Delimited Control in OCaml,
Abstractly and Concretely

Oleg Kiselyov
Monterey, CA, U.S.A.

Abstract

We describe the first implementation of multi-prompt delimited control op-
erators in OCaml that is direct in that it captures only the needed part of the
control stack. The implementation is a library that requires no changes to
the OCaml compiler or run-time, so it is perfectly compatible with existing
OCaml source and binary code. The library has been in fruitful practical use
since 2006.

We present the library as an implementation of an abstract machine de-
rived by elaborating the definitional machine. The abstract view lets us
distill a minimalistic API, scAPI, sufficient for implementing multi-prompt
delimited control. We argue that a language system that supports exception
and stack-overflow handling supports scAPI. With byte- and native-code
OCaml systems as two examples, our library illustrates how to use scAPI
to implement multi-prompt delimited control in a typed language. The ap-
proach is general and has been used to add multi-prompt delimited control
to other existing language systems.

Keywords: delimited continuation, exception, semantics, implementation,
abstract machine

1. Introduction

The library delimcc of delimited control for OCaml was first released at
the beginning of 2006 [1] and has been used for implementing (delimited)

Email address: oleg@okmij.org (Oleg Kiselyov)
URL: http://okmij.org/ftp/ (Oleg Kiselyov)

Preprint submitted to Theoretical Computer Science February 29, 2012

dynamic binding [2], a very shallow embedding of a probabilistic domain-
specific language [3, 4], CGI programming with nested transactions [5], ef-
ficient and comprehensible direct-style code generators [6], normalization of
MapReduce-loop bodies by evaluation [7]. Other people have used the library
for implementing coroutines [8] and ‘fibers’, and as the base for direct-style
functional reactive programming [9].

The delimcc library was the first direct implementation of delimited con-
trol in a typed, mainstream, mature language — it captures only the needed
prefix of the current continuation, requires no code transformations, and in-
tegrates with native-language exceptions. Captured delimited continuations
may be reinstated arbitrarily many times in different dynamic contexts. Cap-
tured delimited continuations can be serialized, stored, or migrated, then
reinstated in a different process, perhaps several times.

The delimcc library is an OCaml library rather than a fork or a patch of
the OCaml system. Like the num library of arbitrary-precision numbers, de-
limcc gives OCaml programmers new datatypes and operations, some backed
by C code. The delimcc library does not modify the OCaml compiler or
run-time in any way, so it ensures perfect binary compatibility with existing
OCaml code and other libraries. Except for the common, sole prohibition
on capturing continuations across an OCaml callback invoked from a foreign
C function, delimcc imposes no restrictions on the user code. Our library
shows that delimited control can be implemented efficiently (without copy-
ing the whole stack) and non-invasively in a typed language that was not
designed with delimited control in mind and that offers no compiler plug-
ins or run-time extensions beyond a basic foreign-function interface exposing
enough run-time-system details. Our goal in this paper! is to describe the
implementation of delimcc with enough detail and generality so that it can
be replicated in other language systems.

The delimcc library implements the so-called multi-prompt delimited con-
trol operators that were first proposed by Gunter, Rémy, and Riecke [11] and
further developed by Dybvig, Peyton Jones, and Sabry [12]. The multi-
prompt operators turn out indispensable for normalization-by-evaluation for
strong sums [13]. Further applications of specifically multi-prompt operators

LThis present paper is an extended version of the conference paper [10]. We completely
re-wrote §2 with a new example and detailed explanations. We have added benchmarks
§7, proofs (Appendix A and Appendix B), and new §5, §6, §8.

include the implementation of delimited dynamic binding [2] and the nor-
malization of loop bodies by evaluation [7]. The delimcc library turns out
suitably fast, useful, and working in practice. In this paper, we show that it
also works in theory.

We describe the implementation and account for its correctness and gen-
erality. The correctness argument cannot be formal: after all, there is no
formal specification of OCaml, with or without delimited control. We infor-
mally relate the byte-code OCaml interpreter to an abstract machine, which
we rigorously relate to abstract machines for delimited control. The main in-
sight is the discovery that OCaml byte-code already has the facilities needed
to implement delimited control efficiently. In fact, any language system ac-
commodating exception handling and recovery from control-stack overflow
likely offers these facilities. Languages that use recursion extensively typi-
cally deal with stack overflow [14].

Our contributions are as follows.

1. We state the semantics of multi-prompt delimited control in a form
that guides the implementer, in §3. We derive a minimalistic API,
scAPI, sufficient for implementing delimited control. For generality, we
describe the scAPI in terms of an abstract state machine, which focuses
on activation frame manipulation while eliding idiosyncratic details of
concrete language systems. Our scAPI includes the creation of ‘stable-
point” frames, completely describing the machine state including the
contents of non-scratch registers. We should be able to identify the
most recent stable point frame and safely copy a part of the stack
between two stable points. We do not require marking of arbitrary
frames, adding new types of frames, or even knowing the format of the
stack.

2. On the concrete example of delimcc, we demonstrate in §4 using the
scAPI to implement multi-prompt delimited control on two distinct
OCaml language systems.? OCaml byte-code happens to support scAPI,
§4.2, and so does the native-code OCaml system, §6. The implemen-
tations of scAPI are the only difference between byte- and native-code
delimcc.

3. The implementation of delimcc poses challenging typing problems, which

2The Scheme and Haskell implementations, mentioned on the delimcc web page, are
further concrete examples of using the scAPI, attesting to the generality of the approach.

previously [12, 15] were handled using unsafe coerce. We use reference
cells to derive in §4.1 a safe solution, free from any undefined behavior.

4. The experience with the delimcc library called for an extension of the
simple interface [12], to avoid a memory leak in multi-prompt shift, §5.
The new primitive push_delim_subcont reinstates the captured con-
tinuation along with its delimiter. (The library implements yet another
derived function, abort, as primitive, §7, to avoid useless continuation
capture.)

5. We describe serialization of captured delimited continuations so to
make them persistent: §8. We show why serialized delimited continua-
tions must refer to some reachable data by name rather than incorpo-
rate everything by value. Serialized delimited continuations should be,
so to speak, twice delimited.

We discuss two small benchmarks in §7; see [4] for a more detailed discussion
of a realistic application that uses delimcc library. For that application at
least, the performance of delimcc proved adequate. We review the related
work in §9 and then conclude. We start by introducing the multi-prompt
delimited control and the delimcc library in §2.

The delimcc library source along with validation tests, benchmarks and
sample code is freely available from http://okmij.org/ftp/continuations/.

2. Multi-prompt Delimited Control

Before discussing the implementation of delimcc, we introduce the library
on sample code, informally describing multi-prompt delimited control. The
basic delimcc interface, taken from [12], defines two abstract types and four
functions:

type ’a prompt
type (’a,’b) subcont

val new_prompt : unit -> ’a prompt

val push_prompt : ’a prompt -> (unit -> ’a) -> ’a

val take_subcont : ’b prompt -> ((’a,’b) subcont -> unit -> ’b) -> ’a
val push_subcont : (’a,’b) subcont -> (unit -> ’a) -> ’b

Their semantics is formally discussed in §3. The reader already familiar
with delimited control may view delimcc as a generalization of the ordinary

shift /reset [16] to control delimiters of arbitrarily many ‘flavors’. The func-
tion new_prompt creates a control delimiter — or prompt — of a new, unique
flavor. The expression push prompt p (fun () -> e), the generalization
of reset e, puts the control delimiter p on the stack and then evaluates e;
take_subcont p f removes the prefix of the stack up to the closest stack
frame marked with the given p. The removed portion of the stack, with the
terminating delimiter p cut off, is packaged as a continuation object of the
abstract type subcont and passed to take_subcont’s argument £. The func-
tion push_subcont puts the removed stack frames back on the stack, possibly
in a different context, thus reinstating the captured delimited continuation.
The delimcc library may also be understood as generalizing exceptions, a
wide-spread and familiar feature. Intuitively, a value of the type ’a prompt
is an exception object, with operations to pack and extract a thunk of the
type unit -> ’a. The expression new_prompt () produces a fresh excep-
tion object; take_subcont p (fun - () -> e) packs fun () -> e into the
exception object denoted by the prompt p, and raises the exception. The
expression push prompt p (fun () -> e) is akin to OCaml’s try e with
form, evaluating e and returning its result. Should e raise an excep-
tion p, it is caught, the contained thunk is extracted, and the result of its
evaluation is returned. All other exceptions are re-raised.
We illustrate the generalization of exceptions by elaborating the example
of modifying a search tree:

type (’k, ’v) tree =
| Empty
| Node of (°k, ’v) tree * ’k * ’v x (°k, ’v) tree

It is the standard implementation of a finite map associating keys of the type
’k with values of the type *v. A tree node contains the key, the correspond-
ing value, the left branch with the smaller keys and the right branch with
the larger keys. The modification example is standard too: update the value
associated with the given key, returning a new tree. The new value is deter-
mined by applying the given function to the old value. The only interesting
part of the code is the case of the input tree not containing the given key.
Our first example throws the ordinary OCaml exception then:

exception NotFound
let rec updatel : ’k -> (Cv->’v) -> (’k,’v) tree -> (’k,’v) tree =
fun k £ >

let rec loop = function
| Empty -> raise NotFound
| Node (1,k1,vl,r) —>
begin
match compare k k1l with
| 0 -> Node(1l,k1,f vi,r)
| n when n < 0 -> Node(loop 1,k1,vl,r)
| _ -> Node(1,k1,v1,lo0p r)
end
in loop

