
SWS CQL 1.2 CD 01 June 30 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 1 of 27

CQL 1.2: The Contextual Query
Language Version 1.0
Committee Draft 01

30 June 2008
Specification URIs:
This Version:

http://docs.oasis-open.org/search-ws/june08releases/cql-1-2-V1.0-cd-01.doc (Authoritative)
http://docs.oasis-open.org/search-ws/june08releases/cql-1-2-V1.0-cd-01.pdf
http://docs.oasis-open.org/search-ws/june08releases/cql-1-2-V1.0-cd-01.html

Latest Version:
http://docs.oasis-open.org/search-ws/v1.0/cql-1-2-V1.0.doc
http://docs.oasis-open.org/search-ws/v1.0/cql-1-2-V1.0.pdf
http://docs.oasis-open.org/search-ws/v1.0/cql-1-2-v1.0.html

Technical Committee:
OASIS Search Web Services TC

Chair(s):
Ray Denenberg <rden@loc.gov>
Matthew Dovey <m.dovey@jisc.ac.uk>

Editor(s):
Ray Denenberg rden@loc.gov
Larry Dixson ldix@loc.gov
Matthew Dovey m.dovey@jisc.ac.uk
Janifer Gatenby Janifer.Gatenby@oclc.org
Ralph LeVan levan@oclc.org
Ashley Sanders a.sanders@MANCHESTER.AC.UK
Rob Sanderson azaroth@liverpool.ac.uk

Related work:
This specification is related to:

• Contextual Query Language (CQL)
Abstract:

CQL is a formal language for representing queries to information retrieval systems. The design
objective is that queries be human readable and writable, and that the language be intuitive while
maintaining the expressiveness of more complex languages.

Status:
This document was last revised or approved by the OASIS Search Web Services TC on the above date.
The level of approval is also listed above. Check the “Latest Version” or “Latest Approved Version”
location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s
email list. Others should send comments to the Technical Committee by using the “Send A Comment”
button on the Technical Committee’s web page at http://www.oasis-open.org/committees/search-ws

http://docs.oasis-open.org/search-ws/june08releases/apd-V1.0-cd-01.doc�
http://docs.oasis-open.org/search-ws/june08releases/cql-1-2-V1.0-cd-01.pdf�
http://docs.oasis-open.org/search-ws/june08releases/cql-1-2-V1.0-cd-01.html�
http://docs.oasis-open.org/search-ws/v1.0/cql-1-2-V1.0.doc�
http://docs.oasis-open.org/search-ws/v1.0/cql-1-2-V1.0.pdf�
http://docs.oasis-open.org/search-ws/v1.0/cql-1-2-v1.0.html�
http://www.oasis-open.org/committees/search-ws/�
mailto:rden@loc.gov�
mailto:ldix@loc.gov�
mailto:m.dovey@jisc.ac.uk�
mailto:Janifer.Gatenby@oclc.org�
mailto:levan@oclc.org�
mailto:a.sanders@MANCHESTER.AC.UK�
mailto:azaroth@liverpool.ac.uk�
http://www.loc.gov/standards/sru/specs/cql.html�
http://www.oasis-open.org/committees/search-ws/�
http://www.oasis-open.org/committees/search-ws�

SWS CQL 1.2 CD 01 June 30 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 2 of 27

For information on whether any patents have been disclosed that may be essential to implementing this
specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the Technical Committee web page (http://www.oasis-open.org/committees/search-ws/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/search-ws/.

http://www.oasis-open.org/committees/search-ws�
http://www.oasis-open.org/committees/search-ws/�
http://www.oasis-open.org/committees/search-ws/�

SWS CQL 1.2 CD 01 June 30 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 3 of 27

Notices
Copyright © OASIS® 2007. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

http://www.oasis-open.org/who/trademark.php�
http://www.oasis-open.org/who/trademark.php�

SWS CQL 1.2 CD 01 June 30 2008
Copyright © OASIS® 1993–2008. All Rights Reserved. OASIS trademark, IPR and other policies apply. Page 4 of 27

Table of Contents
1 Introduction ... 5

1.1 Terminology .. 5
1.2 Normative References .. 5

2 Query Syntax Description ... 6
2.1 Search Clause .. 6

2.1.1 Search Term .. 6
2.1.2 Index Name ... 7
2.1.3 Relation ... 7

2.2 Boolean Operators .. 8
2.2.1 Boolean Modifiers .. 8
2.2.2 Proximity Modifiers .. 8

2.3 Sorting ... 9
2.4 Prefix Assignment ... 9
2.5 Case Sensitivity .. 9

3 BNF .. 10
4 Context Sets ... 12
5 The CQL Context Set ... 13

5.1 Indexes ... 13
5.2 Relations ... 14

5.2.1 Implicit Relations ... 14
5.2.2 Defined Relations .. 15
5.2.3 Relation Modifiers .. 16

5.3 Booleans ... 19
5.3.1 Boolean Modifiers .. 19
Note about Proximity Units ... 20

6 The Sort Context Set .. 21
A. Diagnostics ... 23
B. Acknowledgements .. 27

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 5 of 27

1 Introduction 1

CQL, the Contextual Query Language, is a formal language for representing queries to information 2
retrieval systems such as web indexes, bibliographic catalogs and museum collection information. The 3
design objective is that queries be human readable and writable, and that the language be intuitive while 4
maintaining the expressiveness of more complex languages. 5

Traditionally, query languages have fallen into two camps: Powerful, expressive languages, not easily 6
readable nor writable by non-experts (e.g. SQL, XQuery);or simple and intuitive languages not powerful 7
enough to express complex concepts (e.g. CCL and google). CQL combines simplicity and intuitiveness 8
of expression for simple, every day queries, with the richness of more expressive languages when 9
necessary to accommodate complex concepts. 10

