ObjectScript Programming Language Reference

Robin D. Clark
Dec 29, 2000

Abstract

This document describes ObjectScript which is a weakly typed object oriented programming language
that is suitable for use as a scripting language. The language is designed to be easy to use, yet powerful.
It provides private fields and methods, inheritance, exceptions, synchronization and threading, nested
functions and classes, and operator overloading.

Contents

1 Introduction

2 Language Overview
2.1 Operators i e e e e e e e e

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.1.12
2.1.13
2.1.14
2.1.15

Postfix Operators L . e e
Unary Operators o i it b e e e e e e e
Type Operator e e e e e
Multiplicative Operators o . L ot e e e e e
Additive Operators L e e e e e e e e
Shift Operators o o L e e e e e e
Relational Operators 0 o e e e e e
Equality Operators 0 o o e e e e e
Bitwise And Operator e
Bitwise Xor Operator e
Bitwise Or Operator e
Logical And Operator 0 it
Logical Or Operator o ittt
Conditional Operator o0 i it e e e e e
Assignment Operators ot e e e e e e e

2.2 Casting e e e e e e e

2.3 Scope
2.4 Flow C
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7

ontrol . .. oL e e e
IFEISe . . o o e e e e
While-Loop . . .« . o . o e
For-Loop o . o o
Break and Continue L
Try-Catch-Finally0 L e
Throw . . . o o e e e e e e e e e e e e e e e e e e
Synchronisation 0L e e

3 Variables and Functions
3.1 Permissions L e e e e e e e

3.2 Variabl

€S . . LY. .. G- - - - - - R - - - - - v oo e e e e e e e e e e

3.3 Functions L
3.4 Anonymous Functions

4 Built-in Types

4.1 Object

4.2 Exact Number e e e e e e e e e e e e

4.3 Inexact
4.4 String

Number e e e e e

4.5 ExXCeption o e e e e e e e e e e e e e e e

4.6 Thread

5 Grammar

10
10
10
10
12

13
13
13
13
13
13
13

14

1 Introduction

ObjectScript is a weakly typed object oriented programming language. Being weakly typed means that
values have a type, which may be a built-in or user defined type, but variables do not have a type.

Every operation, such as built-in operations (+, -, %, etc.), including array operations ([]), are translated
into a method call. This is similar to smalltalk, except that a C-like grammar is retained to preserve the
familiar syntax and expected order of operations (ie. * has precedence over +).

An ObjectScript program does not have a main function or method, like C or Java, but instead the source
file is evaluated in order from beginning to end. The source file(s) may define functions that are called at a
later time.

In order to make ObjectScript easier to learn for programmers familiar with C/Java/JavaScript it uses
similar conditional and looping constructs (see example 1.1), as well as synchronization and exception con-
structs that are similar to Java.

Example 1.1 Sample Program

// calculate the n’th fibonacci number
function fib(n)
{
if(n==0)
return 0;
else if(n ==1)
return 1;
else if(n > 1)
return fib(n-1) + fib(n-2);
else
throw new Exception("bad input");
}

try

{
for(var i=0; i<10; i++)
writeln("£fib(" + i + ") is " + fib(i));

writeln("fib(1.5) is " + fib(1.5));

}

catch(e)

{

writeln("error: " + e);

}

All references (variables or functions) are resolved as the reference is evaluated. This means that it is
possible for a reference to resolve to different functions or variables at different times (see example 1.2).

Example 1.2 References are evaluated at runtime

const var a = 1;

{

function foo()

{

return a;

}

writeln("a: " +
writeln("foo():

var a = 2;

writeln("a: " +
writeln("foo():

a);
"+ foo());

a);
" + foo());

// prints:
// prints:

// prints:
// prints:

‘fa: 17
““foo(): 17°

fla: 27
““foo(): 27

2 Language Overview

This section gives an overview of the ObjectScript language, including description of the language’s operators,
how references are resolved, flow control, functions, and how functions can be used to define new types.

2.1 Operators

The operators used by ObjectScript are similar in function and precedence to those used in C, Java,
JavaScript, etc. (see table 2.1). The main difference is that, with the exception of the new, (), and as-
signment operators, all the operators are converted into method calls, which means the exact behavior of an
operator will depend on the values being operated upon.