We will describe several versions of this function; they only differ in the
type signature and in the code for the empty input tree case. The following
sample application increments the value associated with the key 1 in treel,
associating the key with the value 100 if it was missing.

try updatel 1 succ treel
with NotFound -> insert 1 100 treel

We re-write the example using delimcc to raise the ‘exception’ (we shall
elide the code that is common with updatel):

let rec update2 : (’k,’v) tree option prompt ->
'k => (Cv->’v) > (k,’v) tree -> (’k,’v) tree =
fun pnf k £ >
let rec loop = function

| Empty -> take_subcont pnf (fun _ () -> None)

The sample application takes the following form.

let pnf = new_prompt () in

match push_prompt pnf (fun () -> Some (update2 pnf 1 succ treel)) with
| Some tree -> tree
| None -> insert 1 100 treel

push_prompt acts as try, catching the exception raised by take_subcont,
extracting the thunk fun () -> None and evaluating it. Apart from the syn-
tactic sugar, the two examples differ in the manner of creating the exception
object: whereas NotFound is created at compile-time, pnf is produced dy-
namically, and then passed as the first argument to update2. The difference

is superficial since ordinary exception objects can also be created dynami-
cally (as so-called ‘local exceptions’, provided in SML and fully supported
by OCaml since version 3.12).

The two update examples are inefficient: first, update has to navigate
down the tree to the point where it expects to find the key 1, throwing the
exception if the key is not found. Then the function insert (not shown: it
is standard and quite like update) again has to navigate to exactly the same
spot in the tree, this time creating a new node. Restartable exceptions like
those in Common Lisp offer an elegant solution, letting the exception handler
take a corrective action and resume the execution from the point where it
was interrupted by the exception. Raising of an exception may now return,
acting as a regular function application. Restartable exceptions are therefore
easy to implement, in principle:

let rec update3 : ’k -> (Cv->’v) -> (’k,’v) tree -> (’k,’v) tree =
fun k £ >
let rec loop = function
| Empty -> Node(Empty,k,upd_handle k,Empty)

We raise a restartable exception by invoking a global function upd_handle,
passing it the missing key. The function may throw a real exception or yield
the value to put into the updated tree; update3 will then return normally.
This simplistic, Common-Lisp-like solution is quite problematic. First of
all, each caller of update3 should be able to decide on the value to associate
with the missing key. Therefore, the restartable exception handler, as reg-
ular exception handlers, should be bound dynamically rather than globally.
However, implementing dynamic binding in the presence of exceptions is no-
tably tricky, see [2] for the survey of problems. The main drawback is the
exception restart’s happening implicitly, upon the return from upd_handle.
Therefore, upd_handle cannot, for example, restart the same exception sev-
eral times, to try several alternatives of exception recovery. Multiple restarts
are useful for implementing non-determinism and probabilistic programming
[3]. Shortly we will see another advantage of explicit exception restarts.
The library delimcc implements restartable exceptions with multiple, ex-
plicit restarts. The value of the type subcont is the restart object, created
by take_subcont as it raises an exception. Passing the restart object to
the function push_subcont resumes the interrupted computation. The re-
written update2 below not only throws the exception when the key is not

7

found; update4 also collects the data needed for recovery — the exception
object ¢ and the missing key — and packs them into the envelope ReqNF:

type (’k,’v) res = Done of (’k,’v) tree
| RegNF of ’k * (°v,(’k,’v) res) subcont

let rec update4 : (’k,’v) res prompt ->
'k > (Pv->’v) -> (k,’v) tree > (°k,’v) tree =
fun pnf k £ >
let rec loop = function
| Empty -> Node(Empty,k,
take_subcont pnf (fun c¢ () -> RegNF (k,c)),Empty)

The caller of update4 will receive the envelope from the exception and decide
if and how to proceed. The sample application

let pnf = new_prompt () in
match push_prompt pnf (fun () -> Done (update4 pnf 1 succ treel)) with
| Done tree -> tree
| RegNF (k,c) ->
match push_subcont ¢ (fun () -> 100) with Done x -> x

extracts the restart object from the envelope and uses it to resume the ex-
ception. The function call push_subcont ¢ (fun () -> 100) resumes the
evaluation of update4 as if the expression take subcont pnf (...) re-
turned 100. We have started with the expression Done (update4 pnf 1
succ treel), whose evaluation was interrupted by the exception; push_prompt
has caught the exception, yielding RegNF (k,c) rather than the value Done
tree expected as the result of our expression. The restarted expression does
not raise any further exceptions, finishing normally, with the result Done
tree. The result becomes the value yielded by push_subcont. (The last
Done x pattern-match in the sample application is therefore total.)

Our sample applications that relied on restartable exceptions had a subtle
flaw. Upon the exception restart a new node is added to the tree, changing
the height of its branch and potentially requiring rebalancing. We should
have written

let pnf = new_prompt () in
rebalance (match push_prompt pnf ...)

which is not optimal however: if the key was found no rebalancing is needed
since the resulting tree has the same structure as the input tree. We may
need to rebalance the tree only after the key lookup failure and the addition
of a new node. The optimal solution is to proceed upon the assumption
of no rebalancing; if we eventually discover that the key was missing and
a new node has to be adjoined, we go ‘back in time’ and add the call to
rebalance at the beginning. This scenario, however far-fetched it may seem,
is implementable:

let pnf = new_prompt () in
match push_prompt pnf (fun () -> Done (update4 pnf 1 succ treel)) with
| Done tree -> tree
| RegNF (k,c) ->
rebalance (match push_subcont ¢ (fun () -> 100) with Done x -> x)

The benefit of explicit restarts is the ability to restart the interrupted com-
putation in a different context, in our case, in the context of the extra
function call, to rebalance. One can easily imagine examples where the
restarted computation may throw other exceptions, and we would use try
or push_prompt in place of rebalance to handle them.
The function that computes the modified value may also throw (restartable)

exceptions. For example, instead of succ, we could pass to update the fol-
lowing function:

exception TooBig
let upd_fun n = if n > 5 then raise TooBig else succ n

adjusting our sample application to catch TooBig

try
let pnf = new_prompt () in
match push_prompt pnf (fun (O ->
Done (update4 pnf 7 upd_fun treel)) with ...
with TooBig -> Empty

The TooBig exception will be raised in the dynamic context of the restartable
exception handling established by push_prompt. However, TooBig is of a
different ‘flavor’ from pnf and so the two exceptions (as well as two restartable
exceptions that use different prompts) act unaware of each other.

The formal, small-step semantics of these delimited control operators was
specified in [11] (push_prompt was called set and take_subcont was called

9

cupto) — as a set of re-writing rules. The rules, which operate essentially on
the source code, greatly help a programmer to predict the evaluation result of
an expression. Alas, the rules offer little guidance for the implementer since
typical language systems are stateful machines, whose behavior is difficult to
correlate with pure source-code re-writing.

3. Abstract Machine for Multi-prompt Delimited Control

More useful for the implementer is semantics expressed in terms of an
abstract machine, whose components and steps can, hopefully, be related
to an implementation of a concrete machine at hand. By abstracting away
implementation details, abstract state machines let us discern generally ap-
plicable lessons. Our first lesson is the identification of a small scAPI for
manipulating the control stack. We further learn that any language system
supporting exception handling already implements a half of scAPI.

We start with the definitional machine introduced in [12, Figure 1] as
a formal specification of multi-prompt delimited control. We reproduce the
definition in Appendix A for reference. The machine contains features that
are recognizable by implementers, such as ‘context’ — which is a sequence of
activation frames, commonly known as ‘(control) stack.” On the other hand,
the operation of popping a single activation frame off the stack (which corre-
sponds to a function return in typical concrete machines) has no equivalent
in the definitional machine. Mainly, the machine contains an extra compo-
nent, a list of contexts. It is not immediately clear what it may correspond
to in concrete machines, making it harder for the implementer to see how
to map a concrete machine such as OCaml byte-code to the definitional ma-
chine. Perhaps such a mapping is not possible without extending the OCaml
interpreter.

These worries are unfounded. The machine of [12] can be converted into
the equivalent machine described below, which has no extra components
such as lists of control stacks and is hence more familiar. We prove the
equivalence in Appendix A. Our machine My, Figure 1, is bare-bone: it
has no environment, arithmetic and many other practically useful features,
which are orthogonal and can be easily added. It abstracts away all details
except for the control stack. The machine can be viewed as a generalization
of the environment-less version of the machine of [17].

