
Ohioedge J2eeBuilder Toolkit

Advanced Developer’s Guide

By Sandeep Dixit

March 30, 2003

Ohioedge J2eeBuilder Toolkit___ 1

Introduction ___ 4

Download ___ 4

Installation and setup__ 5

Building applications __ 8
1. Write your business component by extending abstract classes and/or interfaces from

org.j2eebuilder packages ___ 8

2. Plug-in the business component into your application by adding the component’s Unified

Component Definition (UCD) into the application’s J2eeBuilder Application Definition (JAD) file -

j2ee-builder.xml___ 14

3. Using Ant scripts, create component libraries and package them into the application’s ear._____ 16

Summary___ 19

Appendix A: List mechanism __ 20

Appendix B: ValueObjectFactory __ 20

Appendix C: ServiceLocatorBean __ 20

Appendix D: BusinessDelegateManager _______________________________________ 20

Appendix E: ViewController __ 20

Appendix F: Security Components__ 21
Role __ 21

Privilege __ 21

RolePrivilege___ 21

Group __ 22

GroupType __ 22

Entitlement __ 22

GroupMechanism___ 23

Appendix G: Component-level Security _______________________________________ 23
Component __ 23

ComponentStatusType __ 23

ComponentStatus___ 23

ComponentStatusTypePrivilege ___ 23

Appendix H: License ___ 25
STEP 1. Create license files by running the license generator program (command_prompt>java -cp

.;build\lib\builder-beanlib.jar org.j2ee builder.license.LicenseGenerator). It will take you through

the following prompts. Values entered are shown in bold. To use default value, just hit <enter>. __ 25

STEP 2. Update the license record using J2eeBuilder License component (part of J2eeBuilder library

and comes with every J2eeBuilder application, such as J2eeOrganization, J2eeCustomer, and

Ohioedge CRM)___ 26

Introduction

Ohioedge J2eeBuilder Toolkit is a library of generic implementations of J2EE core

patterns and practices such as Value Object, Business Delegate, Service Locator,

Connection Factory, Intercepting Filter, Front Controller, Service To Worker, Dispatcher

View, View List Handler, Composite View, Session Façade, Authentication, and Session

Management essential for building Web-based applications. Ohioedge J2eeBuilder also

includes a set of generic Ant scripts for that make packaging of components and

composing of applications a breeze. Why spend months of development time

programming common, standard J2EE infrastructure code? Why spend thousands of

dollars on proprietary J2EE IDE when you can go the open source route? Spend time

and money learning J2EE and not on how to use vendor-specific IDEs.

Building applications using Ohioedge J2eeBuilder Toolkit consists of the following three

steps:

1. Write your business component by extending abstract classes and/or interfaces from

org.j2eebuilder packages.

2. Plug-in the business component into your application by adding the component’s

Unified Component Definition (UCD) into the application’s J2eeBuilder Application

Definition (JAD) file - j2ee-builder.xml

3. Using Ant scripts, create the component libraries, create the component distribution,

and compose the application EAR.

Through out this guide, I will refer to the Employee business component to explain how

to use Ohioedge J2eeBuilder for building Web-based, EJB-JavaBean-JSP tier J2EE

applications. In order to create an environment similar to the one I’ve referred in this

guide, follow the instructions given in the next couple of sections and download, install

and configure the necessary files.

Download

Get the latest distribution of Ohioedge J2eeBuilder Toolkit from

http://j2eebuilder.sourceforge.net. The distribution file is named using the nomenclature

http://j2eebuilder.sourceforge.net/

below:

- oefnd<Version>-<Applicatin Server>-<Database>.zip

oefnd is Ohioedge Foundation business application, an organization management

application built using J2eeBuilder. It consists of Organization, State, Employee, and

Name Prefix/Suffix/Title business components.

Installation and setup

Extract the distribution on your drive. The extracted directory structure should look

similar to the one shown in Figure below.

Figure 1. Distribution directory structure

Ohioedge J2eeBuilder is driven by Apache’s Ant tool. So it is important that you

thoroughly familiarize yourself with the directory structure and the Ant build files. As

shown in Figure 1, the source code directory ‘src’ contains ‘apps’ and ‘components’

directories. The ‘apps’ directory contains the source code and build scripts specific to the

application (‘fnd.’) The ‘components’ directory contains the J2eeBuilder directory –

‘builder’, an <application-component> directory (‘fnd’ in Figure 1) and one directory for

every J2eeBuilder business component (‘org’ in Figure 1.)

Before we move forward, let’s first review frequently used definitions in the context of

this document.

