Fresh
	3.34
	Boolean
	

	G
	2.1.7
	Big Integer
	

	Hashing Algorithm
	3.6, 3.17, 9.1.3.2.16
	Enumeration
	

	Initial Date
	3.23
	Date-Time
	

	Initialization Vector
	4.6
	Byte String
	

	Issuer
	3.13
	Text String
	deprecated as of version 1.1

	Issuer Alternative Name
	3.12
	Byte String
	

	Issuer Distinguished Name
	3.12
	Byte String
	

	Iteration Count
	4.6
	Integer
	

	IV/Counter/Nonce
	2.1.5
	Byte String
	

	J
	2.1.7
	Big Integer
	

	Key
	2.1.7
	Byte String
	

	Key Block
	2.1.3
	Structure
	

	Key Compression Type
	9.1.3.2.2
	Enumeration
	

	Key Format Type
	2.1.4, 9.1.3.2.3
	Enumeration
	

	Key Material
	2.1.4, 2.1.7
	Byte String / Structure
	

	Key Part Identifier
	2.2.5
	Integer
	

	Key Role Type
	3.6, 9.1.3.2.17
	Enumeration
	

	Key Value
	2.1.4
	Byte String / Structure
	

	Key Wrapping Data
	2.1.5
	Structure
	

	Key Wrapping Specification
	2.1.6
	Structure
	

	Last Change Date
	3.38
	Date-Time
	

	Lease Time
	3.20
	Interval
	

	Link
	3.35
	Structure
	

	Link Type
	3.35, 9.1.3.2.20
	Enumeration
	

	Linked Object Identifier
	3.35
	Text String
	

	MAC/Signature
	2.1.5
	Byte String
	

	MAC/Signature Key Information
	2.1.5
	Text String
	

	Machine Identifier
	2.1.2
	Text String
	

	Maximum Items
	4.9
	Integer
	

	Maximum Response Size
	6.3
	Integer
	

	Media Identifier
	2.1.2
	Text String
	

	Message Extension
	6.16
	Structure
	

	Modulus
	2.1.7
	Big Integer
	

	Name
	3.2
	Structure
	

	Name Type
	3.2, 9.1.3.2.11
	Enumeration
	

	Name Value
	3.2
	Text String
	

	Network Identifier
	2.1.2
	Text String
	

	Object Group
	3.33
	Text String
	

	Object Group Member
	4.9
	Enumeration
	

	Object Type
	3.3, 9.1.3.2.12
	Enumeration
	

	Offset
	4.4, 4.8
	Interval
	

	Opaque Data Type
	2.2.8, 9.1.3.2.10
	Enumeration
	

	Opaque Data Value
	2.2.8
	Byte String
	

	Opaque Object
	2.2.8
	Structure
	

	Operation
	6.2, 9.1.3.2.27
	Enumeration
	

	Operation Policy Name
	3.18
	Text String
	

	P
	2.1.7
	Big Integer
	

	Password
	2.1.2
	Text String
	

	Padding Method
	3.6, 9.1.3.2.15
	Enumeration
	

	Prime Exponent P
	2.1.7
	Big Integer
	

	Prime Exponent Q
	2.1.7
	Big Integer
	

	Prime Field Size
	2.2.5
	Big Integer
	

	Private Exponent
	2.1.7
	Big Integer
	

	Private Key
	2.2.4
	Structure
	

	Private Key Template-Attribute
	2.1.8
	Structure
	

	Private Key Unique Identifier
	4.2
	Text String
	

	Process Start Date
	3.25
	Date-Time
	

	Protect Stop Date
	3.26
	Date-Time
	

	Protocol Version
	6.1
	Structure
	

	Protocol Version Major
	6.1
	Integer
	

	Protocol Version Minor
	6.1
	Integer
	

	Public Exponent
	2.1.7
	Big Integer
	

	Public Key
	2.2.3
	Structure
	

	Public Key Template-Attribute
	2.1.8
	Structure
	

	Public Key Unique Identifier
	4.2
	Text String
	

	Put Function
	5.2, 9.1.3.2.26
	Enumeration
	

	Q
	2.1.7
	Big Integer
	

	Q String
	2.1.7
	Byte String
	

	Qlength
	3.7
	Integer
	

	Query Function
	4.25, 9.1.3.2.24
	Enumeration
	

	Recommended Curve
	2.1.7, 3.7, 9.1.3.2.5