The program for the machine is call-by-value A-calculus, augmented with
integral-valued prompts and delimited control operators. The operators here

10

Variables 3 TR Prompts p,q e N

Expressions e ::= v | ee | newP | pushPee | takeSCee | pushSCee

Values vi=2x | e | p| D

Contexts D == 0| De | vD | pushPDe | pushSCDe | takeSCDe
| takeSCp D | pushPp D

Single Frame = Ce | vO | pushPOe | pushSCOe | takeSCOe

| takeSCpO | pushPp

Transitions between configurations (e, D, q)

(e, D,q) — (e, D[O€],q) e non-value
(ve,D,q) +— (e,D[v0],q) e non-value
(pushPee’, D,q) — (e, D[pushPJe],q) e non-value
(takeSCee', D,q) — (e, D[takeSCe],q) e non-value
(takeSCpe, D,q) + (e, D[takeSCpl]],q) e non-value
(pushSCee’, D,q) + (e, D[pushSCe'],q) e non-value
(Az.e)v, D,q) — (efv/a], D,q)
(newP,D,q) — (q,D,q+1)
(pushPpe, D,q) — (e, D[pushPpl]],q)
(takeSCpv, D,q) +— (vDq, Do, q) Dy[pushP pD;] = D, pushPpD’ & D,
(pushSC D’e, D,q) — (e, D[D'],q)
(v, D[D1],q) — (D1i[v],D,q) D, single frame
(pushPpv, D,q) — (v,D,q)

Figure 1: Abstract machine My, for multi-prompt delimited control

are syntactic forms rather than constants: for example, newP evaluates each
time to a new prompt. In delimcc, we eschew extending the syntax of OCaml.
Therefore, we represent newP as a function application new_prompt (). Like-
wise, pushP pe takes the form push_prompt p (fun () -> e) in delimcc.
The operation D|u] replaces the hole O in the context D with u, which
may be either an expression or another context; e[v/z]| stands for a capture-
avoiding substitution of v for variable z in expression e. Prompts p and
contexts D may not appear in source programs. The machine operates on

11

configurations (e, D, q) of the current expression e, ‘stack’ D and the counter
for generating fresh prompt names. The initial configuration is (e, [, 0); the
machine terminates when it reaches (v, q).

On one hand, the machine is a standard stack machine: D is a sequence of
activation frames, the ‘stack’; the first six transitions look like a function call,
pushing a new activation frame onto the stack. The last-but-one transition
corresponds to the return from a function call, popping a single frame off the
top of the stack and passing the return value to it.

The machine also exhibits non-standard stack-manipulation operations:
DI[D’] in the pushSC transition pushes several frames D’ at once onto the
stack; the takeSC transition involves locating a particular frame pushP pD;
and splitting the stack at that frame. The removed prefix D; is passed as a
value to the argument of takeSC; in a real machine, the stack prefix D; would
be copied onto heap, the ordinary place for storing composite values. These
non-standard stack operations (called in §4.2 as push_stack_fragment for
pushing several frames, get_ek and reset_ek for locating a frame and split-
ting the stack, and copy_stack_fragment for copying the stack prefix) thus
constitute an API, which we call scAPI, for implementing multi-prompt de-
limited control.

To see how scAPI may be supported, we relate scAPI with exception han-
dling, a widely available feature. As a specification of exception handling we
take an abstract machine Mg,, Figure 2. The program for M., is also call-by-
value A-calculus, extended with the operations to raise and catch exceptions.
These operations are indexed by exception types. A source programmer has
an unlimited supply of exception types to choose from. Exception types,
however, are not values and cannot be created at run-time.

The comparison of Figures 1 and 2 shows many similarities. For exam-
ple, we observe that the expression pushP pv reduces to v in any evaluation
context; likewise, try, v ¢’ reduces to v for any D. One may also notice a sim-
ilarity between raising an exception and takeSC that disregards the captured
continuation. On the other hand, takeSC uses prompts whose new values can
be created at run-time; the set of exceptions is fixed during the program exe-
cution. To dispel doubts, we state the equivalence result precisely, even more
so as we rely on it in the implementation.

First, we have to extend M., with integers ¢ serving as prompts and the
conditional if (g1, ¢2) then e; else ey, which branches on equality of two
integer prompts ¢; and ¢o. These prompts cannot appear in source programs
but are generated by an operator newQ, evaluating each time to a fresh value.

12

Variables 3 TR Exceptions p,...

Expressions e = v | ee | raise,e | try,ee
Values v o= | Ax.e
Contexts D == 0| De | vD | raise, D | try,De
Single Frame = Oe | 0 | raise,0J | try,Oe
Transitions between configurations (e, D)
(ee/, D) +— (e, D|Oe') e non-value
(ve, D) +— (e, D[vO]) e non-value
(raiseye, D) +— (e, Draise,J]) e non-value
(Az.e)v, D) — (e[v/z],D)
(try,ee’, D) +— (e, Dltry,Oe’])
(raise,v,D) +— (e'v,Ds) Dyltry, Die'l = D, try, D'e ¢ D,
(v,D[D4]) + (D1[v],D) D; single frame
(try,ve’,D) — (v, D)

Figure 2: Abstract machine Mg, for exception handling

We add unit (), pairs (v,v), and pair projections functions fst and snd.
We call the extended machine M,,. Let M. be My with a restriction on
source programs: no pushSC, all takeSC expressions must be of the form
takeSCe (Az.€') where z is not free in e’. The latter restriction assures that
contexts D are not substituted into terms; since D cannot appear in source
terms by definition, contexts D do not appear in M) terms at all. Hence we
drop D from the syntax of M/ terms and values. The complete definitions
for M), and M., are given in Appendix B.

We define the translation | -] of M/, expressions to the expressions of M.,
as follows (where p is a dedicated exception type):

|takeSCp (A\x.e)| = raise, (Az.|e], |p])

|pushP pe| = try,, Y
where

TH, = \y. if (Ay2. (¢,¥2))(sndy) then fsty() else raise,,y
The translation is a homomorphism in the other cases. The intuition comes
from mail-relay systems. The exception is an envelope, the prompt p is an
address, the exception handler is a relay station, which matches the address

13

on the envelope with its own. If the address matches, the station opens the
envelope; otherwise, it forwards the message to the next relay. Formally
we state: for all M} source programs e, the machine reaches the terminal
configuration iff M., does so for the source program |e|. The bi-simulation
proof is in Appendix B.

We conclude that M, effectively provides the operation to locate a par-
ticular stack frame and split the stack at the frame, discarding the prefix.
That particular stack frame, try, D e’ is quite like the frame pushPpD that
has to be located in My.. Thus any real machine that supports exception
handling implements a part of scAPI.

To see how the stack-copying part of scAPI could be implemented, we
turn to stack overflow. Any language system that supports and encourages
recursion has to face stack overflow and ought to be able to recover from
it [14]. Recovery typically involves either copying the stack into a larger
allocated area, or adjoining a new stack fragment. In the latter case, the
implementation needs to handle stack underflow, to switch to the previous
stack fragment. In the extreme case, each ‘stack’ fragment is one-frame long
and so all frames are heap-allocated. In every case, the language system
has to copy, or adjoin and remove stack fragments. These are exactly the
operations of scAPI. The deep analogy between handling stack overflow and
underflow on one hand and capturing and reinstating continuations on the
other hand has been noted in [14].

We now introduce an equivalent variant of My ensuring that a captured
continuation is delimited by pushP frames on both ends. These frames are
stable points. Real machines use the control stack as a scratch allocation area
and for register spill-over. The state of real machines also contains more com-
ponents (such as CPU registers), used as a fast cache for various frame data
[18]. When capturing a continuation, we have to make sure that all these
caches are flushed so that the captured activation frames contain the com-
plete state for resuming the computation. As we rely on exception handling
for support of a part of the scAPI, we identify pushP frames with exception
handling frames. To our knowledge, the points of exception handling cor-
respond to stable points of concrete machines. The clearest evidence comes
from architecture-description files used by the OCaml native-code genera-
tor: On all supported architectures, the code generator should assume that
‘all physical registers are destroyed by raise.” That is, when an exception is
raised, CPU registers other than control registers contain no machine state.

We define the variant M. of My, by changing two transitions to:

14

(takeSCpuv, D,q) +— (vDy,Da,q+1)
Ds[pushPpD;] = D[pushPp'0J], p' =g¢q, pushPpD’ & D,
(pushSC D’e, D,q) +— (e, D[pushPp”"D’],q+1) p’' =¢q

We can prove the equivalence of the modified My, to the original one, using
bi-simulation similar to the one in Appendix A. The key fact is that the
auxiliary prompts p’ and p” are fresh, are not passed as values and so there
cannot be any takeSC operations referring to these prompts. Any continua-
tion captured in MY_ is delimited by pushPp’ at one end and pushP p at the
other: the continuation is captured between two stable points, as desired.
The re-instated continuation is again sandwiched between two pushP frames:
pushP p'] is part of the captured continuation, the other frame is inserted
by pushSC. The presence of pushP on both ends also helps in making delimcc
well-typed, as we see next. On the other hand, the introduction of the aux-
iliary pushP frames may break tail-call optimization and lead to a memory
leak; we discuss how to plug it in §5.