- ‘a business component’ is a generic reference to a business functionality that is

complete in it self. For example, an employee or a name title of a person. It has

nothing to do with the source code. It is purely a functional reference.

- ‘an EJB component’ means just that, an Enterprise JavaBean. It is a reference to the

source code that makes that EJB.

- ‘a JavaBean component’ means just that, a JavaBean. It is a reference to the source

code that makes that JavaBean.

- ‘a JSP component or a JSP page’ means just that, a JSP. It is a reference to the

source code that makes that JSP.

- ‘a three-tier business component’ is a reference to the collection of EJB, JavaBean,

and JSP components of a single business component. For example, collectively EJB,

JavaBean and JSP components of an employee business component is referred as a

three-tier employee component. Each three-tier business component has a UCD.

- ‘a J2eeBuilder business component’ is a reference to a collection of one or more

three-tier business components. Each J2eeBuilder business component consists of,

1. One JavaBean library (.jar) consisting of all its JavaBean components. One

MANIFEST.INF file listing the contents of the JavaBean library.

2. One EJB library (.jar) consisting of all its EJB components. One MANIFEST.INF

file listing the contents of the EJB library.

3. One EJB (.jar) consisting of one EJB definition (ejb.xml) file, its JavaBean library

JAR, its EJB library JAR and one MANIFEST.INF file with class path references

to other required JavaBean and/or EJB library JARs.

4. One docroot directory that holds all the JSP pages.

5. One Ant script (build.xml) for creating the libraries and packaging the created

libraries, manifest files, ejb.xml, and any application server specific definition

files into an EJB module. Note: An EJB module is not same as an EJB

component. One EJB module consists of one or more EJB components. And by

the way, the terminology of EJB module and EJB component is used through out

the EJB world. It is not specific to our context here.

For example, in the download you will see that the Organization, State, Employee,

Name Prefix, Name Suffix, and Name Title three-tier components are grouped under

the Organization J2eeBuilder component. This is similar to the EJB module and EJB

component difference mentioned above. Except that in addition to EJB components, a

J2eeBuilder business component also includes JavaBean and JSP components.

Figure below shows an expanded structure of ‘src/components/org’ directory:

Figure 2. Components <Component> directory sturcture

Building applications

1. Write your business component by extending abstract classes and/or interfaces from

org.j2eebuilder packages

1.1 Writing an EJB

Employee EJB is implemented as a Local EJB (Local and LocalHome interfaces).

First let's look at the local interface of Employee bean:

Employee Local Interface:
package com.ohioedge.j2ee.api.org.person.ejb;
public interface Employee extends javax.ejb.EJBLocalObject,

org.j2eebuilder.util.ejb.ValueObjectHandler,
org.j2eebuilder.model.ejb.Signature {

}

Wait a minute, there is nothing in this class! Yes. That's right.

org.j2eebuilder.util.ejb.ValueObjectHandler interface defines getDataVO() and

setDataVO(ValueObject vo) methods which is all required of any EJB remote/local

interface! This is a Value Object J2EE pattern.

Let's look at the Employee EJB implementation class and see how the value object

pattern is generalized and how to use it. Below is the relevant code from EmployeeEJB

EmployeeEJB.class:
package com.ohioedge.j2ee.api.org.person.ejb;
public abstract class EmployeeEJB

extends org.j2eebuilder.model.ejb.SignatureAbstract
implements EntityBean {

/**
* load readable properties from this object into the ValueObject class which is
* provided as an input parameter.
* @param - primaryKey
* @param - reference of this instance
* @param - ValueObject class
*/
public org.j2eebuilder.util.ValueObject getDataVO()
throws org.j2eebuilder.util.ejb.ValueObjectHandlerException {

return org.j2eebuilder.util.ejb.ValueObjectHandlerHelper.getDataVO(
this.ctx.getPrimaryKey(),
this,
com.ohioedge.j2ee.api.org.person.EmployeeBean.class);

}

/**
* copy updateable properties from ValueObject to this object
*/
public void setDataVO(org.j2eebuilder.util.ValueObject ValueObject,

 org.j2eebuilder.ComponentDefinition componentDefinition,
Integer mechanismID)
throws org.j2eebuilder.util.ejb.ValueObjectHandlerException {

org.j2eebuilder.util.ejb.ValueObjectHandlerHelper.setDataVO(
this, ValueObject, componentDefinition);

setLastModifiedOn(new java.sql.Timestamp(
 (new java.util.Date()).getTime()));

setLastModifiedBy(mechanismID);
}

That's it! Again, not much code here. Simply copy and paste these two methods into your

EJB implementation class and you are done with the value object pattern. Only thing that

will be specific to your EJB implementation class is the ValueObject class parameter (in

our case - com.ohioedge.j2ee.api.org.person.EmployeeBean.class) of the getDataVO()

method. Ohioedge J2eeBuilder core libraries take care of 1) the loading of data into the

value object from ‘this’ EJB instance’s CMP fields, in case of the getDataVO() method,

and 2) updating 'this' EJB instance's CMP fields with the values provided by the passed in

value object, in case of the setDataVO(ValueObject vo) method.