	Enumeration
	

	Replaced Unique Identifier
	5.2
	Text String
	

	Request Header
	7.2
	Structure
	

	Request Message
	7.1
	Structure
	

	Request Payload
	4, 5, 7.2
	Structure
	

	Response Header
	7.2
	Structure
	

	Response Message
	7.1
	Structure
	

	Response Payload
	4, 7.2
	Structure
	

	Result Message
	6.11
	Text String
	

	Result Reason
	6.10, 9.1.3.2.29
	Enumeration
	

	Result Status
	6.9, 9.1.3.2.28
	Enumeration
	

	Revocation Message
	3.31
	Text String
	

	Revocation Reason
	3.31
	Structure
	

	Revocation Reason Code
	3.31, 9.1.3.2.19
	Enumeration
	

	Salt
	4.6
	Byte String
	

	Secret Data
	2.2.7
	Structure
	

	Secret Data Type
	2.2.7, 9.1.3.2.9
	Enumeration
	

	Serial Number
	3.13
	Text String
	deprecated as of version 1.1

	Server Information
	4.25
	Structure
	contents vendor-specific

	Split Key
	2.2.5
	Structure
	

	Split Key Method
	2.2.5, 9.1.3.2.8
	Enumeration
	

	Split Key Parts
	2.2.5
	Integer
	

	Split Key Threshold
	2.2.5
	Integer
	

	State
	3.22, 9.1.3.2.18
	Enumeration
	

	Storage Status Mask
	4.9, 9.1.3.3.2
	Integer
	Bit mask

	Subject Alternative Name
	3.11
	Byte String
	

	Subject Distinguished Name
	3.11
	Byte String
	

	Symmetric Key
	2.2.2
	Structure
	

	Template
	2.2.6
	Structure
	

	Template-Attribute
	2.1.8
	Structure
	

	Time Stamp
	6.5
	Date-Time
	

	Transparent*
	2.1.7
	Structure
	

	Unique Identifier
	3.1
	Text String
	

	Unique Batch Item ID
	6.4
	Byte String
	

	Username
	2.1.2
	Text String
	

	Usage Limits
	3.21
	Structure
	

	Usage Limits Count
	3.21
	Long Integer
	

	Usage Limits Total
	3.21
	Long Integer
	

	Usage Limits Unit
	3.21
	Enumeration
	

	Validity Date
	4.24
	Date-Time
	

	Validity Indicator
	4.24, 9.1.3.2.23
	Enumeration
	

	Vendor Extension
	6.16
	Structure
	contents vendor-specific

	Vendor Identification
	4.25, 6.16
	Text String
	

	Wrapping Method
	2.1.5, 9.1.3.2.4
	Enumeration
	

	X
	2.1.7
	Big Integer
	

	X.509 Certificate Identifier
	3.9
	Structure
	

	X.509 Certificate Issuer
	3.12
	Structure
	

	X.509 Certificate Subject
	3.11
	Structure
	

	Y
	2.1.7
	Big Integer
	


Table 277: Tag Cross-reference

Appendix D. Operations and Object Cross-Reference 

The following table indicates the types of Managed Object(s) that each Operation accepts as input or provides as output. This table is not normative.

	Operation
	Managed Objects

	
	Certificate
	Symmetric Key
	Public Key
	Private Key
	Split Key
	Template
	Secret Data
	Opaque Object

	Create 
	N/A
	Y
	N/A
	N/A
	N/A
	Y
	N/A
	N/A

	Create Key Pair
	N/A
	N/A
	Y
	Y
	N/A
	Y
	N/A
	N/A

	Register
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Re-key
	N/A
	Y
	N/A
	N/A
	N/A
	Y
	N/A
	N/A

	Re-key Key Pair
	N/A
	N/A
	Y
	Y
	N/A
	Y
	N/A
	N/A

	Derive Key
	N/A
	Y
	N/A
	N/A
	N/A
	Y
	Y
	N/A

	Certify
	Y
	N/A
	Y
	N/A
	N/A
	Y
	N/A
	N/A

	Re-certify
	Y
	N/A
	N/A
	N/A
	N/A
	Y
	N/A
	N/A

	Locate
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Check
	Y
	Y
	Y
	Y
	Y
	N/A
	Y
	Y