Table 2.1 Operator Precedence

Name | Operators
Postfix O 00 ++ --
Unary ++ -- + = !
Type new
Multiplicative | * / %
Additive + -
Shift << >> >>>
Relational < > >= <= instanceof
Equality == I=
Bitwise And | &
Bitwise Xor -
Bitwise Or |
Logical And | &&
Logical Or 'l
Conditional | ?:
Assignment | = += -= *= /= = >>= <<= >>>= §= = |=

The following subsections will illustrate how the evaluator translates the built-in operator to a method
call. In these examples, the values a, b, and ¢ may infact be other expressions of greater or equal precedence
than the operator in question. Unless otherwise specified, the order in which a, b, and c are evaluated is
undefined.

Note that just because a programming language provides a mechanism for operator overloading does
not mean that it is a good idea to do so. Operator overloading is a feature that is easily abused by the
programmer, and can lead to difficult to understand programs. This feature is provided in order that the
language can be extended by add-on libraries.

2.1.1 Postfix Operators

Operator | Translatest To

a() n/a (call a as a function)

a[b] a.elementAt (b)

at+ a = a.uopIncrement () (evaluates to the initial value of a)
a—- a = a.uopDecrement () (evaluates to the initial value of a)

The methods called to evaluate the ++ and -- operators don’t actually change the value of the operand,
but instead the evaluator also performs an assignment operation to change the value of the operand.

2.1.2 TUnary Operators

Operator | Translatest To

++a a = a.uopIncrement ()
--a a = a.uopDecrement ()
+a a = a.uopPlus()

-a a = a.uopMinus()

a a = a.uopBitwiseNot()
la a = a.uopLogicalNot()

Like with the Postfiz (see section ?77?) operators, the methods called to evaluate these operators don’t
actually chaneg the value of the operand, but instead the evaluator also performs an assignment operation
to change the value of the operand.

2.1.3 Type Operator

Operator | Translatest To

new a() | n/a (call a as a constructor)

2.1.4 Multiplicative Operators

Operator | Translatest To

a*b a.bopMultiply(b)
a/b a.bopDivide (b)
a%b a.bopRemainder (b)

2.1.5 Additive Operators

Operator | Translatest To

a+b a.bopPlus(b)
a-b a.bopMinus(b)

2.1.6 Shift Operators

Operator | Translatest To

a<<b a.bopLeftShift (b)

a> b a.bopSignedRightShift (b)
a >>> b | a.bopUnsignedRightShift (b)

2.1.7 Relational Operators

Operator | Translatest To

a<hb a.bopLessThan (b)

a>b a.bopGreaterThan(b)

a<=b a.bopLessThanOrEquals(b)
a>=b a.bopGreaterThanOrEquals (b)
a instanceof b | a.bopInstance0f (b)

2.1.8 Equality Operators

Operator | Translatest To

a == a.bopEquals(b)
a!=b a.bopNotEquals(b)

2.1.9 Bitwise And Operator

Operator | Translatest To
a&b | a.bopBitwiseAnd(b)

2.1.10 Bitwise Xor Operator

Operator | Translatest To
a b | a.bopBitwiseXor(b)

2.1.11 Bitwise Or Operator

Operator | Translatest To
al|b | a.bopBitwiseOr(b)

2.1.12 Logical And Operator

Operator | Translatest To
a && b | a.bopLogicalAnd(b)

To evaluate the && operator, first a is evaluated, and if it evaluates to true then b is evaluated.

2.1.13 Logical Or Operator

Operator | Translatest To
allb | a.bopLogicalOr(b)

To evaluate the || operator, first a is evaluated, and if it evaluates to false then b is evaluated.

2.1.14 Conditional Operator

Operator | Translatest To

a? b: c|n/a

To evaluate the 7: operator, first a is evaluated, and if it evaluates to true then b is evaluated, otherwise
c is evaluated. The result of evaluating this operator is the result of evaluating b or c, which ever one is
actually evaluated.

2.1.15 Assignment Operators

Operator | Translatest To

a=>b n/a

a+=b a = a.bopPlus(b)

a-=>b a = a.bopMinus(b)

a *=b a = a.bopMultiply(b)

a/=b a = a.bopDivide(b)

a%=b a = a.bopRemainder (b)

a <<= b | a = a.bopLeftShift(b)

a >>=Db | a = a.bopSignedRightShift(b)
a >>>= b | a = a.bopUnsignedRightShift(b)
a&=b a = a.bopBitwiseAnd(b)

aszhb a = a.bopBitwiseXor (b)
al=b a = a.bopBitwiseOr (b)

2.2 Casting

The evaluator, or any script code which needs to ensure that a value is of a particular type, uses the casting
methods (see table 2.2). For example, when evaluating an if (see section ??) statement, the evaluator must
convert the conditional expression to a boolean value.