1.1 Terminology 11

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 12
NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be 13
interpreted as described in [RFC2119]. When these words are not capitalized in this document, they are 14
meant in their natural language sense. 15

1.2 Normative References 16

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 17
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 18

http://www.ietf.org/rfc/rfc2119.txt�

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 6 of 27

2 Query Syntax Description 19

A CQL query consists of either a single search clause [example a], or multiple search clauses connected 20
by boolean operators [example b]. It may have a sort specification at the end, following the 'sortBy' 21
keyword [example c]. In addition it may include a prefix [‘dc’ in example d] assigning a context for the 22
search index, and even an assignment for a context prefix, that binds the short names to a context set 23
identifier [‘> dc = "info:srw/context-sets/1/dc-v1.1"‘ in example e]. 24
Examples: 25

a. title = fish 26
b. title = fish and creator = sanderson 27
c. title = fish sortBy date/ascending 28
d. dc.title = fish 29
e. > dc = "info:srw/context-sets/1/dc-v1.1" dc.title = fish 30

2.1 Search Clause 31

A search clause consists of either an index, relation and a search term [example a], or a search term by 32
itself [example b]. Examples: 33

a. title = fish 34

b. fish 35
If the clause consists of just a term the index and relation are implied: the index is treated as 36
'cql.serverChoice', where ‘cql’ is the context and ‘serverChoice’ is the index (an index defined within the 37
‘cql’ context set) and the relation is treated as '=' [example c]. (Therefore example b and c are 38
semantically equivalent.) 39

c. cql.serverChoice = fish 40

2.1.1 Search Term 41

Search terms MAY be enclosed in double quotes [example a], though need not be [example b]. Search 42
terms MUST be enclosed in double quotes if they contain any of the following characters: < > = / () and 43
whitespace [example c]. The search term MUST be present in a search clause but it may be an empty 44
string [example d]. The empty search term has no defined semantics. 45

Examples: 46

a. "fish" 47

b. fish 48

c. "squirrels fish" 49
d. “” 50

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 7 of 27

2.1.2 Index Name 51

An index name always includes a base name [example a] and may also include a prefix [example b], 52
which determines the context set of which the index is a part. The base name and the prefix are 53
separated by a dot character ('.'). If multiple '.' characters are present, then the first should be treated as 54
the prefix/base name delimiter [example c]. If the prefix is not supplied, it is determined by the server 55
[example a]. 56

Examples: 57

a. title any Afish dog@ [no prefix’. Prefix determined by the server.] 58

b. dc.title any Afish dog@ [prefix is ‘dc’] 59

c. ac.bc.title any Afish dog@ [prefix is ‘ac’] 60

2.1.3 Relation 61

The relation in a search clause specifies the relationship between the index and search term. As for an 62
index, It too always includes a base name [example a] and may also include a prefix providing a context 63
for the relation [example b]. If a relation does not have a prefix, the context set is 'cql'. If no relation is 64
supplied in a search clause, then = is assumed, which means that the relation is determined by the 65
server. (As is noted above, if the relation is omitted then the index MUST also be omitted; the relation is 66
assumed to be A=@ and the index is assumed to be cql.serverChoice; thus the server chooses both the 67
index and the relation.) 68

Examples: 69
a. dc.title any “fish frog” 70

Find records where the title (as defined by the Adc@ context set) contains at least one of the 71
words :fish@, Afrog@ 72

b. dc.title cql.any “fish frog” 73
This query has the same meaning as the previous, since the default context set for the relation is 74
Acql@. 75

c. dc.title cql.all “fish frog” 76
Find records where the title contains all of the words :fish@, Afrog@ 77

2.1.3.1 Relation Modifiers 78

Relations may be modified by one or more relation modifiers. Relation modifiers always include a base 79
name, and may include a prefix for a context set [example a] as above. If a prefix is not supplied, the 80
context set is 'cql'. Relation modifiers are separated from each other and from the relation by forward 81
slash characters('/'). Whitespace may be present on either side of a '/' character [example b], but the 82
relation-plus-modifiers group may not end in a '/'. Relation modifiers may also have a comparison symbol 83
and a value. The comparison symbol is ‘=’ (equal), ‘<’ (less than), ‘<=’ (less than or equal), ‘>’ (greater 84
than), ‘>=’ (greater than or equal), or ‘<>’ (not equal). The value must conform to the same rules for 85
quoting as search terms, above [example c]. 86
Examples: 87

a. dc.title any/relevant fish 88
The relation modifier Arelevant@ means the server should use a relevancy algorithm for 89
determining matches and the order of the result set. When the relevant modifier is used, the 90
actual relation is often not significant. 91

b. dc.title any / relevant fish 92
This example is equivalent to example (a). 93

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 8 of 27

c. title any/rel.algorithm=cori fish 94
This example is distinguished from example (a) in which the modifier Arelevant@ is from the CQL 95
context set. In this case the modifier is Aalgorithm=cori@, from the rel context set, in essence 96
meaning use the relevance algorithm Acori@. A description of this context set is available at 97
http://srw.cheshire3.org/contextSets/rel/ 98

2.2 Boolean Operators 99

Search clauses may be linked by boolean operators. These are: and, or, not and prox. Note that not 100
is semantically 'and-not' (it is not intended as a unary operator). Boolean operators all have the same 101
precedence; they are evaluated left-to-right. Parentheses may be used to override left-to-right evaluation 102
[example e]. 103
Examples: 104

a. dc.title = “monkey house” and dc.creator = vonnegut 105

b. dc.title = fish or dc.creator = sanderson 106

c. dc.title = “monkey house” not dc.creator = vonnegut 107

d. cat prox/unit=word/distance>2/ordered hat 108
Find 'cat' where it appears more than two words before 'hat' (see 3.3.1.) 109

e. dc.title = fish or (dc.creator = sanderson and dc.identifier = "id:1234567") 110