	Get
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Get Attributes
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Get Attribute List
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Add Attribute
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Modify Attribute
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Delete Attribute
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Obtain Lease
	Y
	Y
	Y
	Y
	Y
	N/A
	Y
	N/A

	Get Usage Allocation
	N/A
	Y
	Y
	Y
	N/A
	N/A
	N/A
	N/A

	Activate
	Y
	Y
	Y
	Y
	Y
	N/A
	Y
	N/A

	Revoke
	Y
	Y
	N/A
	Y
	Y
	N/A
	Y
	Y

	Destroy
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Archive
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Recover
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Validate
	Y
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	Query
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	Cancel
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	Poll
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	Notify
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	Put
	Y
	Y
	Y
	Y
	Y
	Y
	Y
	Y

	Discover Versions
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A


Table 278: Operation and Object Cross-reference

Appendix E. Acronyms

The following abbreviations and acronyms are used in this document:

3DES
- Triple Data Encryption Standard specified in ANSI X9.52

AES 
- Advanced Encryption Standard specified in FIPS 197

ASN.1
- Abstract Syntax Notation One specified in ITU-T X.680

BDK
- Base Derivation Key specified in ANSI X9 TR-31

CA
- Certification Authority

CBC
- Cipher Block Chaining

CCM
- Counter with CBC-MAC specified in NIST SP 800-38C

CFB
- Cipher Feedback specified in NIST SP 800-38A

CMAC
- Cipher-based MAC specified in NIST SP 800-38B

CMC
- Certificate Management Messages over CMS specified in RFC 5275

CMP
- Certificate Management Protocol specified in RFC 4210

CPU
- Central Processing Unit

CRL
- Certificate Revocation List specified in RFC 5280

CRMF
- Certificate Request Message Format specified in RFC 4211

CRT 
- Chinese Remainder Theorem

CTR
- Counter specified in NIST SP 800-38A

CVK
- Card Verification Key specified in ANSI X9 TR-31

DEK
- Data Encryption Key

DER 
- Distinguished Encoding Rules specified in ITU-T X.690

DES
- Data Encryption Standard specified in FIPS 46-3

DH
- Diffie-Hellman specified in ANSI X9.42

DNS
- Domain Name Server

DSA 
- Digital Signature Algorithm specified in FIPS 186-3

DSKPP
- Dynamic Symmetric Key Provisioning Protocol

ECB
- Electronic Code Book

ECDH
- Elliptic Curve Diffie-Hellman specified in ANSI X9.63 and NIST SP 800-56A

ECDSA
- Elliptic Curve Digital Signature Algorithm specified in ANSX9.62

ECMQV
- Elliptic Curve Menezes Qu Vanstone specified in ANSI X9.63 and NIST SP 800-56A

FFC
- Finite Field Cryptography

FIPS
- Federal Information Processing Standard

GCM
- Galois/Counter Mode specified in NIST SP 800-38D

GF
- Galois field (or finite field)

HMAC 
- Keyed-Hash Message Authentication Code specified in FIPS 198-1 and RFC 2104

HTTP
- Hyper Text Transfer Protocol

HTTP(S)
- Hyper Text Transfer Protocol (Secure socket)

IEEE
- Institute of Electrical and Electronics Engineers

IETF
- Internet Engineering Task Force

IP
- Internet Protocol

IPsec
- Internet Protocol Security

IV 
- Initialization Vector

KEK
- Key Encryption Key

KMIP
- Key Management Interoperability Protocol

MAC 
- Message Authentication Code

MKAC
- EMV/chip card Master Key: Application Cryptograms specified in ANSI X9 TR-31

MKCP
- EMV/chip card Master Key: Card Personalization specified in ANSI X9 TR-31

MKDAC
- EMV/chip card Master Key: Data Authentication Code specified in ANSI X9 TR-31

MKDN
- EMV/chip card Master Key: Dynamic Numbers specified in ANSI X9 TR-31

MKOTH
- EMV/chip card Master Key: Other specified in ANSI X9 TR-31

MKSMC
- EMV/chip card Master Key: Secure Messaging for Confidentiality specified in X9 TR-31