If the value to be cast is already of the specified type, then the casting method simply returns the object,
otherwise it returns a new object.

Table 2.2 Casting to built-in types

Type | Method
Boolean castToBoolean
String castToString

ExactNumber | castToExactNumber
InexactNumber | castToInexactNumber

2.3 Scope

ObjectScript uses nested scope, meaning that a variable or function being referenced is resolved by first
looking in the current scope, and then if not found recursively look in the previous scopes (see example 2.1).
All references to to variables or functions are resolved at run-time, rather than as the source code is parsed.

Example 2.1 Scope Example
var foo = 1;
var bar 1;

{

var foo = 2;
writeln("foo: " + foo); // prints ‘‘foo: 2’
writeln("bar: " + bar); // prints ‘‘bar: 17’

}

2.4 Flow Control

ObjectScript features program flow control constructs that are similar to those provided by C, Java, and
JavaScript. Unlike C and Java, switch statements are not supported. Unlike C, exceptions are supported.

2.4.1 If-Else

if (Ezpression)
EvaluationUnit,
(else EvaluationUnity)?

The Ezpression must evaluate to a boolean value. If the expression evaluates to true, then FvaluationUnit,
is evaluated. Otherwise EwvaluationUnits, if it is present, is evaluated.

2.4.2 While-Loop
while (Ezpression) EvaluationUnit

For each time through the loop Ezpression, which must evaluate to a boolean value, is evaluted. If not
false, the EvaluationUnit is evaluated, otherwise the loop is finished being evaluated.

2.4.3 For-Loop

for ((PreLoopStatement)? ; (Exzpressiom)? ; (Ezpressiony)?)
EvaluationUnit

is equivalent to:

PreLoopStatement ;
while (Ezpression;)

{

EvaluationUnit
Ezpressiony;

}

If present, the PreLoopStatement is evaluated. Then for each time through the loop Ezpression;, which must
evaluate to a boolean value if present, is evaluated. If Expression, is not present, it defaults to true. If not
false the EwvaluationUnit is evaluated, followed by Ezpression,, if present. Otherwise the loop is finished
being evaluated.

2.4.4 Break and Continue

break;
or:
continue;

The break and continue statements provide a means for exiting a loop. The break statement causes the
innermost enclosing loop to exit. The continue statement causes the flow of execution to jump to the
beginning of the next iteration of the loop. It is an error for a break or continue to not be enclosed in a
loop.

2.4.5 Try-Catch-Finally

try EvaluationUnit,
(catch (IDENTIFIER) EwvaluationUnity)?
(finally EvaluationUnits)?

To provide a means of catching exceptions, a Java-like try- catch-finally statement is provided. If an
exception is thrown while evaluating FEwaeluationUnit;, then the optional catch block is evaluated. The
thrown object is stored in variable with name specified by IDENTIFIER, which is in scope while evaluating
EvaluationUnity. Finally, the optional finally block (ie. EvaluationUnits) is evaluated.

2.4.6 Throw

throw Ezpression ;

The throw statement provides a way to throw exceptions. The Ezpression should evaluate to an object that
is an instance of type Exception.
2.4.7 Synchronisation
synchronized (Expression) EvaluationUnit
ObjectScript provides a means of serialising execution of a piece of code by means of the synchronized

statement. The Fzpression should evaluate to an object, whose monitor is acquired before evaluating
EvaluationUnit, and released after.

3 Variables and Functions

In ObjectScript, variables and functions are closely related. Functions are, in fact, variables.

3.1 Permissions

(const |/ public)#*

A variable of a function can be declared to be const and/or public. A const variable (or function) cannot
be modified once it has been assigned an initial value. A public variable or function can be accessed as a
public attribute of an object. If a variable or function that is not public is accessed as an attribute of the
object (with the exception of this) will cause an exception to be thrown.

3.2 Variables
(Permissions)? var IDENTIFIER (= Exzpression)? ;

A new variable is declared with the var keyword, and can optionally have an initializer to assign the variable
an intial value (see example 3.1).