2.2.1 Boolean Modifiers 111

Booleans may be modified by one or more boolean modifiers, separated as per relation modifiers with '/' 112
characters. Again, boolean modifiers consist of a base name and may include a prefix determining the 113
modifier's context set [example a]. If not supplied, then the context set is 'cql'. As per relation modifiers, 114
they may also have a comparison symbol and a value [example b]. 115
Examples: 116

a. dc.title = fish or/rel.combine=sum dc.creator any sanderson 117
b. dc.title = monkey prox/unit=word/distance>1 dc.title = house 118

Find records where both Amonkey@ and Ahouse@ are in the title, separated by at least one 119
intervening word. 120

2.2.2 Proximity Modifiers 121

Basic proximity modifiers are defined in the CQL context set. Proximity units 'word', 'sentence', 122
'paragraph', and 'element' are defined there and may also be defined in other context sets. Within the 123
CQL set they are explicitly undefined. When defined in another context set they may be assigned specific 124
meaning. 125
Thus compare "prox/unit=word" with "prox/xyz.unit=word". In the first, 'unit' is a prox modifier from the 126
CQL set, and as such its values are undefined, so 'word' is subject to interpretation by the server. In the 127
second, 'unit' is a prox modifier defined by the xyz context set, which may assign the unit 'word' a specific 128
meaning. 129
The context set xyz may define additional units, for example, 'street': 130
 prox/xyz.unit="street" 131

http://srw.cheshire3.org/contextSets/rel/�

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 9 of 27

This approach, 'prox/xyz.unit="street"', is chosen rather than 'Prox/unit=xyz.street' for the following 132
reason. In the first case, 'unit' is a modifier defined in the xyz context set, and 'street' is a value defined for 133
that modifier. In the second, 'unit' is a modifier from the cql context set, with a value defined in a different 134
set. so its value would have to be one that is defined in the cql context set. This approach is chosen to 135
avoid pairing a modifier from one set with a value from another, which can lead to unpredictable results. 136

2.3 Sorting 137

Queries may include explicit information on how to sort the result set generated by the search. 138

The sort specification is included at the end, and is separated by a 'sortBy' keyword. The specification 139
consists of an ordered list of indexes, potentially with modifiers, to use as keys on which to sort the result 140
set. If multiple keys are given, then the second and subsequent keys should be used to determine the 141
order of items that would otherwise sort together. Each index used as a sort key has the same semantics 142
as when it is used to search. 143
Modifiers may be attached to the index in the same way as to booleans and relations in the main part of 144
the query. These modifiers may be part of any context set, including the CQL context set and the Sort 145
context set. This is the only time when a modifier may be attached to an index. If a modifier may be used 146
in this way it should be stated in the description of its semantics. As many types of search also require 147
specification of term order (for example the <, > and within relations), these modifiers are often specified 148
as relation modifiers. 149

Examples: 150
a. "cat" sortBy dc.title 151
b. "dinosaur" sortBy dc.date/sort.descending dc.title/sort.ascending 152

2.4 Prefix Assignment 153

 Note: The use of Prefix Maps is uncommon. 154
 A Prefix Map may be used to assign context set names to specific identifiers in order to be sure that the 155
server maps them in a desired fashion. It may occur at any place in the query and applies to anything 156
below the map in the query tree. A prefix assignment is specified by: '>' shortname '=' identifier [example 157
a]. The shortname and '=' sign may be omitted, in which case it sets a default context set for indexes 158
[example b]. 159
Examples: 160

a. > dc = "info:units/direct-current" dc.voltage > 12 161
While Adc@ is almost always used as the prefix for the Dublin Core context set, this example 162
illustrates that this is not always so, as in this case it is used for the (hypothetical) Adirect 163
current@ context set. 164

b. > "info:units/direct-current" voltage > 12 165
This query has the same meaning as example a. 166

2.5 Case Sensitivity 167

All parts of CQL are case insensitive apart from user supplied search terms, values for modifiers and 168
prefix map identifiers, which may or may not be case sensitive. If any case insensitive part of CQL is 169
specified with mixed upper and lower case, it is for aesthetic purposes only. 170

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 10 of 27

3 BNF 171

Following is the Backus Naur Form (BNF) definition for CQL. ("::=" represents "is defined as".) 172

sortedQuery ::= prefixAssignment sortedQuery
| scopedClause ['sortby' sortSpec]

sortSpec ::= sortSpec singleSpec | singleSpec

singleSpec ::= index [modifierList]

cqlQuery ::= prefixAssignment cqlQuery
| scopedClause

prefixAssignment ::= '>' prefix '=' uri
| '>' uri

scopedClause ::= scopedClause booleanGroup searchClause
| searchClause

booleanGroup ::= boolean [modifierList]

boolean ::= 'and' | 'or' | 'not' | 'prox'

searchClause ::= '(' cqlQuery ')'
 | index relation searchTerm
 | searchTerm

relation ::= comparitor [modifierList]

comparitor ::= comparitorSymbol | namedComparitor

comparitorSymbol ::= '=' | '>' | '<' | '>=' | '<=' | '<>' | '=='

namedComparitor ::= identifier

modifierList ::= modifierList modifier | modifier

modifier ::= '/' modifierName [comparitorSymbol modifierValue]

prefix, uri, modifierName,
modifierValue, searchTerm,

index

::= term

term ::= identifier | 'and' | 'or' | 'not' | 'prox' | 'sortby'

identifier ::= charString1 | charString2

charString1 := Any sequence of characters that does not include any of the
following:

whitespace
 ((open parenthesis)

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 11 of 27

) (close parenthesis)
 =
 <
 >
 '"' (double quote)
 /

 If the final sequence is a reserved word, that token is returned
instead. Note that '.' (period) may be included, and a sequence of
digits is also permitted. Reserved words are 'and', 'or', 'not', and
'prox' (case insensitive). When a reserved word is used in a search
term, case is preserved.

charString2 := Double quotes enclosing a sequence of any characters except double
quote (unless preceded by backslash (\)). Backslash escapes the
character following it. The resultant value includes all backslash
characters except those releasing a double quote (this allows other
systems to interpret the backslash character). The surrounding
double quotes are not included.