As you must have figured out by now, com.ohioedge.j2ee.api.org.person.EmployeeBean

extends the org.j2eebuilder.util.ValueObject interface. J2eeBuilder’s value object handler

mechanism is designed to handle/manipulate any JavaBean that extends the

org.j2eebuilder.util.ValueObject interface. This makes it generic. We will take a look at

com.ohioedge.j2ee.api.org.person.EmployeeBean in the next section. Before that, lets

first wrap-up our EJB implementation class discussion. As you must have also noticed,

besides the ValueObjectHandler interface, both Employee Local and EJB

implement/extend org.j2eebuilder.model.ejb.Signature and

org.j2eebuilder.model.ejb.SignatureAbstract interface/class respectively. The signature

interface/abstract class defines/implements getter/setter methods of the createdOn,

createdBy, lastModifiedOn, and lastModifedBy CMP fields. If you decide to have these

four fields into your every EJB (and thus underlying database table) use it, else don't. It is

entirely up to you. However having these four fields into your EJB (and database table)

will come handy down the road for searching records by creation/modification dates or in

general auditing of data. I recommend having these four fields in every EJB. Below is the

code of Signature interface:

package org.j2eebuilder.model.ejb;
public interface Signature extends java.io.Serializable {
 java.sql.Timestamp getCreatedOn();
 Integer getCreatedBy();
 java.sql.Timestamp getLastModifiedOn();
 Integer getLastModifiedBy();
}

Before we proceed to the next section on how to write JavaBeans, a quick note on

getName() and getDescription(); I recommend having ‘name’ and ‘description’ CMP

fields into every EJB (a recommendation that I didn't follow while writing Employee

EJB. Oops!) Why? Well, the ValueObject interface extends the ListElement interface, an

interface used by J2eeBuilder’s value list pattern, and the ListElement interface requires

getName() and getDescription() methods. In most cases, I think it is lot easier to calculate

and store the values of these fields one time during the creation of an object rather than

calculating them dynamically every-time an object is accessed. In any case, you have to

implement these two methods in your JavaBeans (ValueObject). If you don’t, the output

generated by the list mechanism would look something like:
null, null
null, null
null, null
.
.
.

Get the picture? I will discuss the value list pattern in Appendix A.

NOTE: I plan to move the ValueObject interface/abstract class out of the

org.j2eebuilder.util package in to the org.j2eebuilder.view package in the next release.

This is definitely a TO-DO. Please pardon me until then.

1.2 Writing a JavaBean

Now let's look at com.ohioedge.j2ee.api.org.person.EmployeeBean. As you have seen in

the section above, it implements the ValueObject interface and thus is used as a value

object for getting data in and out of EJB. In the next section you will see that it is also

used as a ‘useBean’ in Employee JSP pages. This is how Ohioedge J2eeBuilder threads

EJB, JavaBean, and JSP tiers together.

EmployeeBean.class:
package com.ohioedge.j2ee.api.org.cust;
public class EmployeeBean extends org.j2eebuilder.view.ValueObjectImpl {
 // gettter/setter method
.
.
.
 // search method
public Collection search(Integer orgID, String criteria) {
Collection col = new java.util.HashSet();

try {
OrganizationManagerHome home = (OrganizationManagerHome)

ServiceLocatorBean.getInstance().getHome(
"ejb/OrganizationManager", OrganizationManagerHome.class);

if (criteria != null) {
OrganizationManager organizationManager = home.create();
col = organizationManager.findColOfEmployeeVOByLastName(

orgID, criteria);
}

 } catch(Exception e) {
log.error(this.getClass().getName()+".search():" + e.toString());

 }
 return col;
}

This is how a minimum JavaBean should look like. If you don't know what the getter and

setter methods are, you probably qualify as a project manager. The search method is

required to return a collection of value objects. Here also, Ohioedge J2eeBuilder makes

your life easier by providing a value object factory class - ValueObjectFactory. The value

object factory class provides a method for converting a collection of Remote/Local

objects (returned by EJB Home finder methods) into a collection of value objects. I will

discuss the value object factory class in Appendix B.