Example 3.1 Variables
var a = 1 + 2;
const var b;

b = 3;
a = b; // ok;
b = a; // error!

3.3 Functions

(Permissions)? function IDENTIFIER ((Arglist)?)
(extends PrimaryEzpression FunctionCallEzpressionList)?
{ Program }

A new function is declared with the function keyword. A function can optionally be declared with per-
missions. If the function is not declared const, then it can be replaced (see example 3.2). In this regard,
functions behave exactly the same as variables.

Example 3.2 Function Permissions

const function foo() {} // a no-op function
function bar() {} // a no-op function
bar = foo; // ok

foo = bar; // error!

Functions can be used to implement classes and methods interchangeably. When a function is called,
a new scope is allocated and pushed onto the top of the scope stack. As the function is evaluated, local
variables or inner-functions are defined within the newly allocated scope. When the function returns, the
newly allocated scope is popped from the scope stack. If the function is called as a constructor, the popped
scope is returned as the newly constructed object, otherwise the scope is discarded. If the function is called
as a constructor, the type of the newly allocated scope (ie. the object being constructed) is the function.

10

When a function is defined, it records the scope that it is defined within. In this way, functions defined
within an outer function that is called as a constructor can have access to other functions or variables defined
within the scope of the outer function (see example 3.3).

Example 3.3 Function Example
function ExampleFunction(a, b, c)

{

var aVar = a + b + c;

/* Note: ‘‘public’’ has no meaning if this is called as a functionm,

* but determines whether this member can be accessed as a
* member of the constructed object if this is called as a
* method.

*/

public function aFunction()

{

return aVar;

}

return aFunction();

}

// Call as function:
ExampleFunction(1, 2, 3); // =>6

// Call as constructor:
var foo = new ExampleFunction(1, 2, 3);
foo.aFunction(); // => 6

// Note: functions don’t forget the scope they are defined in:

var bar = foo.aFunction;
bar () ; // =>6

// The type is the function that was the constructor:
foo instanceof ExampleFunction; // => true

A function may extend another function. If this is the case, that function may only be called as a
constructor. When the function is called, arguments to the function being extended are first evaluated,
then the function being extended is called with the newly constructed scope, finally the derived function is
evaluated. This is used to implement inheritance. The parent class, ie. the function being extended, may
define variables and functions within the scope of the derived class, which may then be overriden if needed
by the derived class (see example 3.4).

11

Example 3.4 Inheritance Example
function A(a)

{

var aa = a;

public function getA()

{

return a;

}
}

function B(b) extends A(b/2)

{

public function getB()

{

return b;

}

public function getAplusB()
// Note: ‘‘a’’ is not accessible here, but ‘‘aa’’ is
return aa + b;

}
}

3.4 Anonymous Functions

function ((4rglist)?)
(extends PrimaryEzpression FunctionCallEzpressionList)?
{ Program }

ObjectScript also provides a way to define anonymous functions (see example 3.5). As you can see, the
anonymous function syntax simply creates a new function object without binding it to a particular variable.

The anonymous function syntax is part of the Expression portion of the grammer, so it can be used, for
example, to define functions inline with a method call or object instantiation.

Example 3.5 Anonymous Function

// the following two function declarations are equivalent:
var plus = function(a, b) { return a + b; };
function plus(a, b) { return a + b; }

// using an anonymous function to implement an action listener:
button.addActionListener(new (function() extends java.awt.event.ActionListen() {
public function actionPerformed(evt)

{

}
PO D;

. handle button press here ...

12

4 Built-in Types

TODO: object diagram showing class hierarchy, and which methods are implemented by what types.

4.1 Object
The Object type is the base class for all other types, built-in or user-defined.

4.2 Exact Number

The ExactNumber type is the built-in type representing an exact number. An exact number is a signed
number represented by up to 64 bits. An exact number is immutable.

4.3 Inexact Number

The ExactNumber type is the built-in type representing an inexact, ie. floating point, number. A inexact
number is 7?7?. An inexact number is immutable.

4.4 String
The String type is the built-in type representing strings. A string is immutable.

4.5 Exception

The Exception type is the base class for all exceptions.

4.6 Thread

The Thread type is the base class used for creating new threads. The subclass should implement the run
method.