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 12 of 27

4 Context Sets 173

The "Contextual Query Language" is founded on the concept of searching by semantics or context (hence 174
the name), rather than by syntax. The same search may be performed in a different way on very different 175
underlying data structures in different servers, but both servers should understand the intent behind the 176
query. In order for multiple communities to define their own semantics, CQL uses context sets to ensure 177
cross-domain interoperability. 178

Context sets permit CQL users to create their own indexes, relations, relation modifiers and boolean 179
modifiers without risk of choosing a name that someone else has chosen. All of these aspects of CQL 180
must come from a context set, however there are rules for determining the prevailing default if one is not 181
supplied. Context sets allow CQL to be used by communities in ways that the designers have not 182
foreseen, while still maintaining the same rules for parsing which allow interoperability. 183

A contexts set may define: 184

• indexes 185

• relations 186

• relation modifiers 187

• boolean modifiers 188

• index modifiers, but only for use within a sort clause. See Sort Context Set. 189

When defining a new context set, it is necessary to provide a description of the semantics of each item 190
within it. While context sets may contain indexes, relations, relation modifiers and boolean modifiers (and 191
index modifiers for use in sort clauses), there is no requirement that all should be present; in fact most 192
context sets define indexes only. 193

Each context set has a unique identifier, a URI. When indicating the context set in a query, a short form is 194
used. The short name must be bound to the URI, and this binding may be sent as a mapping within the 195
query itself, or be published by the recipient of the query in some protocol dependent fashion. The short 196
name 'cql' is reserved for the CQL context set, but authors may wish to recommend a short name for use 197
with their set. 198

An index, relation, or modifier qualified by a context is represented in the form prefix.value, (i.e. the prefix 199
and value, separated by period) where prefix is a short name for a unique context set identifier. 200

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 13 of 27

5 The CQL Context Set 201

The CQL context set defines a set of indexes, relations and relation modifiers. The indexes supplied are 202
'utility' indexes which are generally useful across all applications of the language. These utility indexes are 203
for instances when CQL is required to express a concept not directly related to the records, or for indexes 204
applicable in practically every context. 205

The short name for this context set should always be ‘cql’, which is reserved for this context set. This is 206
the only context set with a reserved name. Other context sets may recommend a short name to be used, 207
but do not reserve that name. 208

The identifier for this context set is: info:srw/cql-context-set/1/cql-v1.2 209

5.1 Indexes 210

• resultSetId 211
 A search clause may be a result set id. This is a special case, where the index and relation are 212
expressed as "cql.resultSetId =" and the term is the result set id returned by the server in the 213
'resultSetId' parameter of the searchRetrieve response. It may be used by itself in a query to refer 214
to an existing result set from which records are desired. It may also be used in conjunction with 215
other resultSetId clauses or other indexes, combined by boolean operators. The semantics of 216
resultSetId with any relation other than ‘=’ is undefined. 217
Example: 218
cql.resultSetId = "5940824f-a2ae-41d0-99af-9a20bc4047b1" and 219
dc.contributor=”Willie Mo” 220
 Match the result set with the given identifier. 221

• allRecords 222
 This is a special index which matches every record available. Every record is matched no matter 223
what values are provided for the relation and term, but the recommended syntax is: 224
cql.allRecords = 1. 225
Example: 226
cql.allRecords = 1 NOT dc.title = fish 227
 Search for all records that do not match 'fish' as a word in title. 228

• allIndexes 229
 The 'allIndexes' index will result in a search equivalent to searching all of the indexes (in all of the 230
context sets) that the server has access to. 231
Example: 232
cql.allIndexes = fish 233
If the server had three indexes - title, creator and date - then this would be the same as title = 234
fish or creator = fish or date = fish 235

• anywhere 236
Equivalent to ‘allIndexes’. Retained for historical purposes and expected to be deprecated in the 237
future. 238

• anyIndexes 239
 The 'anyIndexes' index allows the server to determine how to search for the given term. The 240
server may choose one or more indexes to search, which may or may not be generally available 241
via CQL. It may choose a different index to search based on the term. 242
This is the default when the index and relation is omitted from a search clause. The relation used 243
when the index is omitted is '='. 244
Examples: 245

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 14 of 27

cql.anyIndexes = fish 246
Search in any one or more indexes for the term fish 247

• serverChoice 248
Equivalent to ‘anyIndexes’. Retained for historical purposes and expected to be deprecated in 249
the future. 250

• keywords 251
 The keywords index is an index of terms determined by the server to be generally descriptive or 252
meaningful to search on. It might include the full text of a document, descriptive metadata fields, 253
or anything else generally useful to search as an initial entry point to the data. It might be a 254
combination of other indexes. The server determines exactly what makes up this index, however 255
the choice must be consistent, unlike anyIndexes above, when the choice can be different for 256
different searches. 257
Example: 258
cql.keywords any/relevant "code computer calculator programming" 259
Search the keywords index for the given term 260