Take a look at OrganizationManager, a facade session bean. As shown in the example

above, it is used to call the findColOfEmployeeVOByLastName() method. Again, it is

simply a session façade that calls the finder/select methods of the Employee EJB. Below

is the findColOfEmployeeVOByLastName () method for your reference. Without getting

into any details, I would like to point out the use of ServiceLocatorBean in this example.

I will be covering the service locator pattern later in Appendix C.

public Collection findColOfEmployeeVOByLastName(Integer orgID, String name)

throws SessionException, RemoteException {
try {

EmployeeHome home = (EmployeeHome)
ServiceLocatorBean.getInstance().getLocalHome(
"ejb/Employee", EmployeeHome.class);

Collection col = home.findByLastName(orgID, name);
return ValueObjectFactory.getInstance().getCollectionOfVO(col);

} catch (Exception re) {
throw new SessionException(re.getMessage());

}
}

That’s all there is to writing a JavaBean component. You must be wondering where in the

world are create, delete and update methods? Well, they don’t have to exist! Ohioedge

J2eeBuilder takes care of these methods for you! By extending the ValueObjectImpl

interface, every JavaBean component inherits these methods. You don't have to write

these methods unless of course you need to overwrite them for some reason. This WILL

save you tons of code and months of development time. I guarantee it! This is

J2eeBuilder’s business delegate pattern. I will discuss it further in Appendix D.

That's all there is to writing a JavaBean component. Only the getter/setter and search(){}

methods. No create, update, and delete methods!

1.3 Writing JSP

For every component, Ohioedge J2eeBuilder Toolkit requires you to write at least two

JSP pages: - 1) a controller JSP and 2) a data maintenance JSP. Let's look at a controller

JSP first.

Controller JSP

Employee.jsp
<%@ page contentType="text/html;charset=ISO-8859-1"%>
<%@ page import=" java.sql.*, java.util.*" %>
<%@ include file="/com/ohioedge/j2ee/ApplicationLicense.jsp" %>
<% String componentController = (String)request.getAttribute("componentController"); %>
<% String componentControllerAlias = (String)request.getAttribute("componentControllerAlias"); %>
<JSP:useBean id="employeeBean" scope="session" class="com.ohioedge.j2ee.api.org.person.EmployeeBean"/>
<HTML>
<BODY>
<%

// keep originalValue of submit
String originalValue = (String)request.getAttribute("submit");
// this is value before it goes in bean
if (originalValue == null || originalValue.equals("Home")) {

out.println("Default page is not defined.");
} else if (originalValue.equals("Search")) {

// display resultset or include listPage here
String criteria = (String)request.getAttribute("criteria");
Collection rs = null;
if (criteria != null) {

rs = employeeBean.search(
sessionBean.getOrganizationID(), criteria);

}
if (rs != null) {

request.setAttribute("resultset", rs);
%>
<JSP:include page="/ListDefaultAlias" flush="true">
</JSP:include>
<%

}
}

%> <!-- end of if successful -->
 <BODY>
<HTML>

Employee.jsp is the controller JSP page of Employee component. What is a controller

JSP any way? When a user clicks on a button or a link of a J2eeBuilder-based

application’s Web page, this is what happens, the request first goes to a view controller

(Appendix E.) Once the requested action/command is identified and executed, the control

is then passed on to a generic controller JSP - ViewControllerHelper.jsp. The generic

controller JSP then passes the control to the controller JSP of the component from where

the request originated. Why does a component need to have its own controller.jsp?

Because you may want to customize certain things for a component, such as, default

home page, menu page, custom searches, etc. As you can see in Employee.jsp, if the

value of ‘submit’ is ‘Search’, the request ends up at Employee.jsp calling Employee

JavaBean’s search method. The returned result is passed onto ListDefaultAlias, a default

List JSP. The list mechanism is covered later in Appendix A. A component’s controller

JSP is where its search methods are called. Why have I used JSP? Isn’t JSP only for

presentation-tier? Well, I have found it a lot easier to use JSP pages for this kind of

coding rather than using JavaBean. As you can see, there is not much code in a controller

JSP. Mainly it is the ‘if-then-else’ kind of logic. An important note, don’t get confused

between a controller JSP and a view controller. A view controller does the handling and

processing of requests, whereas a controller JSP gives developers additional capability to

further customize the response received from the generic controller JSP.