MKSMI
- EMV/chip card Master Key: Secure Messaging for Integrity specified in ANSI X9 TR-31

MD2
- Message Digest 2 Algorithm specified in RFC 1319

MD4
- Message Digest 4 Algorithm specified in RFC 1320

MD5
- Message Digest 5 Algorithm specified in RFC 1321

NIST
- National Institute of Standards and Technology

OAEP
- Optimal Asymmetric Encryption Padding specified in PKCS#1

OFB
- Output Feedback specified in NIST SP 800-38A

PBKDF2
- Password-Based Key Derivation Function 2 specified in RFC 2898

PCBC
- Propagating Cipher Block Chaining 

PEM
- Privacy Enhanced Mail specified in RFC 1421

PGP
- OpenPGP specified in RFC 4880

PKCS
- Public-Key Cryptography Standards

PKCS#1
- RSA Cryptography Specification Version 2.1 specified in RFC 3447

PKCS#5
- Password-Based Cryptography Specification Version 2 specified in RFC 2898

PKCS#8
- Private-Key Information Syntax Specification Version 1.2 specified in RFC 5208

PKCS#10
- Certification Request Syntax Specification Version 1.7 specified in RFC 2986

POSIX
- Portable Operating System Interface

RFC
- Request for Comments documents of IETF

RSA 
- Rivest, Shamir, Adelman (an algorithm)

SCEP
- Simple Certificate Enrollment Protocol

SCVP
- Server-based Certificate Validation Protocol

SHA
- Secure Hash Algorithm specified in FIPS 180-2

SP
- Special Publication

SSL/TLS
- Secure Sockets Layer/Transport Layer Security

S/MIME 
- Secure/Multipurpose Internet Mail Extensions

TDEA
- see 3DES

TCP
- Transport Control Protocol

TTLV
- Tag, Type, Length, Value

URI
- Uniform Resource Identifier

UTC
- Coordinated Universal Time

UTF-8
- Universal Transformation Format 8-bit specified in RFC 3629

XKMS
- XML Key Management Specification

XML
- Extensible Markup Language

XTS
- XEX Tweakable Block Cipher with Ciphertext Stealing specified in NIST SP 800-38E

X.509
- Public Key Certificate specified in RFC 5280

ZPK
- PIN Block Encryption Key specified in ANSI X9 TR-31

Appendix F. List of Figures and Tables

51Figure 1: Cryptographic Object States and Transitions



 TOC \h \z \c "Table" 