5.2 Relations 261

5.2.1 Implicit Relations 262

These relations are defined in the grammar of CQL. The cql context set defines their meaning, when they 263
are used within this context set (other context sets may assign different meanings). 264

• = 265
This is the default relation, and the server can choose any appropriate relation or means of 266
comparing the query term with the terms from the data being searched. If the term is numeric, the 267
most commonly chosen relation is '=='. For a string term, either 'adj' or '==' as appropriate for the 268
index and term. 269
Examples: 270

o animal.numberOfLegs = 4 271
The recommended server choice for this example is '==' 272

o dc.identifer = "gb 141 staff a-m" 273
The recommended server choice for this example is '==' 274

o dc.title = "lord of the flies" 275
The recommended server choice for this example is 'adj' 276

o dc.date = "2004 2006" 277
The recommended server choice for this example is 'within' 278

• == 279
 This relation is used for exact equality matching. The term in the data is exactly equal to the term 280
in the search. 281
Examples: 282

o dc.identifier == "gb 141 staff a-m" 283
 Search for the string 'gb 141 staff a-m' in the identifier index. 284

o animal.numberOfLegs == 4 285
 Search for animals with exactly 4 legs. 286

• <> 287
 This relation means 'not equal to' and matches anything which is not exactly equal to the search 288
term. 289
Examples: 290

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 15 of 27

o dc.date <> 2004-01-01 291
Search for any date except the first of January, 2004 292

o dc.identifier <> "" 293
Search for any identifier which is not the empty string. 294

• <, >, <=,>= 295
These relations retain their regular meanings as pertaining to ordered terms (less than, greater 296
than, less than or equal to, greater than or equal to). 297
Examples: 298

o dc.date > 2006-09-01 299
Search for dates after the 1st of September, 2006 300

o animal.numberOfLegs < 4 301
Search for animals with less than 4 legs. 302

5.2.2 Defined Relations 303

 These relations are defined as being widely useful as part of a default context set. 304

• adj 305
This relation is used for phrase searches. All of the words in the search term must appear, and 306
must be adjacent to each other in the record in the order listed. The query could also be 307
expressed using the PROX boolean operator. 308
Example: 309

o dc.description adj "blue shirt" 310
Search for 'blue' immediately followed by 'shirt' in the description. 311

• all, any 312
 These relations may be used when the term contains multiple items to indicate "all of these 313
items" or "any of these items". These queries could be expressed using boolean AND and OR 314
respectively. These relations have an implicit relation modifier of 'cql.word', which may be 315
changed by use of alternative relation modifiers. 316
Examples: 317

o dc.title all "day life" 318
Search for both day and life in the title. 319

o dc.description any "computer calculator" 320
Search for either computer or calculator in the description. 321

• within 322
’within’ may be used with a search term that has multiple dimensions. It matches if the record's 323
value falls completely within the range, area or volume described by the search term, inclusive of 324
the extents given. 325
Examples: 326

o dc.date within "2002 2003" 327
Search for dates between 2002 and 2003 inclusive. 328

o animal.numberOfLegs within "2 5" 329
Search for animals that have 2,3,4 or 5 legs. 330

o geo.point within "45.3,19.0 45.3,20.0 46.3,19.0 46.3,19.0 " 331
Search for points within the indicated polygon. Note that the (hypothetical) geo context 332
set in this example would specify how a search term represents a polygon. 333

• encloses 334
 ‘encloses’ is used when the index's data has multiple dimensions. (This contrast with ‘within’, 335

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 16 of 27

used with a search term that has multiple dimensions.) It matches if the database's term fully 336
encloses the search term. 337
Examples: 338

o xyz.dateRange encloses 2002 339
Search for ranges of dates that include the year 2002. 340

o geo.area encloses "45.3, 19.0" 341
Search for any area that encloses the point 45.3, 19.0 The (hypothetical) geo context set 342
in this example would specify how a search term represents a point. 343

5.2.3 Relation Modifiers 344

5.2.3.1 Functional Modifiers 345

• stem 346
The server should apply a stemming algorithm to the words within the term. For example such 347
that cardiology, and cardiovascular both match the stem of cardio. 348

• relevant 349
The server should use a relevancy algorithm for determining matches and the order of the result 350
set. 351

• phonetic 352
 The server should use a phonetic algorithm (for example, soundex) for determining words which 353
sound like the term. For example such that school would be searched when the supplied term is 354
skool. 355

• fuzzy 356
The server should be liberal in what it counts as a match. The details are left to the server but 357
might include permutations of character order, off-by-one for numerical terms and so forth. 358

• partial 359
 When used with within or encloses, there may be some section which extends outside of the 360
term. This permits for the database term to be partially enclosed, or fall partially within the search 361
term. 362

• ignoreCase, respectCase 363
 The server is instructed to either ignore or respect the case of the search term, rather than its 364
default behavior (which is unspecified). 365

• ignoreAccents, respectAccents 366
The server is instructed to either ignore or respect diacritics in terms, rather than its default 367
behavior. (Default behavior is unspecified, but respectAccents is the recommended default.) 368

• locale=value 369
The term should be treated as being from the specified locale. Locales will in general include 370
specifications for whether sort order is case-sensitive or insensitive, how it treats accents, and so 371
forth. The server determines the default locale. The value is usually of the form C, french, fr_CH, 372
fr_CH.iso88591 or similar. 373

 Examples: 374

• dc.title any/stem "computing disestablishmentarianism" 375
Find the local stemmed form of 'computing' and 'disestablishmentarianism', and search for those 376
stems in the stemmed forms of the terms in titles. 377

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 17 of 27

• person.phoneNumber =/fuzzy "0151 795-4252" 378
Search for a phone number which is something similar to '0151 795-4252' but not necessarily 379
exactly that number. 380