Now let's take a look at Employee Data Maintenance JSP – EmployeeMaintain.jsp. This

JSP page should be fairly straightforward. It is the JSP page where Employee JavaBean’s

data members (fields) are exposed to users for data management.

Maintenance JSP

EmployeeMaintain.jsp:
<JSP:useBean id="employeeBean" scope="session" class="com.ohioedge.j2ee.api.org.person.EmployeeBean"/>
<JSP:setProperty name="employeeBean" property="*" />
<JSP:useBean id="stateBean" scope="session" class="com.ohioedge.j2ee.api.address.StateBean"/>
<HTML>
<BODY>
<FORM ACTION=<%= request.getAttribute("componentControllerAlias") %> METHOD=POST
ENCTYPE="application/x-www-urlencoded">

Look at the form action - <%= request.getAttribute("componentControllerAlias") %>.

‘componentControllerAlias’ is the called component’s alias (here, Employee.ctrl.) A

component alias is defined in j2ee-builder.xml. Also see the ‘id’ attribute of

JSP:useBeans. It is also defined in a component’s UCD.

With this, we are done writing EJB, JavaBean and JSP components. Now let's see how to

write UCD and JAD.

2. Plug-in the business component into your application by adding the component’s

Unified Component Definition (UCD) into the application’s J2eeBuilder Application

Definition (JAD) file - j2ee-builder.xml

Employee UCD:
<component>
 <name>Employee</name>
 <description>Employee</description>
 <controller>/com/ohioedge/j2ee/api/org/person/Employee.jsp</controller>
 <servlet-path>Employee.ctrl</servlet-path>
 <data>/com/ohioedge/j2ee/api/org/person/EmployeeMaintain.jsp</data>
 <menu>/com/ohioedge/j2ee/api/org/person/EmployeeMenu.jsp</menu>
 <JSP-declaration>
 <useBean>
 <id>employeeBean</id>
 <scope>session</scope>
 <class-name>com.ohioedge.j2ee.api.org.person.EmployeeBean</class-name>
 </useBean>
 <useBean>
 <id>employeeBean1</id>
 <scope>page</scope>
 <class-name></class-name>
 </useBean>

 </JSP-declaration>
 <bean-property>
 <property-name>employee</property-name>
 </bean-property>
 <ejb>
 <home>com.ohioedge.j2ee.api.org.person.ejb.EmployeeHome</home>
 <remote>com.ohioedge.j2ee.api.org.person.ejb.Employee</remote>
 <entity>com.ohioedge.j2ee.api.org.person.ejb.EmployeeEJB</entity>
 <jndi>ejb/Employee</jndi>
 <primary-key>
 <class-name>com.ohioedge.j2ee.api.org.person.ejb.EmployeePK</class-name>
 <field-name>employeeID</field-name>
 </primary-key>
 <attribute>
 <name>organizationID</name>
 <type>Integer</type>
 </attribute>
 .
 .
 .
 <attribute>
 <name>zip</name>
 <type>String</type>
 </attribute>
 <write-attributes>
 <attribute-name>employeeName</attribute-name>
 <attribute-name>dunsNumber</attribute-name>
 .
 .
 .
 <attribute-name>zip</attribute-name>
 </write-attributes>
 <factory-methods>
 <factory-method>
 <name>create</name>
 <type>create</type>
 <method-params>
 <method-param>
 <param-seq>1</param-seq>
 <param-value>
 <component-name>Employee</component-name>
 <useBean-id>employeeBean</useBean-id>
 <useBean-class-method>getOrganizationID</useBean-class-method>
 </param-value>
 </method-param>
 .
 .
 .
 </method-params>
 </factory-method>
 </factory-methods>
</ejb>
</component>

Fnd Application JAD:
<?xml version="1.0" encoding="UTF-8"?>
<application>

<name>Ohioedge Foundation Application</name>
<description>Ohioedge Foundation Application consists of basic organizational components such as

organization, state, employee, name prefix, name suffix, and name title.</description>
<layout>/com/ohioedge/j2ee/fnd/Layout.jsp</layout>

<component>…</component>
.
.
.

</application>

3. Using Ant scripts, create component libraries and package them into the application’s

ear.

At the core of how components are packaged and applications are composed is the

J2eeBuilder directory structure. Below are the three key directories of J2eeBuilder: -

src/components/<component>

All files of a component are in components/<component> directory. Figure 3 below

shows org component’s directory structure.

Figure 3

. The directory structure of the org component

- org/bean-jar/beanlib-manifest.txt: - <component>-beanlib.jar’s manifest file that lists

the content of the jar.