Table 1: Terminology
11
Table 2: Attribute Object Structure
15
Table 3: Credential Object Structure
16
Table 4: Credential Value Structure for the Username and Password Credential
16
Table 5: Credential Value Structure for the Device Credential
16
Table 6: Key Block Object Structure
18
Table 7: Key Value Object Structure
18
Table 8: Key Wrapping Data Object Structure
19
Table 9: Encryption Key Information Object Structure
20
Table 10: MAC/Signature Key Information Object Structure
20
Table 11: Key Wrapping Specification Object Structure
21
Table 12: Parameter mapping.
22
Table 13: Key Material Object Structure for Transparent Symmetric Keys
22
Table 14: Key Material Object Structure for Transparent DSA Private Keys
22
Table 15: Key Material Object Structure for Transparent DSA Public Keys
22
Table 16: Key Material Object Structure for Transparent RSA Private Keys
23
Table 17: Key Material Object Structure for Transparent RSA Public Keys
23
Table 18: Key Material Object Structure for Transparent DH Private Keys
23
Table 19: Key Material Object Structure for Transparent DH Public Keys
24
Table 20: Key Material Object Structure for Transparent ECDSA Private Keys
24
Table 21: Key Material Object Structure for Transparent ECDSA Public Keys
24
Table 22: Key Material Object Structure for Transparent ECDH Private Keys
24
Table 23: Key Material Object Structure for Transparent ECDH Public Keys
25
Table 24: Key Material Object Structure for Transparent ECMQV Private Keys
25
Table 25: Key Material Object Structure for Transparent ECMQV Public Keys
25
Table 26: Template-Attribute Object Structure
26
Table 27: Extension Information Structure
26
Table 28: Certificate Object Structure
26
Table 29: Symmetric Key Object Structure
27
Table 30: Public Key Object Structure
27
Table 31: Private Key Object Structure
27
Table 32: Split Key Object Structure
27
Table 33: Template Object Structure
29
Table 34: Secret Data Object Structure
29
Table 35: Opaque Object Structure
30
Table 36: Attribute Rules
32
Table 37: Unique Identifier Attribute
32
Table 38: Unique Identifier Attribute Rules
33
Table 39: Name Attribute Structure
33
Table 40: Name Attribute Rules
33
Table 41: Object Type Attribute
34
Table 42: Object Type Attribute Rules
34
Table 43: Cryptographic Algorithm Attribute
34
Table 44: Cryptographic Algorithm Attribute Rules
34
Table 45: Cryptographic Length Attribute
35
Table 46: Cryptographic Length Attribute Rules
35
Table 47: Cryptographic Parameters Attribute Structure
35
Table 48: Cryptographic Parameters Attribute Rules
36
Table 49: Key Role Types
36
Table 50: Cryptographic Domain Parameters Attribute Structure
37
Table 51: Cryptographic Domain Parameters Attribute Rules
37
Table 52: Certificate Type Attribute
37
Table 53: Certificate Type Attribute Rules
38
Table 54: Certificate Length Attribute
38
Table 55: Certificate Length Attribute Rules
38
Table 56: X.509 Certificate Identifier Attribute Structure
39
Table 57: X.509 Certificate Identifier Attribute Rules
39
Table 58: X.509 Certificate Subject Attribute Structure
39
Table 59: X.509 Certificate Subject Attribute Rules
39
Table 60: X.509 Certificate Issuer Attribute Structure
40
Table 61: X.509 Certificate Issuer Attribute Rules
40
Table 62: Certificate Identifier Attribute Structure
40
Table 63: Certificate Identifier Attribute Rules
41
Table 64: Certificate Subject Attribute Structure
41
Table 65: Certificate Subject Attribute Rules
41
Table 66: Certificate Issuer Attribute Structure
42
Table 67: Certificate Issuer Attribute Rules
42
Table 68: Digital Signature Algorithm Attribute
42
Table 69: Digital Signature Algorithm Attribute Rules
43
Table 70: Digest Attribute Structure
43
Table 71: Digest Attribute Rules
44
Table 72: Operation Policy Name Attribute
44
Table 73: Operation Policy Name Attribute Rules
44
Table 74: Default Operation Policy for Secret Objects
46
Table 75: Default Operation Policy for Certificates and Public Key Objects
46
Table 76: Default Operation Policy for Private Template Objects
47
Table 77: Default Operation Policy for Public Template Objects
47
Table 78: X.509 Key Usage to Cryptographic Usage Mask Mapping
48
Table 79: Cryptographic Usage Mask Attribute
48
Table 80: Cryptographic Usage Mask Attribute Rules