4. Implementation in OCaml

In the previous section, we have introduced the general and minimalistic
scAPI that is sufficient to implement delimited control, and shown that a
concrete language system supporting handling of exceptions and of stack
overflow is likely to implement scAPI. We now demonstrate both points on
the concrete example of OCaml: that is, we describe the implementation of
delimcc. In §4.2 we show how exactly OCaml, which supports exceptions
and handles stack overflow, implements scAPI. In fact, the OCaml byte-code
interpreter is an instance of M., extended with the operations for copying
parts of stack. §4.3 then explains the implementation of delimcc in terms
of scAPI, closely following the ‘abstract implementation’ in §3. The OCaml
byte-code interpreter is written in C; our delimcc code is in OCaml (using
thin C wrappers for scAPI), giving us more confidence in the correctness due
to the expressive language and the use of types. OCaml is a typed language;
the delimcc interface is also typed. Having avoided types so far we confront
them now.

4.1. Implementing Typed Prompts

We describe the challenges of implementing delimited control in a typed
language on a simpler example, of realizing the M. machine, with the re-
stricted form of takeSC, in terms of exception handling. Farlier, in §3, we

15

explained the implementation on abstract machines. The version of that
code in OCaml:

let take_subcont p thunk = raise (PO (thunk,p))
let push_prompt p thunk = try thunk () with
(PO (v,p’)) as y -> if p = p’ then v () else raise y

is ill-typed for two reasons. First, the type of a prompt in delimcc, §2 (whose
interface is based on [11, 12]) is parametrized by the so-called answer-type,
the type of values yielded by the push_prompt that pushed it. The prompts p
and p’ in the above code are generally pushed by different push_prompts and
hence may have different types. In OCaml, we can only compare values of the
same type. To solve the problem, we implement prompts as records with an
int component, called ‘mark’, making new_prompt produce a unique value
for that field. We can then compare prompts by comparing their marks. (The
overhead of marks proved negligible.) A deeper problem is that the typing of
try el with ex -> e2 in OCaml requires el and e2 be of the same type.
Hence thunk and v in our code must have the same type. However, thunk
produces the value for push_prompt p and v does for push_prompt p’. Gen-
erally, p and p’, and so thunk and v, have different types. It is only when
the marks of p and p’ have the same value that v and thunk have the same
type. Dependent types, or at least recursive and existential types [19] seem
necessary.

The post-office intuition helps us again: we usually do not communi-
cate with a mailman directly; rather, we use a shared mailbox. The corre-
spondence between take_subcont and push_prompt is established through
a common prompt, a shared value. This prompt is well-suited for the role
of the mailbox. A reference cell of the type ’a option ref may act as a
mailbox to exchange values of the type ’a; the empty mailbox contains None.
Since in our code take_subcont sends to push_subcont a thunk, it is fitting
to rather use (unit -> ’a) ref as the mailbox type.

type ’a prompt = {mbox: (unit -> ’a) ref; mark: unit ref}

let mbox_empty () = failwith "Empty mbox"

let mbox_receive p = (* val mbox_receive : ’a prompt -> ’a %)
let k = !(p.mbox) in p.mbox := mbox_empty; k ()
let new_prompt () = {mbox = ref mbox_empty; mark = ref ()1};;

The mark field of the prompt should uniquely identify the prompt. Since we
already use reference cells, and since OCaml has the physical equality ==, it

16

behooves us to take a unit ref as prompt’s mark. We rely on the fact that
each evaluation of ref () gives a unique value, which is == only to itself.

To send a thunk to a push_prompt, the operation take_subcont deposits
the thunk into the shared mailbox and ‘alerts’ the receiver, by sending the
exception containing the mark of the mailbox. Since the type of the mark is
always unit ref regardless of the type of the thunk, we no longer have any
typing problems.

exception PO of unit ref
let take_subcont p thunk = p.mbox := thunk; raise (PO p.mark)
let push_prompt p thunk = try thunk ()
with (PO mark’) as y ->
if p.mark == mark’ then mbox_receive p else raise y;;

We have implicitly assumed that a push_prompt receives the PO exception
raised by take_subcont. That assumption is violated if the user-supplied
thunk contained an expression of the form try ... with _ -> ... that
intercepts and ignores all exceptions. Our full implementation in §4.3 ensures
the assumption always holds, even if the user code intercepts and fails to re-
raise exceptions.

We make the code more uniform so that the try-ed expression always
ends in the PO exception, raised either during the evaluation of thunk or
afterwards.

let push_prompt p thunk =
try let res = thunk () in

p-mbox := (fun () -> res); raise (PO p.mark)
with (PO mark’) as y ->
if p.mark == mark’ then mbox_receive p else raise y;;

When we come to capturing of delimited continuations in §4.3, we will see
that the uniform code gives us the convenient, for cleaning up, invariant that
the evaluation of a captured continuation always ends in an exception. The
inferred type is ’a prompt -> (unit -> ’a) -> ’a, befitting delimcc. The
value produced by push_prompt is in every case the value received from the
mailbox. Our earlier typing problems are clearly eliminated.

4.2. scAPI in OCaml

We now precisely specify scAPI and describe how the OCaml byte-code
implements it. We formulate scAPI as the interface

17

module EK : sig
type ek
type ekfragment

val get_ek : unit -> ek
val reset_ek : ek -> exn -> ’a
val rebase_ek : ek -> ek -> ek -> ek

val copy_stack_fragment : ek -> ekfragment
val push_stack_fragment : ekfragment -> exn -> ’a
end

with two abstract types, ek and ekfragment representing the relevant parts
of the machine state, and the operations to query the state and to alter it.
The state altering operations, reset_ek and push_stack_fragment, reset
the machine to a stable point. These functions have the return type ’a
meaning that they do not return.

The abstract type ek identifies an exception frame, that is, a particular
frame try, Ue’ within Mg, ’s context; we will write the ek-identified frame as
try, . The function get_ek () returns the identity of the latest exception
frame. There are no operations to scan the stack looking for a particular
frame. The state-altering operation reset_ek is a version of raise: whereas
raise ex throws the exception ex to the latest exception frame, reset_ek
ek ex throws the exception to the specific exception frame identified by ek,
which must be on the stack. We will explain rebase_ek shortly.

A fragment of the stack between two exception frames is represented by
ekfragment. Given the stack of the form Ds[try,,[D1[try ., D']]] where D’
has no exception frames, copy_stack fragment ekl returns the part of the
stack Dy[try,., O] from ekl through the latest exception frame. The latest
exception frame is captured as part of the returned ekfragment, which is a
heap-allocated OCaml value. The copied ekfragment remains on the stack.
To remove the fragment off the stack, up to the exception frame ekl, we
should execute reset_ek ekl ex.

The operation push_stack_fragment ekfragment ex splices-in the pre-
viously copied ekfragment at the point of the latest exception frame, turning
the stack from Ds[try,, D’| to Dsftry, [D1[try.,, D']]]. After the splicing,
the function throws the exception ex so the control resumes from the stable
point identified by ek2. The reset, copy and push operations clearly cor-
respond to the transitions of M) in §3. We never capture the top stack

18

frames D’ and never copy onto the top of the stack D’ because D’ contains
ephemeral local data [18].

When the captured ekfragment is pushed back onto the stack, the iden-
tities of the exception frames captured in the fragment may change. If we
obtained the identities of the captured frames before, we should adjust our
ek values, using rebase_ek. Suppose we copied an ekfragment up to the ex-
ception frame ekbase and then put the fragment back onto the stack starting
with the exception frame ekbase’. Then the adjusted ek value is given by
the expression rebase_ek ek ekbase ekbase’. If ek represents an address,
rebase_ek offsets it.

The OCaml byte-code interpreter [20], an elaboration of the abstract ma-
chine ZAM [18], supports exceptions, pairs, conditionals, comparison, state
to generate unique identifiers — and is thus an instance of M . Exception
frames are linked together; the dedicated register trapsp of the interpreter,
keeps the pointer to the latest exception frame. Therefore, we can identify ex-
ception frames by their stack addresses; ek is such an address, relative to the
beginning of the stack caml_stack_high. The foreign-function get_ek ()
exposes trapsp as ek.

OCaml handles stack overflow by copying the stack into a larger allo-
cated memory block. That implies that either there are no absolute point-
ers to stack values stored in data structures, or there is a way to adjust
them. In fact, the only absolute pointers into stack are the link pointers
in exception frames. The OCaml byte-code has a procedure to adjust such
pointers after copying the stack. The operations copy_stack_fragment and
push_stack_fragment are variants of interpreter’s stack-copying procedure.
These operations along with get_ek can be invoked from OCaml code via
the foreign-function interface (FFI).

There are further conditions for safely putting copied stack fragments
back onto stack, perhaps several times. First of all, OCaml data struc-
tures with mutable fields must not be allocated or otherwise stored on stack.
The OCaml FFI manual guarantees that all such data structures are heap-
allocated. Second, no frame should contain a relative address pointer to data
inside other frames. That condition is also satisfied by all OCaml back-ends.
(Since all non-integer-valued data in OCaml are heap-allocated, a stack frame
has nothing to expose to other frames.)