- org/ejb-jar/ejblib-manifest.txt: - <component>-ejblib.jar’s manifest file that lists the

content of the jar.

- org/ejb-jar/META-INF/manifest.txt: - ejb.jar’s manifest file that includes Class-path

references to <component>-beanlib.jar and <component>-ejblib.jar.

- org/ejb-jar/META-INF/ejb.xml: - The generic EJB definition file. This file is required

by the J2EE specification and has nothing to do with application servers.

- org/ejb-jar/<application server>/<database>/META-INF: - The application server

and database specific EJB definition files. In case of JBoss 3.0.4, it is jbosscmp-

jdbc.xml

- org/build: - Used by the build process.

- org/build/classes: - Contains compiled classes

- org/build/lib: - Contains <component>-beanlib.jar and <component>-ejblib.jar.

- org/src/<java source code>: - Contains .java source code

- org/src/docroot: - Contains .jsp source code

- org/build.xml:- Ant build script for the packaging of component. Every component’s

build script is identical in every aspect except for its classes to be included in bean &

EJB libraries and the class-path attribute of the manifest file of its EJB. Note: In the

next release, I plan to eliminate this duplication by moving this script under

src/components directory and modifying it to accept three variable values for bean

classes, EJB classes, and the class-path attribute. src/<component>/build.xml would

call this generic src/components/build.xml by passing these three variables.

In order to add your component to the library, follow these steps: -

Copy the content of one of the existing components into the src/components/<your_component>

directory of the component you are creating. Then modify/add the files below for your

component: -

- src/components/<your_component>/bean-jar/beanlib-manifest.txt

- src/components/<your_component>/ejb-jar/ejblib-manifest.txt

- src/components/<your_component>/ejb-jar/META-INF/manifest.txt

- src/components/<your_component>/ejb-jar/META-INF/ejb.xml

- src/components/<your_component>/ejb-jar/<application

server>/<database>/META-INF

- src/components/<your_component>/src/<java source code>

- src/components/<your_component>/src/docroot

- src/components/<your_component>/build.xml

src/components/<application>

For every application, there is components/<application> directory that contains all

source files specific to the application. These typically include a session bean and look &

feel JSP pages. The structure of src/components/<application> directory is same as

src/components/<component>.

src/apps/<application>

For every J2eeBuilder application, there is src/apps/<application> directory that

contains application EAR and WAR related files, application database files, and any

application server specific configuration files. Let's look at apps/<application> directory

structure of ‘fnd.’

- fnd/appl-ear/META-INF/application.xml: - Application EAR’s definition file required

by the J2EE specification.

- fnd/appl-ear/META-INF/manifest.txt: - Application EAR’s manifest file that lists the

content of the EAR file.

- fnd/appl-ear/<application server>/<database>/META-INF: - Contains definition

files required by the <application server> application server, configured for the

<database> database. In case of JBoss, configured for hsqldb, it is jboss.xml.

- fnd/appl-ear/<database>: - Actual database files used by the application.

- fnd/appl-ear/server/<application server>: - Contains configuration files of the

<application server> application server.

- fnd/web-war/META-INF: - Contains the configuration files of application WAR.

- fnd/ web-war /WEB-INF: - Contains the manifest file of application WAR.

- fnd/ web-war /<application server>/WEB-INF: - Contains the <application server>

specific configuration files of application WAR. In case of JBoss, it is jboss-web.xml.

As explained earlier in the src/components/<component> section, an efficient way to

build your application is to copy an existing application directory structure under your

application directory structure and then use it as a base to write your application specific

files by modifying the existing files.

Summary

Ohioedge J2eeBuilder Toolkit is an open source library of generic implementations of

core J2EE patterns and Ant scripts for packaging and composing J2EE components and

applications. At the core of Ohioedge J2eeBuilder is a well-thought-out ‘generic’

directory structure that enables building of J2EE business components and applications

for any open source or proprietary J2EE-compatible application server, without ever

loosing the generic-ness and open-source nature of your code.

Ohioedge J2eeBuilder Toolkit is a great way to stay with J2EE specification and not get

locked into any vendor-specific J2EE development environment. Spend time learning

J2EE and not how to use vendor-specific J2EE environment.

Yes you can with J2EE…

Have fun building J2ee applications!

Sandeep Dixit
Chief Architect
Ohioedge
1246 West 70th Street
Cleveland, Ohio 44102

http://www.ohioedge.com

Appendix A: List mechanism

Ohioedge J2eeBuilder Toolkit provides a generic list mechanism. Here is how it works.