• dc.title within/locale=fr "l m" 381
Find all titles between l and m, ensure that the locale is 'fr' for determining the order for what is 382
between l and m. 383

5.2.3.2 Term-format Modifiers 384

These modifiers specify the format of the search term to ensure that the server performs the correct 385
comparison. These modifiers may all be used in sort keys. 386

• word 387
The term should be broken into words according to the server's definition of a 'word' . 388

• string 389
The term is a single item, and should not be broken up. 390

• isoDate 391
Each item within the term conforms to the ISO 8601 specification for expressing dates. 392

• number 393
Each item within the term is a number. 394

• uri 395
Each item within the term is a URI. 396

• oid 397
Each item within the term is an ISO object identifier, dot-separated format. 398

Examples: 399

• dc.title =/string Jaws 400
Search in title for the string 'Jaws', rather than Jaws as a word. (Equivalent to the use of == as the 401
relation) 402

• zeerex.set ==/oid "1.2.840.10003.3.1" 403
Search for the given OID 404

• numberOfLegs/number=4 405
4 is treated as a number, so it should match the number 4 (for this index) no matter how it is 406
represented in the data. 407

• title =/string one 408
”one” is treated as a string, not a number. 409

5.2.3.3 Masking 410

• masked 411
This is a default modifier: all of the following masking rules and special characters are assumed 412
for search terms, unless the unmasked modifier is included. It may be overridden by the regexp 413
modifier. (To explicitly request this functionality, add 'cql.masked' as a relation modifier.) 414

o * 415
A single asterisk (*) is used to mask zero or more characters. 416

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 18 of 27

o ? 417
A single question mark (?) is used to mask a single character, thus N consecutive 418
question-marks means mask N characters. 419

o ^ 420
Carat/hat (^) is used as an anchor character for terms that are word lists, that is, where 421
the relation is 'all' or 'any', or 'adj'. It may not be used to anchor a string, that is, when the 422
relation is '==' (string matches are, by default, anchored). It may occur at the beginning or 423
end of a word (with no intervening space) to mean right or left anchored."^" has no 424
special meaning when it occurs within a word (not at the beginning or end) or string but 425
must be escaped nevertheless. 426

o \ 427
Backslash (\) is used to escape '*', '?', quote (") and '^' , as well as itself. Backslash not 428
followed immediately by one of these characters is an error. 429

Examples: 430

o dc.title = c*t 431
Matches words that start with c and end in t 432

o dc.title adj "*fish food*" 433
Matches a word that ends in fish, followed by a word that starts with food. (For example it 434
matches “swordfish foodfight”.) 435

o dc.title = c?t 436
Matches a three letter word that starts with c and ends in t. 437

o dc.title adj "^cat in the hat" 438
Matches 'cat in the hat' where it is at the beginning of the field 439

o dc.title any "^cat ^dog rat^" 440
Matches cat at the beginning, dog at the beginning or rat at the end. (For example 441
matches “cat eats dog”, “fish eats rat”, but not “rat eats cat”.) 442

o dc.title == "\"Of Couse\", she said" 443
Escape internal double quotes within the term. 444

• unmasked 445
Do not apply masking rules, all characters are literal. 446

• substring 447
The 'substring' modifier may be used to specify a range of characters (first and last character) 448
indicating the desired substring within the field to be searched. The modifier takes a value of the 449
form "start:end" where: 450

o Positive integers count forwards through the string, starting at 1. E.g. “1:10” means the 451
first through tenth character. 452

o Negative integers count backwards through the string, with -1 being the last character. 453
o Both start and end are inclusive of that character. 454
o If omitted, start defaults to 1. 455
o If omitted, end defaults to -1. 456

 457
Examples: 458

• dc.title =/substring="-5:" title 459

• marc.008 =/substring="1:6" 920102 460

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 19 of 27

• dc.title =/substring=":" "The entire title" 461

o dc.title =/substring="2:2" h 462

• regexp 463

The term should be treated as a regular expression. Any features beyond those found in modern 464
POSIX regular expressions are considered to be server dependent. This modifier overrides the 465
default 'masked' modifier, above. It may be used in either a string or word context. 466

 Example: 467

• dc.title adj/regexp "(lord|king|ruler) of th[ea] r.*s" 468
Match lord or king or ruler, followed by of, followed by the or tha, followed by r plus 469
zero or more characters plus s. 470

5.3 Booleans 471

A context set cannot define booleans, as these are defined by the CQL grammar. Boolean semantics 472
may be modified by boolean modifiers defined by a context set, and the CQL context set defined boolean 473
modifiers in 3.3.1. 474

CQL itself defines the following boolean operators. 475

• AND 476
The combination of two sets of records with AND will result in the set of records that appear in 477
both of the sets. 478

• OR 479
The combination of two sets of records with OR will result in the set of records that appear in 480
either or both of the sets. (It is inclusive OR, not exclusive OR.) 481
 482

• NOT 483
The combination of two sets of records with NOT will result in the set of records that appear in the 484
left set, but not in the right hand set. It cannot be used as a unary operator. 485
 486

• PROX 487
prox is short for “proximity”. The prox boolean operator allows the relative locations of the terms 488
to be specified as search criteria. prox semantics is defined by its modifiers as described below. 489

5.3.1 Boolean Modifiers 490

The CQL context set defines four boolean modifiers, which are used only with the prox boolean operator. 491

• distance <symbol> <value> 492
 The distance that the two terms should be separated by. 493

o Symbol is one of: <, >, <=, >=, =, <> 494
If the modifier is not supplied, it defaults to <=. 495

o Value is a non-negative integer. If the modifier is not supplied, it defaults to 1 when 496
unit=word, or 0 for all other units. 497