19

4.8. Implementing delimcc in Terms of scAPI

In this section we show how to use scAPI to implement the delimcc inter-
face, presented in §2. One may view this section as an example of transcribing
the abstract implementation, M}_ in §3, into OCaml, keeping the code well-
typed. The transcription is mostly straightforward, after we remove the final
obstacle that we now explain.

Recall that the takeSC transition of M. requires locating on the stack a
pushP p frame with a particular prompt value p and copying parts of stack
between two pushP frames. OCaml, via scAPI, supports copying parts of
stack between exception frames. We can also obtain the identity of the
latest exception frame. However, scAPI gives us no way to scan the stack
looking for a frame with a particular identity. §4.1 showed how to relate a
push_prompt frame to an exception frame and how to locate on the stack a
push_prompt p frame with a particular prompt value p — alas, flushing the
stack up to that point. We have to find a way to identify a pushP frame
without disturbing the stack.

The solution is easy: push_prompt should maintain its own stack of its
invocations, called ‘parallel stack’ or pstack. The pstack is a mutable list
of pframes, which we can easily scan. A pframe on pstack corresponds to
a push_prompt on the real stack and contains the identity of push_prompt’s
exception frame and the mark of the prompt (see §4.1) ‘pushed’ at that point:

exception DelimCCE

type pframe = {pfr_mark : unit ref; pfr_ek : ek}
type pstack = pframe list ref

let ptop : pstack = ref []

DelimCCE is the dedicated exception type, called py in Mg, and PO in §4.1.
Unlike the latter, the exception no longer carries the prompt’s identity since
we obtain this identity from pstack, accessed via the global variable ptop.
Essentially, pstack maintains the association between the ‘pushed’ prompts
and the corresponding push_prompt’s frames on the real stack — precisely
what we need for implementing Mj_.

From now on, the transcription from M}_ to OCaml is straightforward.
First we implement the pushP pe and pushP pv transitions of My, (inherited
by Mgc):

let push_prompt_aux (p : ’a prompt) (body : unit -> ’a) : ’any =
let pframe = {pfr_mark = p.mark; pfr_ek = get_ek (O} in

20

let () = ptop := pframe :: (!ptop) in
let res = body () in p.mbox := (fun () -> res); raise DelimCCE

let push_prompt (p : ’a prompt) (body : unit -> ’a) : ’a =
try push_prompt_aux p body with
| DelimCCE -> (match !ptop with h::t ->
assert (h.pfr_mark == p.mark); ptop := t; mbox_receive p)
| e -> match !ptop with
h::t -> assert(h.pfr_mark==p.mark); ptop:=t; raise e

The try-block sets an exception frame, on the top of which we build the call
frame for the evaluation of the body — or, of the wrapper push_prompt_aux.
That call frame will be at the very bottom of ekfragment when the contin-
uation is captured. The wrapper pushes a new pframe onto pstack, which
push_prompt removes upon normal or exceptional exit. The assert ex-
presses the invariant: every exception frame created by push_prompt corre-
sponds to a pframe. That pframe is on the top of pstack iff push_prompt’s
exception frame is the latest exception frame. The body may finish nor-
mally, returning a value. It may also invoke take_subcont capturing and
removing the part of the stack up to push_prompt, thus sending the value to
push_prompt ‘directly’. We use a mailbox for such communication, see §4.1.
In fact, the above code is an elaboration of the code in §4.1, using prompt
and mbox_receive defined in that section.

The code for take_subcont is again an elaboration of the code in §4.1;
now it has to capture the continuation rather than discarding it. In Mj_, we
capture the continuation between two pushP frames, that is, between two
exception frames. The captured continuation:

type (’a,’b) subcont =
{subcont_ek : ekfragment; subcont_ps : pframe list; subcont_bs : ek;
subcont_pa : ’a prompt; subcont_pb : ’b prompt}

includes two mailboxes (to receive a value when the continuation is reinstated
and to send the result), the copy of the OCaml stack ekfragment, and the
corresponding copy of the parallel stack. The latter is a list of pframes
in reverse order. We note in subcont_bs the base of the ekfragment, the
identity of the exception frame left on the stack after the ekfragment is
removed. We need the base to adjust pfr_ek fields of pframes when the
continuation is reinstated.

21

The transition takeSC of M_ requires locating the latest frame pushPp
with the given prompt p and splitting the stack at that point. This job
is now done by unwind, which scans the pstack returning h, the pframe
corresponding to a given prompt (identified by its mark).

let rec unwind acc mark = function
| [1 -> failwith "No prompt was set"
| h::t as s ->
if h.pfr_mark == mark then (h,s,acc)
else unwind (h::acc) mark t

The field h.pfr_ek identifies the corresponding pushP p frame on the real
stack. The function also splits pstack at h, returning the part up to but not
including h as acc, in reverse frame order.

The function take_subcont straightforwardly implements the takeSC
transition of M{_. First it must push the frame pushP p’ with a fresh prompt
p’. That prompt will never be referred to in any take_subcont function,
see §3; therefore, we should not register the pushPp’ frame in pstack. We
use push_prompt_simple to push such an ‘ephemeral’ prompt, used only
as a mailbox. The function take_subcont then splits the parallel stack at
the closest pframe h corresponding to the given prompt p; the assignment
ptop := s removes h and the subsequent pframes from the parallel stack.
The removed prefix, subcontchain, becomes part of the continuation object.
We save in the field subcont_ek the corresponding part of the real stack. Fi-
nally we remove the copied part of the real stack, delivering DelimCCE straight
to the exception frame ek lying beneath the copied ekfragment. That direct
exception delivery, which effectively raises the exception after ekfragment is
removed, means that we no longer rely on user’s ‘good exception-handling
behavior’, to re-raise our DelimCCE. Exception handlers in user code never
get a chance to intercept DelimCCE.

let push_prompt_simple (p: ’a prompt) (body: unit -> unit) : ’a =
try body (); raise DelimCCE with DelimCCE -> mbox_receive p

let take_subcont (p : ’b prompt) (f : (’a,’b) subcont -> unit -> ’b)
let p’ = new_prompt () in
push_prompt_simple p’
(fun () ->
let (h,s,subcontchain) = unwind [] p.mark !ptop in
let () = ptop := s in

22

’a

let ek = h.pfr_ek in

let ekfrag = copy_stack_fragment ek in

p.mbox :=

f {subcont_ek ekfrag; subcont_pa = p’;
subcont_pb = p; subcont_ps = subcontchain;
subcont_bs ek};

reset_ek ek DelimCCE)

The function push_subcont is the transcription of M{_’s transition pushSC.

let push_subcont (sk : (’a,’b) subcont) (m : unit -> ’a) : ’b =
let p’’ = new_prompt () in
push_prompt_simple p’’ (fun () ->
try

let base = sk.subcont_bs in
let ek = get_ek () in
List.iter (fun pframe ->

ptop := {pframe with pfr_ek = rebase_ek pframe.pfr_ek base ek} ::

Iptop) sk.subcont_ps;
sk.subcont_pa.mbox := m;
push_stack_fragment sk.subcont_ek DelimCCE

with DelimCCE ->
let v = mbox_receive sk.subcont_pb in
p’’.mbox := fun () -> v)

When we push the ekfragment onto the stack, the identities of the exception
frames therein may change. We have to ‘re-base’ pfk_ek fields of pframes in
the parallel stack fragment to restore the correspondence. We can optimize
the code by fusing the repeated try expression (one of which is hidden in
push_prompt_simple).

5. Plugging a Memory Leak

Experience with delimcc called for the addition of push_delim_subcont
to its interface. The new function can in principle be written in terms of the
existing ones:

let push_delim_subcont (sk : (’a,’b) subcont) (m : unit -> ’a) : ’b =
push_prompt sk.subcont_pb (fun () -> push_subcont sk m)

23

However, that implementation has a memory leak, which we demonstrate.
The function push_delim_subcont expresses a common pattern of pushing a
delimited continuation. The same pattern occurs in implementations of user-
level threads or coroutines, where the memory leak becomes the problem, as
was kindly pointed out by Christophe Deleuze; the following is a simplified
version of his code.

type state = Done | Pause of (unit, state) subcont
let p = new_prompt ()

let pause () = take_subcont p (fun sk () -> Pause sk)
let proc () = while true do pause () done; Done
let rec sched_loop = function | Done -> ()
| Pause sk ->
sched_loop (
push_prompt p (fun () -> push_subcont sk (fun O -> ())))

Our example has only one, continually running thread proc, which pauses on
each iteration. The scheduler keeps resuming the thread. Since take_subcont
removes the scheduler’s prompt p, the scheduler has to push it again — hence
the pattern expressed in push_delim_subcont. Informally, the scheduler has
to re-establish the thread-kernel boundary. After several thousand iterations
the loop sched _loop (push_prompt p proc) exhausts all available memory
and abnormally terminates.