ValueObject interface extends ListElement interface. The collection returned by the

finder methods is a collection of value objects and thus a collection of list elements. Same

is true with getDataVO() method. The returned object is of a ValueObject type and thus

of a ListElement type. The collection is displayed by List JSP pages. They are under

components/builder/src/docroot/components/<your_component>/j2eebuilder/view

directory.

Appendix B: ValueObjectFactory

Below are two relevent methods from ValueObjectFactory.class

- Collection ValueObjectFactory.getInstance().getCollectionOfVO(col);

- ValueObject ValueObjectFactory.getInstance().getDavaVO(ValueObjectHandler);

Appendix C: ServiceLocatorBean

ServiceLocatorBean is a JavaBean that provides creation and locating of Home,

LocalHome, JNDI, JDBC Connection, etc. services.

Appendix D: BusinessDelegateManager

BusinessDelegateManager is a generic method invoker. The <ejb-ref> and <ejb-local-

ref> references of all EJB components must be added to the EJB definition of

BusinessDelegateManager.

Appendix E: ViewController

ViewController is the front view controller of your application.

http://www.ohioedge.com/

Appendix F: Security Components

J2eeBuilder includes a set of generic security components as below:

Role

The Role business component specifies a security role.

Example:

Name Description
Supervisor User with a Supervisor role
Manager User with a Manager role
Worker User with a Worker role

Privilege

The Privilege business component specifies a security privilege.

Example:

Name Description
Approve Privilege to approve an assignment
Sign-off Privilege to sign-off an assignment
Approve Privilege to approve an activity
OnHold Privilege to put activity schedule on hold
Release Privilege to release activity schedule
Route Privilege to route activity schedule
Assign Privilege to assign assignments
Schedule Privilege to schedule activities
Originator Privilege to originate or create activities

RolePrivilege

Dependency: Role, Privilege.

The RolePrivilege business component specifies the relationship between a role and a

privilege.

Example:

Role Privilege
Supervisor Assign: Supervisor can assign Assignments to other Mechanisms

Approve: Supervisor can approve an Activity or Assignment
signed-off by other Mechanisms
Sign-off: Supervisor can sign-off an Assignment
Originator: Supervisor can create or originate an Activity

Manager Schedule: Manager can schedule an Activity to be sent to the next
ActivityType
Route: Manager can route an Activity to the next ActivityType
OnHold: Manager can schedule an Activity to be put on-hold until,
certain business conditions are met to release the Activity
Release: Manager can schedule an Activity to be released after all
the business conditions for that Activity are met

Worker Sign-Off: Worker can sign-off an Assignment

Group

Dependency: GroupType.

The Group business component specifies a group object used in an entitlement definition.

In the J2eeBuilder security structure, a mechanism belongs to a group and thus inherits

that group’s entitlements.

Example:

Name Description
ApplAdmin Application administrator
OrgAdmin Organization administrator
ReportUser Read-only user

GroupType

A group type is a category of group based on certain attributes. For example, group types

could be top-security, general-security, etc.

Entitlement

An entitlement is a definition of a role a group has over an entitlement object. An

entitlement object must implement the HierarchyVO interface. This allows all children of

an entitlement object to inherit its entitlements.

GroupMechanism

A group mechanism is a definition of a group a mechanism belongs to. By belonging to a

group, the mechanism inherits that group’s all entitlements.

Figure below illustrates the UML of Generic Security Components along with the UML

of Component-level Security Structure.

Appendix G: Component-level Security

J2eeBuilder component-level security is built by integrating the generic security

components with the following component schema components:

Component

A component business object holds schema of all business objects. For example:

Name Description
NamePrefix NamePrefix

A component business object implements the HierarchyVO interface.

ComponentStatusType

The ComponentStatusType business component represents statuses a component is aware

of. For example, “create,” “update,” etc. could be the statuses a component is aware of.

ComponentStatus

The ComponentStatus business object represents a status type associated with a

component.

ComponentStatusTypePrivilege

The ComponentStatusTypePrivilege schema component is the link between generic

security components and component-level security structure. The

ComponentStatusTypePrivilege schema component represents the privileges that are

associated with status types. Only a mechanism that ultimately inherits a privilege

associated with a component status type is authorized to apply that status type on

components.

Figure 4. J2eeBuilder Security Model

Appendix H: License

J2eeBuilder licensing mechanism consists of a license generator JavaBean

(LicenseGenerator.class,) a license validator JavaBean (LicenseValidator.class) and a

license record maintainer J2eeBuilder component (EJB, JavaBean, and JSPs) License.