49
Table 81: Lease Time Attribute
49
Table 82: Lease Time Attribute Rules
49
Table 83: Usage Limits Attribute Structure
50
Table 84: Usage Limits Attribute Rules
50
Table 85: State Attribute
52
Table 86: State Attribute Rules
52
Table 87: Initial Date Attribute
53
Table 88: Initial Date Attribute Rules
53
Table 89: Activation Date Attribute
53
Table 90: Activation Date Attribute Rules
53
Table 91: Process Start Date Attribute
54
Table 92: Process Start Date Attribute Rules
54
Table 93: Protect Stop Date Attribute
54
Table 94: Protect Stop Date Attribute Rules
55
Table 95: Deactivation Date Attribute
55
Table 96: Deactivation Date Attribute Rules
55
Table 97: Destroy Date Attribute
56
Table 98: Destroy Date Attribute Rules
56
Table 99: Compromise Occurrence Date Attribute
56
Table 100: Compromise Occurrence Date Attribute Rules
56
Table 101: Compromise Date Attribute
57
Table 102: Compromise Date Attribute Rules
57
Table 103: Revocation Reason Attribute Structure
57
Table 104: Revocation Reason Attribute Rules
57
Table 105: Archive Date Attribute
58
Table 106: Archive Date Attribute Rules
58
Table 107: Object Group Attribute
58
Table 108: Object Group Attribute Rules
58
Table 109: Fresh Attribute
59
Table 110: Fresh Attribute Rules
59
Table 111: Link Attribute Structure
60
Table 112: Link Attribute Structure Rules
60
Table 113: Application Specific Information Attribute
61
Table 114: Application Specific Information Attribute Rules
61
Table 115: Contact Information Attribute
61
Table 116: Contact Information Attribute Rules
61
Table 117: Last Change Date Attribute
62
Table 118: Last Change Date Attribute Rules
62
Table 119 Custom Attribute
62
Table 120: Custom Attribute Rules
63
Table 121: Create Request Payload
65
Table 122: Create Response Payload
65
Table 123: Create Attribute Requirements
65
Table 124: Create Key Pair Request Payload
66
Table 125: Create Key Pair Response Payload
66
Table 126: Create Key Pair Attribute Requirements
67
Table 127: Register Request Payload
67
Table 128: Register Response Payload
68
Table 129: Register Attribute Requirements
68
Table 130: Computing New Dates from Offset during Re-key
69
Table 131: Re-key Attribute Requirements
69
Table 132: Re-key Request Payload
70
Table 133: Re-key Response Payload
70
Table 134: Computing New Dates from Offset during Re-key Key Pair
70
Table 135: Re-key Key Pair Attribute Requirements
71
Table 136: Re-key Key Pair Request Payload
72
Table 137: Re-key Key Pair Response Payload
73
Table 138: Derive Key Request Payload
74
Table 139: Derive Key Response Payload
74
Table 140: Derivation Parameters Structure (Except PBKDF2)
75
Table 141: PBKDF2 Derivation Parameters Structure
75
Table 142: Certify Request Payload
76
Table 143: Certify Response Payload
76
Table 144: Computing New Dates from Offset during Re-certify
77
Table 145: Re-certify Attribute Requirements
77
Table 146: Re-certify Request Payload
78
Table 147: Re-certify Response Payload
78
Table 148: Locate Request Payload
80
Table 149: Locate Response Payload
80
Table 150: Check Request Payload
81
Table 151: Check Response Payload
81
Table 152: Get Request Payload
82
Table 153: Get Response Payload
82
Table 154: Get Attributes Request Payload
82
Table 155: Get Attributes Response Payload
83
Table 156: Get Attribute List Request Payload
83
Table 157: Get Attribute List Response Payload
83
Table 158: Add Attribute Request Payload
83
Table 159: Add Attribute Response Payload
84
Table 160: Modify Attribute Request Payload
84
Table 161: Modify Attribute Response Payload
84
Table 162: Delete Attribute Request Payload
85
Table 163: Delete Attribute Response Payload
85
Table 164: Obtain Lease Request Payload
85
Table 165: Obtain Lease Response Payload
86
Table 166: Get Usage Allocation Request Payload
86
Table 167: Get Usage Allocation Response Payload
86
Table 168: Activate Request Payload
86
Table 169: Activate Response Payload
87
Table 170: Revoke Request Payload
87
Table 171: Revoke Response Payload
87
Table 172: Destroy Request Payload
88
Table 173: Destroy Response Payload
88
Table 174: Archive Request Payload
88
Table 175: Archive Response Payload
88
Table 176: Recover Request Payload
88
Table 177: Recover Response Payload