To see the problem clearly we use the abstract machine M_, to which
we add a new expression loopejey, a new frame type loope;[] and the
corresponding transitions:

(loop€'e,D,q) +— (e, D[loope’d], q) e non-value

(Loope'v,D,q) +— (loope'e,D,q)
Let e, be takeSCp (Ax. z). Tracing transitions in M. shows pushP p (1loop eye;)
evaluating to loop e, (pushP p'J), to be called D;. The prompt p’ is fresh.
The value D; corresponds to the result of pause (). Evaluating pushP p
(pushSC D, ()), which reduces to pushP p (pushP p” (loop epep)) resumes the
thread. Here, p” is the fresh prompt introduced by the pushSC transition of
Mi.. The result is the value pushP p” (Loop e, (pushP p'J)), called Dy, which
is longer than D; by an extra frame pushP p”. Resuming D,, gives D3 that
is longer still. The memory leak becomes apparent.

The solution is to implement push_delim_subcont as a new library prim-
itive, taking the code at the beginning of the section as the specification. We

24

transform the code by inlining push_subcont and collapsing the two adja-
cent pushP frames: when there is already pushP p at the top of the stack, the
pushSC transition of Mj_ no longer needs to push the pushPp” frame. With
this new primitive, the paused and resumed thread proc runs in constant
memory, as demonstrated in delimcc’s test suite.

6. Implementing delimcc in native-code OCaml

To summarize so far, §3 described a general method of implementing
delimited continuations on a system that provides exception handling and
the minimalistic scAPI. We have followed that method in §4 to implement
delimcc on byte-code OCaml — which has exceptions and does happen to
support the scAPIL. In this section we describe another implementation of
delimcc, in native-code OCaml. To be precise, we describe the difficulties
and tricks of implementing just the scAPI in native-code OCaml. The rest
of the delimcc code, written in terms of scAPI, stays literally the same.

Native-code OCaml is a different back-end of the OCaml compiler. Whereas
the byte-code back-end (which we have dealt with so far) compiles OCaml
into code for the OCaml virtual machine, the native-code back-end compiles
into assembly code for one of the supported architectures (1386, amd64, arm,
etc). The two back-ends are quite distinct owing to the differences between
CPU instruction sets and the OCaml byte-code. Notably, whereas the byte-
code machine dedicates a separate stack to the execution of byte-code, the
native-code program has to share the native stack, or ‘the C stack’, with
foreign functions, primitives and signal handlers. The byte-code interpreter
handles stack overflow, by resizing (and hence, copying) the stack; in con-
trast, stack overflow in native-code programs is non-recoverable. Although
the native-code stack is no longer copied, fortunately there are no stumbling
blocks for doing so, as OCaml-generated code never uses absolute stack ad-
dresses (with the sole exception of linking exception frames; that one case can
be accommodated by adjusting the exception frame pointers as we copy the
stack). We already discussed in §4.2 that the OCaml FFI specifies that no
mutable OCaml data are allocated or stored on stack. Furthermore, delimcc
ensures that the captured stack prefix has no C frames, raising a run-time
error otherwise. In our experience we have never seen the capturing of a
delimited continuation across the OCaml callback invoked from C code.

Thus scAPI — with exactly the interface of §4.2 — is implementable for
native code (for the currently supported 32- and 64-bit x86 architectures).

25

Therefore, the rest of the delimcc implementation in §4.3, which uses scAPI,
applies to native code as it 7s. The only difference between byte- and native-
code versions of delimcc is the implementation of scAPI.

Although scAPI is supported for native-code programs, its implementa-
tion was not easy. The main difficulty is the sharing of the C stack with
primitives and foreign functions. Besides OCaml values the stack therefore
may contain unboxed values. Since the garbage collector (GC) in OCaml is
precise, the GC needs to know exactly which values on the stack are definitely
OCaml heap pointers. The GC gets this information from so-called frame
tables, placed into the executable file by the code generator. We must take
care to preserve the frame structure as we copy parts of the stack. Mainly,
the continuation object, containing a part of the C stack, is not an ordinary
OCaml value since it contains a mixture of heap pointers and unboxed values.
We have to arrange for a special GC procedure to scan such a mixed value.
This custom GC scanning procedure turns out to be possible, without any
modifications to the OCaml system — albeit not very efficient at the moment.

7. Benchmarks

The library delimcc has been used in a variety of applications and proved
to be adequate in performance. The paper [4] details the performance of a
probabilistic embedded domain specific language that relies on delimcc for
probabilistic choice and failure. Deleuze [21] has compared an old version of
delimcc with other OCaml concurrency frameworks on several benchmarks.
(The present version of delimec is about ten per cent faster.) Running micro-
benchmarks and the sample code included in the delimcc distribution can also
give one some sense of the library performance. In this section we discuss
two of the micro-benchmarks, written to experimentally validate the basic
theoretical expectations of the delimcc library.

The implementation of delimcc exploits the relation between raising ex-
ceptions and capturing delimited continuations. We have seen in §3 that
capturing and throwing away a delimited continuation — or, aborting — is
equivalent to raising an exception. One would expect then that aborting
using delimcc is just as fast as raising a native OCaml exception.

The first benchmark checks that expectation by timing the two opera-
tions. The benchmark computes the product of a list of numbers, throwing
an exception or aborting upon encountering zero. We intentionally use the
non-tail-recursive product computation and make sure zero occurs at the very

26

end of the list, so that an exception or the abort have a large portion of stack
to unwind. In the following code, test1_ex raises the native OCaml excep-
tion Zero, whereas testl_abort relies on delimcc, with prompt p playing
the role of the exception type.

exception Zero

let testl_ex lst =
let £ x acc = if x = 0 then raise Zero else x * acc
in
try List.fold_right f 1st 1 with Zero -> O

let testl_abort 1lst =
let p = new_prompt () in
let £ x acc = if x = O then abort p 0 else x * acc
in
push_prompt p (fun () -> List.fold_right f 1lst 1)

The function abort p v immediately returns the value v to the closest
push_prompt p, skipping the rest of the push_prompt’s body. The func-
tion can be defined in delimcc as

let abort p v = take_subcont p (fun _ -> v)

which is wasteful as it throws away the subcont object that take_subcont
took time to allocate and build. Since abort turns out practically useful
delimcc provides abort as a primitive, which is a version of take_subcont
that skips the saving of the captured stack fragment. The primitive abort
still has to do the chores of maintaining the parallel stack.

We have run the benchmark on lists as long as 110 000 elements, which
is nearly at the edge of stack overflow. The timing showed no perceptible
difference in performance between testl_ex and testl_abort. The file
bench_exc.ml of the delimcc distribution contains the complete code, which
also includes a more involved version of the benchmark, which tests throwing
an exception in the presence of very many other exception handlers.

The second theoretical expectation of delimcc is that the implementation
deals only with the relevant prefix of the stack, never having to scan, move,
or otherwise handle the whole stack. In other words, the performance of a
delimcc application that operates on delimited continuations whose size is
bounded by a fixed number is not expected to depend on the total size of
the stack. The opposite is expected of an application that uses the imple-
mentation of call/cc that copies the whole continuation. To experimentally

27

12 I T T T
call/cc R —

delimcc

10

(o]

CPU time (s)
D

O 1 1 1 1
0 20 40 60 80 100

Stack depth

Figure 3: The running time (in seconds) vs the stack depth, for the call/cc and delimcc
versions of the coroutine benchmark. The platform: OCaml 3.11 byte-code interpreter,
1386 FreeBSD, 2GHz Pentium 4. The shown running time values are the medians of five
consecutive runs.

test these expectations, we used the coroutine benchmark included with the
call/cc library [22] for byte-code OCaml. We can invoke the benchmark func-
tion either as the top-level expression in a module (stack depth 0), or from a
non-tail recursive function that has called itself 10, 20, ..., 100 times. The
number of non-tail-recursive calls is the measure of the stack depth at which
the benchmark is executed. The results are presented in Figure 3, as plots
of the running time of the benchmark vs. the stack depth.

We have re-implemented the benchmark using delimited continuations.
(The file bench_coroutine.ml of the delimcc distribution contains the com-
plete code of both implementations.) Again, we plot the running time vs.
the depth of the stack at the point the benchmark was invoked. At stack
depth zero, call/cc is more efficient than delimcc: the size of the captured
continuation is roughly the same, but delimcc has an administrative over-
head of maintaining the parallel stack; delimcc invokes more FFI (scAPI)
functions and incurs more FFI overhead. The advantage of delimcc becomes
apparent as the stack depth increases. The coroutine benchmark creates two
coroutines, which invoke each other two hundred thousand times. We only
need to capture the continuation of the current coroutine up to the schedul-
ing point, at the start of the benchmark. The delimcc implementation does
exactly that. The size of the captured continuation is bounded by the size
of a coroutine, which is fixed. The performance of delimcc benchmark stays
constant too, regardless of the total size of the control stack. The more

28

extensive benchmark study of delimcc, call/cc and other lightweight concur-
rency frameworks comes to the same conclusions [21]. The benchmarks thus
validate the theoretical expectations of the delimcc library.