13

5 Grammar
(program-file)
(program)

(evaluation-unit)

(scope-block)
(variable-declaration)

(function-declaration)

(permission)

(function-call-expression-list)
(arg-list)

(try-statement)

(for-loop-statement)

(pre-loop-statement)

(while-loop-statement)
(conditional-statement)
(synchronized-statement)
(return-statement)

(break-statement)

== (progam) EOF

(evaluation-unit)*

(scope-block)
(variable-declaration) ;
(function-declaration)
(try-statement)
(for-loop-statement)
(while-loop-statement)
(conditional-statement)
(synchronized-statement)
(return-statement)
(break-statement)
(continue-statement)
(throw-statement)
(import-statement)
(eval-statement)
(expression) ;

{ (program) }
(permission)* var IDENTIFIER (= (ezpression))?
(permission)* function IDENTIFIER ({arg-list)?

(primary-expression) (function-call-expression-list))?

}

) (extends
{ {(program)

const

public

({expression)?)
IDENTIFIER (, IDENTIFER)*

try (evaluation-unit) (catch (IDENTIFIER) (evaluation-unit)
)? (£inally {evaluation-unit))?

for ((pre-loop-statement)? ; (expression)? ; (expression)?)

(evaluation-unit)

(variable-declaration)
(expression)

while ({expression)) {evaluation-unit)

if ((expression)) (evaluation-unit) (else (evaluation-unit))?
synchronized ((ezpression)) (evaluation-unit)

return {ezpression)? ;

break ;

14

(continue-statement) ;== continue ;

(throw-statement) == throw (ezrpression) ;
(import-statement) == import STRING_LITERAL ;
(eval-statement) m== eval (expression) ;
(expression) === (assignment-expression) (, {assignment-expression))*
(assignment-expression) === (conditional-expression) ({assignment-operator) {conditional-expression)
)*
(assignment-operator) == =
+
-
/=
%=
<<=
>>=
>>>=
&=
~
1=
(conditional-expression) == (logical-or-expression) (7 (logical-or-expression) : (logical-or-expression)
)?
(logical-or-expression) == (logical-and-expression) (
(logical-and-expression) === (bitwise-or-expression) (&& {bitwise-or-expression))*
(bitwise-or-expression) == (bitwise-zor-expression) (
(bitwise-zor-expression) == (bitwise-and-expression) (~ {(bitwise-and-expression))*
(bitwise-and-expression) === (equality-expression) (& {equality-expression))*
(equality-exzpression) == (relational-expression) ((equality-operator) (relational-expression)
)%
(equality-operator) == ==
-
(relational-expression) === (shift-expression) ((relational-operator) (shift-expression))*
(relational-operator) n== <
>
>=
<=
instanceof
(shift-expression) == (additive-expression) ((shift-operator) (additive-expression))*

15

(shift-operator) n== <<

| >
| >>>
(additive-expression) === (multiplicative-expression) ((additive-operator) {multiplicative-expression)
)*
(additive-operator) n== +
| -
(multiplicative-expression) == (unary-ezpression) ((multiplicative-operator) (unary-expression)
)%
(multiplicative-operator) n== %
| /
| %
(unary-expression) === (unary-operator)? (postfix-expression)
(unary-operator) == ++
| --
+
~
!
(postfiz-expression) == (type-expression) {(postfix-operator)?
(postfiz-operator) = <
-
(type-expression) === (allocation-expression)

| (primary-expression)
(allocation-expression) == new (primary-expression) (function-call-expression-list)
(primary-expression) == (primary-prefiz) (primary-postfix)*
this-primary-prefiz)

identifier-primary-prefiz)

(primary-prefic) n== (
(
(paren-primary-prefix)
(
(

function-primary-prefix)

literal)
(this-primary-prefiz) :== this
(identifier-primary-prefiz) :== IDENTIFIER
(paren-primary-prefiz) z== ((expression))
(function-primary-prefiz) == function ((arglist)?) (extends (primary-expression) (function-call-expression-lis

)? { (program) }

= (function-call-primary-postfiz)
| (array-subscript-primary-postfiz)
| (property-identifier-primary-postfiz)

(primary-postfiz)

16

(function-call-primary-postfic) z== (function-call-expression-list)

(array-subscript-primary-postfiz) == [(expression)]
(property-identifier-primary-postfiz) == . IDENTIFIER
(literal) == INTEGER LITERAL

| FLOATING_POINT_ LITERAL
STRING_LITERAL

17