88
Table 178: Validate Request Payload
89
Table 179: Validate Response Payload
89
Table 180: Query Request Payload
90
Table 181: Query Response Payload
90
Table 182: Discover Versions Request Payload
91
Table 183: Discover Versions Response Payload
91
Table 184: Cancel Request Payload
91
Table 185: Cancel Response Payload
92
Table 186: Poll Request Payload
92
Table 187: Notify Message Payload
93
Table 188: Put Message Payload
94
Table 189: Protocol Version Structure in Message Header
95
Table 190: Operation in Batch Item
95
Table 191: Maximum Response Size in Message Request Header
95
Table 192: Unique Batch Item ID in Batch Item
96
Table 193: Time Stamp in Message Header
96
Table 194: Authentication Structure in Message Header
96
Table 195: Asynchronous Indicator in Message Request Header
96
Table 196: Asynchronous Correlation Value in Response Batch Item
96
Table 197: Result Status in Response Batch Item
97
Table 198: Result Reason in Response Batch Item
98
Table 199: Result Message in Response Batch Item
98
Table 200: Batch Order Option in Message Request Header
98
Table 201: Batch Error Continuation Option in Message Request Header
99
Table 202: Batch Count in Message Header
99
Table 203: Batch Item in Message
99
Table 204: Message Extension Structure in Batch Item
99
Table 205: Request Message Structure
100
Table 206: Response Message Structure
100
Table 207: Request Header Structure
100
Table 208: Request Batch Item Structure
101
Table 209: Response Header Structure
101
Table 210: Response Batch Item Structure
101
Table 211: Allowed Item Type Values
103
Table 212: Allowed Item Length Values
104
Table 213: Tag Values
111
Table 214: Credential Type Enumeration
111
Table 215: Key Compression Type Enumeration
112
Table 216: Key Format Type Enumeration
112
Table 217: Wrapping Method Enumeration
113
Table 218: Recommended Curve Enumeration for ECDSA, ECDH, and ECMQV
113
Table 219: Certificate Type Enumeration
114
Table 220: Digital Signature Algorithm Enumeration
114
Table 221: Split Key Method Enumeration
115
Table 222: Secret Data Type Enumeration
115
Table 223: Opaque Data Type Enumeration
115
Table 224: Name Type Enumeration
115
Table 225: Object Type Enumeration
116
Table 226: Cryptographic Algorithm Enumeration
117
Table 227: Block Cipher Mode Enumeration
117
Table 228: Padding Method Enumeration
118
Table 229: Hashing Algorithm Enumeration
118
Table 230: Key Role Type Enumeration
119
Table 231: State Enumeration
120
Table 232: Revocation Reason Code Enumeration
120
Table 233: Link Type Enumeration
120
Table 234: Derivation Method Enumeration
121
Table 235: Certificate Request Type Enumeration
121
Table 236: Validity Indicator Enumeration
121
Table 237: Query Function Enumeration
122
Table 238: Cancellation Result Enumeration
122
Table 239: Put Function Enumeration
122
Table 240: Operation Enumeration
123
Table 241: Result Status Enumeration
124
Table 242: Result Reason Enumeration
124
Table 243: Batch Error Continuation Option Enumeration
125
Table 244: Usage Limits Unit Enumeration
125
Table 245: Encoding Option Enumeration
125
Table 246: Object Group Member Enumeration
125
Table 247: Cryptographic Usage Mask
126
Table 248: Storage Status Mask
126
Table 249: General Errors
129
Table 250: Create Errors
129
Table 251: Create Key Pair Errors
130
Table 252: Register Errors
130
Table 253: Re-key Errors
131
Table 254: Re-key Key Pair Errors
132
Table 255: Derive Key Errors-
132
Table 256: Certify Errors
133
Table 257: Re-certify Errors
133
Table 258: Locate Errors
134
Table 259: Check Errors
134
Table 260: Get Errors
135
Table 261: Get Attributes Errors
135
Table 262: Get Attribute List Errors
135
Table 263: Add Attribute Errors
136
Table 264: Modify Attribute Errors
136
Table 265: Delete Attribute Errors
136
Table 266: Obtain Lease Errors
137
Table 267: Get Usage Allocation Errors
137
Table 268: Activate Errors
137
Table 269: Revoke Errors
138
Table 270: Destroy Errors
138
Table 271: Archive Errors
138
Table 272: Recover Errors
138
Table 273: Validate Errors
139
Table 274: Poll Errors
139
Table 275: Batch Items Errors
139
Table 276: Attribute Cross-reference
144
Table 277: Tag Cross-reference
150
Table 278: Operation and Object Cross-reference
152