8. Persistent Delimited Continuations

Recall from §2 that a captured delimited continuation is a ‘restart object’;
it can later be used, by push_prompt, to restart the computation interrupted
by take_subcont. If we save the captured delimited continuation on disk, we
can restart the computation not only later but in a different process or even
a different computer. Making captured continuations persistent — serializing
and deserializing them — lets us implement checkpointing of computations [5]
or process migration [33]. The library delimcc supports persistent delimited
continuations (for byte-code only). This section describes the challenges and
their resolutions — not only because persistent delimited continuations are so
practically useful but also because their implementation is unusually tricky.

At first blush, the implementation should be trivial: OCaml’s standard li-
brary has a function Marshal . to_channel to serialize OCaml values, chasing
the referred values and writing them too, preserving sharing. The function
Marshal.from_channel de-serializes. Applying Marshal.to_channel to a
captured delimited continuations leads however to a run-time error.

The error is fortunate: otherwise, we would have obtained a huge value
giving subtle problems upon deserialization. All three problems have the
same cause: extensive data dependencies of captured continuations. The
smallest, identity, continuation captured by the following code

let krepr =
let p = new_prompt () in
push_prompt p (fun () -> take_subcont p (fun sk () -> Obj.repr sk))

contains only 18 stack words. However, it transitively refers to a large part
of the core library. Serializing such a continuation has to serialize, along
with it, almost entire global data. The global data include IO channels like
stdin, which are not serializable. That is the cause of the run-time error
when attempting to marshal a captured delimited continuation.

The global data reachable from a captured delimited continuation also
include ptop, the top of the parallel stack, §4.3. The marshaled continuation
will have its own copy of ptop. After deserialization, we end up with two

29

copies of ptop, which will cause insidious errors. We come across the general
problem of serializing any global mutable data.

The problem of serializing global data — which are large, contain non-
serializable values such as IO channels and contain mutable globals of de-
limcc — is solved by getting the OCaml marshaling functions to serialize some
values by reference rather than by value. Code pointers are already serialized
by reference: Marshal.to_channel does not write the whole code segment; it
merely emits the offset from the beginning of the code segment to the pointed
code location. We should arrange for the similar treatment of global data.
Unlike code, which is immutable and unmovable in memory, global data are
loaded into the heap upon start-up, and hence are movable by the garbage
collector. Our solution is to ‘relativitize’ the captured continuation before
serializing it, and ‘absolutize’ it after deserializing. The standard marshaling
functions can be used as they are. The relativitization procedure replaces
references to seemingly global data with relative indices, in the global array
global_data, which is not serialized. We determine the seemingly global
data as all data reachable from the identity continuation captured by de-
limcc upon its initialization. The library populates global_data at that
moment then. The library lets users register their own global data to be
serialized by reference.

The serialized delimited continuation is thus twice delimited: with respect
to the whole continuation (the whole stack) and with respect to the global
environment.

9. Related Work

Paper [11] introduced multi-prompt delimited control and presented its
implementation in SML/NJ, relying on local exceptions and call/cc. Later
the same authors offered a byte-code—only OCaml implementation [15], using
“a very naive experimental brute-force version of callcc that copies the stack”,
along with Obj.magic, or unsafe coerce. The copying of the entire control
stack to and from the heap on each use of control operators is not the only
problem. Since now delimited continuations capture (much more) of the
stack than needed, the values referred from the unneeded part cannot be
garbage-collected: The implementation has a memory leak. Furthermore,
the correctness of the OCaml call/cc implementation [22] is not obvious as it
copies the stack regardless of whether the byte-code interpreter is at a stable
point or not. Since some of the interpreter state is maintained in registers

30

(such as extra_args register), copying the stack may not necessarily preserve
all the data needed for restarting the interpreter. The implementation of
call/cc attempts to force saving of extra_args by writing code in a way so
to defeat the tail-call optimization. This technique is not robust with respect
to compiler improvements.

Multi-prompt delimited control was further developed and formalized in
[12], which also presented indirect implementations in Scheme and Haskell.
The Scheme implementation used call/cc, and the Haskell used the continu-
ation monad along with unsafeCoerce.

A direct and efficient implementation of single-prompt delimited control
(shift /reset) was first described in [23], specifically for the Scheme48 inter-
preter. The implementation relied on the hybrid stack/heap strategy for
activation frames, particular to Scheme48 and a few other Scheme systems.
The implementation required several modifications of the Scheme48 run-time,
specifically, to mark reset’s frames. The GC also had to be modified. On
many benchmarks, the paper [23] showed the impressive performance of the
direct implementation of shift/reset compared to the call/cc emulation. The
implementation, alas, has not been available as part of Scheme48; one of the
reasons, mentioned in [24], was that the interactions of shift/reset with the
rest of the Scheme48 system (in particular, dynamic binding, exceptions and
dynamic-wind) have not been worked out. The paper [23] specifically left to
future work relating the implementation to the specification of shift /reset.

Flatt et al. [24], picking up where [23] left off, worked out the interactions
of delimited control with the standard Scheme features (such as dynamic-
wind) as well as with many extensions of PLT Scheme (e.g., continuation
marks). We share with the authors of [24] the goal of adding delimited con-
trol to the ‘production’ rather than an idealized environment, ensuring the
new features interact with the rest of the system in well-defined and useful
ways, and maintaining, hopefully, backwards compatibility. This goal has
been achieved; admittedly adding delimited control to OCaml was simpler
since OCaml does not have dynamic-wind, which is the main source of com-
plexity [24]. Flatt et al. give few details about their implementation; the
correctness is argued for only extensionally, by comparing test suite results
with the results of the executable specification. The authors of [24] are the
implementers of PLT Scheme, who could make (and it seemed, have made)
changes to the system to accommodate new features. Our strategy was ex-
actly the opposite.

The motivation to add delimited continuations to an existing language as

31

it is puts us within the approach pioneered by Kumar et al. [25], who were
the first to constructively prove, in the untyped setting, that a language sys-
tem supporting threads supports one-shot delimited continuations. One-shot
delimited continuations suffice for many applications of delimited control ex-
cept for non-determinism and probabilistic programming. The implementa-
tion [25] was simplified by their choice of control operators, spawn/controller.
Our operators require more effort since take_subcont finds the correspond-
ing push_prompt essentially from the dynamic environment, which we would
have to emulate. Since OCaml supports threads, it is possible to use the
(extended) technique of [25] to implement a one-shot version of delimcc. It
will be slow: the study [21] showed that lightweight concurrency via delimcc
is notably more efficient than OCaml threads (especially system threads, the
only choice for native-code OCaml).

Recently there has been interest in direct implementations (as compared
to the call/cc-based one [26] in SML/NJ) of the single-prompt shift/reset in
the typed setting [27, 28]. Supporting delimited control required modifying
the compiler or the run-time, or both.

Many efficient implementations of undelimited continuations have been
described in Scheme literature, e.g. [14]. Clinger et al. [29] is a comprehen-
sive survey. Their lessons hold for delimited control as well.

Sekiguchi et al. [30] use exceptions to implement multi-prompt delim-
ited control in Java and C++. Their method relies on source- or byte-code
translation, changing method signatures and preventing mixing the trans-
lated code with untranslated libraries. The run-time overhead is especially
notable for the control-operator—free portions of the code. A similar, more
explicit transformation technique for source Scheme programs is described
in [31], with proofs of correctness. The approach, alas, targets undelimited
continuations, which brings unnecessary complications. The translation is
untyped, deals only with a subset of Scheme and also has difficulties inter-
facing third-party libraries.

10. Conclusions

We have presented abstract and concrete implementations of multi-prompt
delimited control. The concrete implementation is the delimcc OCaml library,
which has been fruitfully used since 2006. The abstract implementation has
related delimited control to exception handling and distilled scAPI, a min-
imalistic API sufficient for the implementation of delimited control. Any

32

language system accommodating exception handling and stack-overflow re-
covery is likely to support scAPI. The OCaml byte- and native-code systems
do support scAPI, and thus permit, as they are, the implementation of de-
limited control. We described the implementation of delimcc as an example
of using scAPI in a typed language.

OCaml exceptions and delimited control integrate and benefit each other.
OCaml exception frames naturally implement stable points of scAPI. Excep-
tion handlers may be captured in delimited continuations, and re-instated
along with the captured continuation; exceptions remove the prompts. Con-
versely, delimcc effectively provides local exception declarations, until re-
cently missing in OCaml.

In the future, we would like to incorporate the lessons learned in efficient
implementations of undelimited continuations, in particular, stack segmen-
tation of [14]. Preliminary results of porting delimcc to Haskell point out
towards the derivation of the (hitherto ad hoc) stack segmentation technique
from Mj_.

Acknowledgements. 1 thank Paul Snively for inspiration and encouragement.
I am immensely grateful to Chung-chieh Shan for numerous helpful discus-
sions and advice that improved the content and the presentation. Many
helpful suggestions by anonymous reviewers and Kenichi Asai are greatly
appreciated.