• unit=<value> 498
 The type of unit for the distance. 499

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 20 of 27

o Value is one of: 'paragraph ,sentence, word, element. The default is 'word'. 500
These values are explicitly undefined. They are subject to interpretation by the server. 501
See “Note About Proximity Units” below. 502

• unordered 503
The order of the two terms is unimportant. This is the default. 504

• ordered 505
 The order of the two terms must be as per the query. 506

Examples: 507

• cat prox/unit=word/distance>2/ordered hat 508
Find 'cat' where it appears more than two words before 'hat' 509

• cat prox/unit=paragraph hat 510
Find cat and hat appearing in the same paragraph (“same” meaning within zero paragraphs, 511
as distance default to 0 when paragraph is the unit) in either order (unordered default) 512

Note about Proximity Units 513

As noted above proximity units 'paragraph', 'sentence', 'word' and 'element' are explicitly undefined when 514
used by the CQL context set. Other context sets may assign them specific values. 515
Thus compare "prox/unit=word" with "prox/xyz.unit=word" (where ‘xyz’ is an arbitrary hypothetical context 516
set). In the first, 'unit' is a prox modifier from the CQL set, and as such its values are undefined, so 'word' 517
is subject to interpretation by the server. In the second, 'unit' is a prox modifier defined by the xyz context 518
set, which may assign the unit 'word' a specific meaning. 519

Other context sets may define additional units, for example, 'street': 520

prox/xyz.unit="street" 521

 Note that this approach, 'prox/xyz.unit="street"', is preferable to 'prox/unit=xyz.street'. In the first case, 522
'unit' is a modifier defined in the xyz context set, and 'street' is a value defined for that modifier. In the 523
second, 'unit' is a modifier from the cql context set, with a value defined in a different set. so its value 524
would have to be one that is defined in the cql context set. Pairing a modifier from one set with a value 525
from another is not a good practice. 526

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 21 of 27

6 The Sort Context Set 527

The sort context set defines a set of index modifiers to be used within a sortby clause 528
The URI for this context set is: info:srw/cql-context-set/1/sort-v1.0. The recommended short name is: sort 529
Note that CQL does not permit index modifiers except within a sort clause. For example, in the CQL 530
query: "author=wolfe sortby title" 'sortby title' is a sort clause; 'title' is an index. 'author', which is the 531
primary index of query, may not have a modifier, but 'title', which is the index of the sort clause, may. 532
Thus for example, in the CQL query: "author=wolfe sortby title/ascending" 'ascending' is an index 533
modifier. 534
Index Modifiers 535

Modifier Description
ignoreCase Case-insensitive sorting: for example, unit and UNIT sort together.

respectCase Case-sensitive sorting: for example, unit and UNIT sort separately.

ignoreAccents Accent-insensitive sorting: for example sorensen and sørensen sort together.

respectAccents Accent-sensitive sorting: for example sorensen and sørensen sort separately.

unicodeCollate=value Specfies the Unicode collation level. The value should be a small integer as
described in the Unicode Collation Algorithm report at
www.unicode.org/reports/tr10
This modifier supersedes any of the above four modifiers. (None of the above
should be used when ‘unicodeCollate’ is used.)

descending Sort in descending order.

missingOmit Records that have no value for the specified index are omitted from the sorted
result set.

missingFail Records that have no value for the specified index cause the search/sort
operation to fail with the diagnostic info:srw/diagnostic/1/93.

missingLow Records that have no value for the specified index are treated as if they had the
lowest possible value, so that they sort first in ascending order and last in
descending order.

missingHigh Records that have no value for the specified index are treated as if they had the
highest possible value.

missingValue=value Records that have no value for the specified index are treated as if they had the
specified value.

locale=value Sort according to the specified locale, which in general includes specifications
for whether sorting is case-sensitive or insensitive, how it treats accents, etc.
The value is usually of the form C, french, fr_CH, fr_CH.iso88591 or similar

Examples 536
• dc.creator=plews sortby dc.title/sort.respectCase 537

Sort by title, case sensitive 538
• dc.creator=plews sortby dc.title/sort.respectCase/sort.descending 539

Sort case sensitive and in descending order 540
• dc.creator=plews sortby dc.date/sort.missingOmit 541

Sort by date: records that have no date field are omitted from the result set. 542

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 22 of 27

• dc.creator=plews sortby dc.date/sort.missingValue=1970 543
Sort by date: records that have no date field are sorted as though they had a date of 1970. 544

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 23 of 27

A. Diagnostics 545

Normative Annex 546
The diagnostics below are defined for use with the following namespace: 547

info:srw/diagnostic/1 548
The number in the first column identifies the specific diagnostic within that namespace (e.g., diagnostic 2 549
below is identified by the uri: info:srw/diagnostic/1/2). 550
When CQL is used together with SRU, the Detail column indicates what should be returned in the details 551
field. If this column is blank, the format is 'undefined' and the server may return whatever it feels 552
appropriate, including nothing. 553

Number Description Detail Notes/Examples

10 Query syntax error

The query was invalid, but no information is
given for exactly what was wrong with it.

12 Too many characters in
query

Maximum
supported

The length (number of characters) of the
query exceeds the maximum length
supported by the server.

13 Invalid or unsupported
use of parentheses

Character offset
to error

The query couldn't be processed due to the
use of parentheses. Typically either they are
mismatched, or in the wrong place. Eg.
(((fish) or (sword and (b or) c)

14 Invalid or unsupported
use of quotes

Character offset
to error

The query couldn't be processed due to the
use of quotes. Typically that they are
mismatched Eg. "fish'

15 Unsupported context
set

URI or short
name of context
set

A context set given in the query isn't known
to the server. Eg. foo.title any fish.