Appendix G. Revision History

	Revision
	Date
	Editor
	Changes Made

	draft-01
	2011-07-12
	Robert Haas (with help of Mathias Bjoerkqvist)
	Incorporated various proposals towards v1.1, a few minor TODOs left (indicated as such).

Incorporated the Re-key Key Pair proposal from: http://www.oasis-open.org/apps/org/workgroup/kmip/download.php/37935/v0.4KMIPAsymmetricRekeyProposal.doc
Incorporated the proposal of changes to Certify and Re-certify operations from: http://www.oasis-open.org/apps/org/workgroup/kmip/download.php/37999/v0.4KMIPNoCertReqProposal.doc
Incorporated the Discover Versions proposal from: http://www.oasis-open.org/apps/org/workgroup/kmip/download.php/42606/Proposal%20for%20Discover%20Versions.docx
Incorporated the Vendor Extensions proposal from: http://www.oasis-open.org/apps/org/workgroup/kmip/download.php/42409/VendorExtensionProposal-v2.3a.doc
Incorporated the Key Wrap of Unstructured Data from: http://www.oasis-open.org/apps/org/workgroup/kmip/download.php/40055/key-wrap_of_unstructured_data-26oct2010-1.ppt

Incorporated the Groups proposal from: http://www.oasis-open.org/apps/org/workgroup/kmip/download.php/42116/kmip-spec-1.GroupUpdates-v1.doc
Incorporated the Device Credential proposal from: http://www.oasis-open.org/apps/org/workgroup/kmip/download.php/42736/KMIP%20Usage%20Guide%20Proposal%20on%20Device%20Credentials%20v2.doc

	draft-02
	2011-10-19
	Robert Haas (with help of Mathias Bjoerkqvist)
	Incorporated various proposals towards v1.1, still a few minor TODOs left (indicated as such).

Incorporated the Cryptographic Length of Certificates from: 
http://www.oasis-open.org/apps/org/workgroup/kmip/ballot.php?id=2098
Incorporated the Digital Signature Algorithm proposal for Certificates from:
http://www.oasis-open.org/apps/org/workgroup/kmip/ballot.php?id=2099
Incorporated the Digest proposal from:
http://www.oasis-open.org/apps/org/workgroup/kmip/ballot.php?id=2106
Updated the Device Credential proposal from: 
http://www.oasis-open.org/apps/org/workgroup/kmip/ballot.php?id=2107
Removed Section 9.2 on XML encoding from:
http://www.oasis-open.org/apps/org/workgroup/kmip/ballot.php?id=2109
Incorporated the Repeating Attributes proposal from:
http://www.oasis-open.org/apps/org/workgroup/kmip/ballot.php?id=2074
Updated the participants lists according to:
http://www.oasis-open.org/apps/org/workgroup/kmip/email/archives/201109/msg00029.html

Updated the Tags table.

Renamed the “Key Wrapping Encoding Options” table to “Encoding Options”.

	draft-03
	2011-12-06
	Robert Haas (with help of Mathias Bjoerkqvist)
	Incorporated the Certificate Attribute Update Proposal from: http://www.oasis-open.org/apps/org/workgroup/kmip/ballot.php?id=2143
Incorporated the Attribute Index Proposal from: http://www.oasis-open.org/apps/org/workgroup/kmip/ballot.php?id=2132
Updated the Digital Signature Algorithm proposal for Certificates with:
http://www.oasis-open.org/apps/org/workgroup/kmip/download.php/43177/v5KMIPSignatureAlgorithmProposal.doc
Updated the Cryptographic Length Proposal from: http://www.oasis-open.org/apps/org/workgroup/kmip/ballot.php?id=2098 with the updated proposal from: http://www.oasis-open.org/apps/org/workgroup/kmip/download.php/43176/v3KMIPCertificateLengthProposal.doc

	draft-04
	2011-12-06
	Robert Griffin
	Reformatted in OASIS standards track document format

	draft-05
	2011-12-17
	Robert Griffin
	Editorial correction to include missing definitions and normative reference.

	csd-01
	2012-1-4
	OASIS admin
	Committee Specification Draft for Public Review

	draft-06
	2012-04-13
	Denis Pochuev (with Mathias Bjoerkqvist)
	Made minor modifications to address public review comments.

	draft-07
	2012-04-30
	Denis Pochuev 
	Incorporated changes to attribute index and list of contributors


� EMBED Visio ���





 MACROBUTTON  NoMacro [document identifier] 

 MACROBUTTON NoMacro [specification date] 
Copyright © OASIS Open 2004.All Rights Reserved. 

Page 5 of 164
kmip-spec-v1.1-cos01

21 September 2012

Standards Track Work Product
Copyright © OASIS Open 2012. All Rights Reserved.
Page 51 of 164

[image: image2.emf]







_1273844590.vsd