The license source code is under src\components\builder directory and

org.j2eebuilder.license package.

The license generator is used for creating the following license files: -

- public.key: A public key is used to validate a message signed by the private key

- private.key: A private key is used to sign a message

- msg.signature: A signature generated by a private key by signing a message.

In order to create your own license, do the following steps:

STEP 1. Create license files by running the license generator program

(command_prompt>java -cp .;build\lib\builder-beanlib.jar org.j2ee

builder.license.LicenseGenerator). It will take you through the following prompts.

Values entered are shown in bold. To use default value, just hit <enter>.

1. Enter Licensee Name[Ohioedge]: MyCompany<enter>

You should see a response: “You entered licenseeName:MyCompany”

2. Enter License Expiration Date[2003-12-31]: 2010-12-31<enter>

You should see a response: “You entered expirationDate:2010-12-31”

3. Enter number of organizations[1]: 10<enter>

You should see a response: “You entered numberOfOrganizations:10”

4. Enter number of users[1000]: 100000<enter>

You should see a response: “You entered numberOfUsers:100000”

5. Enter the directory location where the license files will be created. You need to have

read/write privilege on this directory. [C:\ohioedge\crm\license]: <enter>

You should see a response: “You entered directory:C:\ohioedge\crm\license

1. Generating message...Complete.

2. Creating license files...Complete.

public.key, private.key and msg.signature files are created in C:\ohioedge\crm\license

directory.”

STEP 2. Update the license record using J2eeBuilder License component (part of

J2eeBuilder library and comes with every J2eeBuilder application, such as

J2eeOrganization, J2eeCustomer, and Ohioedge CRM)

1. Login as shown in Figure below.

Figure 5. J2eeBuilder application login.

2. As shown in Figure 5, you should see either, a License Validation Exception message

if your license record data does not match with the license keys or a License

Expiration Exception message if the current date is later than the expiration date of

the license record.

Figure 6. License Exception

3. Click on the ListAll link in the top-left portlet (Home). As shown in Figure below,

you should see the license record in the content management portlet.

Figure 7

4. Click on the record displayed in the content management portlet, it should open-up

the record for maintenance as shown in Figure below.

Figure 8. License record maintenance.

5. Update this record with the EXACT values you used in Step 1 above while creating

the license files.

- LicenseeName -> licenseeName

- expirationDate -> expirationDate

- numberOfOrganizations -> numberOfOrganizations

- numberOfUsers -> numberOfUsers

- licenseKey -> Full name (including path) of public.key

- signature -> Full name (including path) msg.signature

Click on ‘Update’. It should come up with a message – Transaction was successfully

completed.

6. Logoff by clicking on the logoff link in the top portlet.

7. Close the browser.

8. Open the browser and login. You should see a message – Transaction was

successfully completed.

You have successfully created and setup the license for your J2eeBuilder application.

	Ohioedge J2eeBuilder Toolkit
	Introduction
	Download
	Installation and setup
	Building applications
	Write your business component by extending abstract classes and/or interfaces from org.j2eebuilder packages
	Writing an EJB
	Writing a JavaBean
	Writing JSP
	Controller JSP
	Maintenance JSP

	Plug-in the business component into your application by adding the component’s Unified Component Definition (UCD) into the application’s J2eeBuilder Application Definition (JAD) file - j2ee-builder.xml
	3. Using Ant scripts, create component libraries and package them into the application’s ear.
	src/components/<component>
	Copy the content of one of the existing components into the src/components/<your_component> directory of the component you are creating. Then modify/add the files below for your component: -

	src/components/<application>
	src/apps/<application>

	Summary
	Appendix A: List mechanism
	Appendix B: ValueObjectFactory
	Appendix C: ServiceLocatorBean
	Appendix D: BusinessDelegateManager
	Appendix E: ViewController
	Appendix F: Security Components
	Role
	Privilege
	RolePrivilege
	Group
	GroupType
	Entitlement
	GroupMechanism

	Appendix G: Component-level Security
	Component
	ComponentStatusType
	ComponentStatus
	ComponentStatusTypePrivilege

	Appendix H: License
	STEP 1. Create license files by running the license generator program (command_prompt>java -cp .;build\lib\builder-beanlib.jar org.j2ee builder.license.LicenseGenerator). It will take you through the following prompts. Values entered are shown in bold.
	STEP 2. Update the license record using J2eeBuilder License component (part of J2eeBuilder library and comes with every J2eeBuilder application, such as J2eeOrganization, J2eeCustomer, and Ohioedge CRM)