16 Unsupported index Name of index The index isn't known, possibly within a
context set. Eg. dc.author any sanderson (dc
has a creator index, not author)

18 Unsupported
combination of indexes

Space delimited
index names

The particular use of indexes in a boolean
query can't be processed. Eg. The server
may not be able to do title queries merged
with description queries.

19 Unsupported relation Relation A relation in the query is unknown or
unsupported. Eg. The server can't handle
'within' searches for dates, but can handle
equality searches.

20 Unsupported relation
modifier

Value A relation modifier in the query is unknown or
unsupported by the server. Eg. 'dc.title
any/fuzzy starfish' when fuzzy isn't
supported.

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 24 of 27

21 Unsupported
combination of relation
modifers

Slash separated
relation modifiers

Two (or more) relation modifiers can't be
used together. Eg. dc.title
any/cql.word/cql.string "star fish"

22 Unsupported
combination of relation
and index

Space separated
index and
relation

While the index and relation are supported,
they can't be used together. Eg. dc.author
within "1 5"

23 Too many characters in
term

Length of longest
term

The term is too long. Eg. The server may
simply refuse to process a term longer than a
given length.

24 Unsupported
combination of relation
and term

Space separated
relation and term

The relation cannot be used to process the
term. Eg dc.title within "sanderson"

26 Non special character
escaped in term

Character
incorrectly
escaped

Eg "\a\r\n\s"

28 Masking character not
supported

A masking character given in the query is not
supported. Eg. The server may not support *
or ? or both

29 Masked words too
short

Minimum word
length

The masked words are too short, so the
server won't process them because they
would likely match too many terms. Eg.
dc.title any *

30 Too many masking
characters in term

Maximum
number
supported

The query has too many masking characters,
so the server won't process them. Eg. dc.title
any "???a*f??b* *a?"

31 Anchoring character
not supported

The server doesn't support the anchoring
character (^) Eg dc.title = "^jaws"

32 Anchoring character in
unsupported position

Character offset The anchoring character appears in an
invalid part of the term, typically the middle of
a word. Eg dc.title any "fi^sh"

33 Combination of
proximity/adjacency
and masking
characters not
supported

The server cannot handle both adjacency (=
relation for words) or proximity (the
boolean) in combination with
masking characters. Eg. dc.title =
"this is a titl* fo? a b*k"

34 Combination of
proximity/adjacency
and anchoring
characters not
supported

The server cannot handle anchoring
characters.

35 Term contains only
stopwords

Value If the server does not index words such as
'the' or 'a', and the term consists only of
these words, then while there may be
records that match, the server cannot find
any. Eg. dc.title any "the"

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 25 of 27

36 Term in invalid format
for index or relation

 This might happen when the index is of dates
or numbers, but the term given is a word. Eg
dc.date > "fish"

37 Unsupported boolean
operator

Value For cases when the server does not support
all of the boolean operators defined by CQL.
The most commonly unsupported is
Proximity, but could be used for NOT, OR or
AND.

38 Too many boolean
operators in query

Maximum
number
supported

There were too many search clauses given
for the server to process.

39 Proximity not
supported

Proximity is not supported at all.

40 Unsupported proximity
relation

Value The relation given for the proximity is
unsupported. Eg the server can only process
= and > was given.

41 Unsupported proximity
distance

Value The distance was too big or too small for the
server to handle, or didn't make sense. Eg 0
characters or less than 100000 words

42 Unsupported proximity
unit

Value The unit of proximity is unsupported, possibly
because it is not defined.

43 Unsupported proximity
ordering

Value The server cannot process the requested
order or lack thereof for the proximity
boolean

44 Unsupported
combination of
proximity modifiers

Slash separated
values

While all of the modifiers are supported
individually, this particular combination is not.

46 Unsupported boolean
modifier

Value A boolean modifier on the request isn't
supported.

47 Cannot process query;
reason unknown

 The server can't tell (or isn't telling) you why
it can't execute the query.

48 Query feature
unsupported

Feature the server is able (contrast with 47) to tell
you that something you asked for is not
supported.

49 Masking character in
unsupported position

the rejected term eg, a server that can handle xyz* but not *xyz
or x*yz

50 Result sets not
supported

The server cannot create a persistent result
set.

51 Result set does not
exist

Result set
identifier

The client asked for a result set in the query
which does not exist, either because it never
did or because it had expired.

52 Result set temporarily Result set The result set exists, it cannot be accessed,
but will be able to be accessed again in the

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 26 of 27

unavailable identifier future.

53 Result sets only
supported for retrieval

Other operations on results apart from
retrieval, such as sorting them or combining
them, are not supported.

55 Combination of result
set with search terms
not supported.

 Existing result sets cannot be combined with
new terms to create new result sets. eg
cql.resultsetid = foo not dc.title any fish

58 Result set created with
unpredictable partial
results available

 The result set is not complete; possibly, the
processing was interrupted. Some of the
results may not even be valid.

59 Result set created with
valid partial results
available

All of the records in the result set are valid,
but not all records that should be there
necessarily are.

60 Result set not created:
too many matching
records

Maximum
number

There were too many records to create a
persistent result set.

SWS CQL 1.2 CD 01 30 June 2007
Copyright © OASIS® 2007. All Rights Reserved. Page 27 of 27

B. Acknowledgements 554

The following individuals have participated in the creation of this specification and are gratefully 555
acknowledged: 556
Participants: 557

Kerry Blinco, Australian Department of Education, Employment and Workplace Relations 558
Ray Denenberg, Library of Congress 559
Larry Dixson, Library of Congress 560
Matthew Dovey, JISC 561
Janifer Gatenby, OCLC/PICS 562
Ralph LeVan, OCLC 563
Ashley Sanders, University of Manchester 564
Rob Sanderson, University of Liverpool 565