References

[1] O. Kiselyov, Native delimited continuations in (byte-code) OCaml,
http://okmij.org/ftp/Computation/Continuations.html#
caml-shift, 2006.

[2] O. Kiselyov, C.-c. Shan, A. Sabry, Delimited dynamic binding, in:
ICFP, ACM, 2006, pp. 26-37.

[3] O. Kiselyov, C.-c. Shan, Embedded probabilistic programming, in:
Proc. IFIP Working Conf. on DSL, volume 5658 of LNCS, Springer,
2009, pp. 360-384.

[4] O. Kiselyov, C.-c. Shan, Monolingual probabilistic programming using
generalized coroutines, in: Uncertainty in Artificial Intelligence, AUAI
Press, 2009.

33

[5]

[14]

[15]

O. Kiselyov, Persistent delimited continuations for CGI programming
with nested transactions, Continuation Fest 2008. http://okmij.org/
ftp/Computation/Continuations.html#shift-cgi, 2008.

Y. Kameyama, O. Kiselyov, C.-c. Shan, Shifting the stage: Staging with
delimited control, in: PEPM, ACM, 2009, pp. 111-120.

O. Kiselyov, C.-c. Shan, Lifted inference: Normalizing loops by evalua-
tion, in: Proc. 2009 Workshop on Normalization by Evaluation, BRICS,
2009.

K. Anton, P. Thiemann, Towards deriving type systems and implemen-
tations for coroutines, in: APLAS, volume 6461 of LNCS, Springer,
2010, pp. 63-79.

J. Donham, Mixing monadic and direct-style code with delim-
ited continuations, http://ambassadortothecomputers.blogspot.
com/2010/08/mixing-monadic-and-direct-style-code.html, 2010.

O. Kiselyov, Delimited control in OCaml, abstractly and concretely:
System description, in: Proc. FLOPS 2010: 10th International Sym-
posium on Functional and Logic Programming, number 6009 in LNCS,
Springer, 2010, pp. 304-320.

C. A. Gunter, D. Rémy, J. G. Riecke, A generalization of exceptions and
control in ML-like languages, in: Functional Programming Languages
and Computer Architecture, ACM, 1995, pp. 12-23.

R. K. Dybvig, S. L. Peyton Jones, A. Sabry, A monadic framework for
delimited continuations, J. Functional Progr. 17 (2007) 687—730.

V. Balat, R. Di Cosmo, M. P. Fiore, Extensional normalisation and
type-directed partial evaluation for typed lambda calculus with sums,
in: POPL, ACM, 2004, pp. 64-76.

R. Hieb, R. K. Dybvig, C. Bruggeman, Representing control in the
presence of first-class continuations, in: PLDI, ACM, 1990, pp. 66-77.

C. A. Gunter, D. Rémy, J. G. Riecke, Return types for functional con-
tinuations, http://pauillac.inria.fr/~remy/work/cupto/, 1998.

34

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]
[27]

28]

O. Danvy, A. Filinski, Abstracting control, in: LFP, ACM, 1990, pp.
151-160.

M. Felleisen, The theory and practice of first-class prompts, in: POPL,
ACM, 1988, pp. 180-190.

X. Leroy, The ZINC Experiment: An Economical Implementation of the
ML Language, Technical Report 117, INRIA, 1990.

N. Glew, Type dispatch for named hierarchical types, in: ICFP, ACM,
1999, pp. 172-182.

X. Leroy, The bytecode interpreter. version 1.96, byterun/interp.c in
OCaml distribution, 2006.

C. Deleuze, Light weight concurrency in OCaml: continuations, monads,
events, and friends, 2010.

X. Leroy, Ocaml-callcc: call/cc for ocaml, http://pauillac.inria.
fr/~xleroy/software.html#callcc, 2005.

M. Gasbichler, M. Sperber, Final shift for call/cc: Direct implementa-
tion of shift and reset, in: ICFP, ACM, 2002, pp. 271-282.

M. Flatt, G. Yu, R. B. Findler, M. Felleisen, Adding delimited and com-
posable control to a production programming environment, in: ICFP,
ACM, 2007, pp. 165—-176.

S. Kumar, C. Bruggeman, R. K. Dybvig, Threads yield continuations,
Lisp and Symbolic Computation 10 (1998) 223-236.

A. Filinski, Representing monads, in: POPL, ACM, 1994, pp. 446-457.

M. Masuko, K. Asai, Direct implementation of shift and reset in the
MinCaml compiler, in: ACM SIGPLAN Workshop on ML, ACM, 20009.

T. Rompf, I. Maier, M. Odersky, Implementing first-class polymorphic
delimited continuations by a type-directed selective CPS-transform, in:
ICFP, ACM, 2009, pp. 317-328.

W. D. Clinger, A. H. Hartheimer, E. M. Ost, Implementation strategies
for first-class continuations, Higher-Order and Symbolic Computation
12 (1999) 7-45.

35

[30] T. Sekiguchi, T. Sakamoto, A. Yonezawa, Portable implementation of
continuation operators in imperative languages by exception handling,
in: Advances in Exception Handling Techniques, volume 2022 of LNCS,
Springer, 2001, pp. 217-233.

[31] G. Pettyjohn, J. Clements, J. Marshall, S. Krishnamurthi, M. Felleisen,
Continuations from generalized stack inspection, in: ICFP, ACM, 2005,
pp- 216-227.

[32] D. Biernacki, O. Danvy, K. Millikin, A Dynamic Continuation-Passing
Style for Dynamic Delimited Continuations, Report RS-05-16, BRICS,
Denmark, 2005.

[33] E. Sumii, An implementation of transparent migration on standard
Scheme, in: Proc. Workshop on Scheme and Functional Programming,
number 00-368 in Tech. Rep., Dept. Computer Science, Rice University,
2000, pp. 61-63.

Appendix A. Deriving My, from the Definitional Machine

In this section we recall the definitional machine for multi-prompt delim-
ited control and prove its equivalence to the machine in Figure 1. The proof
is standard and patterned after [32].

Compared to My, in Figure 1, the definitional machine has an extra com-
ponent, the sequence E, whose elements are contexts and prompts. We
write u : E for a sequence whose first element is u and the rest is E; we write
E ++ Es for the concatenation of two sequences. The rest of the notation
is explained in §3. The machine starts in the configuration (e, [],0) and
terminates when it reaches (v,0, [], q).

To prove the equivalence of the definitional machine with My., we first
relate configurations of the two machines. To distinguish the definitional ma-
chine, we place the diacritic mark ~ over all components of its configuration.
We define the family of relations ~ as the least relational family satisfying
the following:

Relating configurations ~,

(€D, E,q) ~c(e,D,q) iff €~ce, (D,E)~aD, =g
Relating expressions: € ~, e is € =e extended with
E~,D iff (O0,E)~yD

36

Variables Ty, ... Prompts p,qe N

Expressions e = v | ee | newP | pushPee | takeSCee | pushSCee

x| e |p| E

O | De | vD | pushP De | pushSC De | takeSC De | takeSCpD

Values v o
Contexts D ::

Sequences FE == [|p:E | D:FE
Transitions between configurations (e, D, E, q)
(ee,D,E,q) — (e,D[O€],E,q) e non-value
(ve,D,E,q) — (e,D0O], E,q) e non-value
(pushPee’, D, E,q) — (e, DlpushP€¢/], E,q) e non-value
(takeSCee', D, E,q) +— (e, D[takeSCe'|, F,q) e non-value
(takeSCpe, D, E,q) +— (e, D[takeSCpll], E,q) e non-value
(pushSCee’, D, E,q) +— (e, D[pushSCUe'], E,q) e non-value
(Az.e)v,D,E,q) — (e[v/x],D,FE,q)
(newP, D, FE,q) — (¢,D,E,q+1)
(pushPpe, D, E,q) — (e,d,p:D: E, q)
(takeSCpv, D, E,q) — (v(D: Ey),0, Es,q) Ei++(p:E)=FE, p¢g FE
(pushSC E'e, D, E,q) — (e,0,E'++ (D : E),q)
(v,D,E,q) — (D],0,FE,q) D+#0
(0,0,p: Eq) = (v,U, E,q)
(v,O,D: E,q) — (v,D,FE,q)

Figure A.4: Definitional machine Mgef, for multi-prompt delimited control from [12, Figure
1] (adjusted for style). Prompts p and sequences E may not appear in source programs.

Relating contexts:

(ﬁ ﬁ) ~q O

(D [e], B) ~a D[O] iff E~ce, (D, E) ~q D

(D[O0 U, £) ~a D0 i 3~ v, (D, E) ~q D

(D[pushP O], E) ~q DlpushP Oe] iff ¢~ e, (D,E) ~q D

and similarly for pushSC, takeSC
(8,p: E) ~q DpushPp] iff (3, E) ~y D
(8,D:E) ~g D iff (D,E)~qD
37

Lemma 1.]f(D E) ~a D then there exist Dy and Do such that D = Do[D1]
and (D H) ~q Dy and (D E) ~q Dy. Conversely, if (D []) ~q4 D1 and
(D E) ~d DQ then (D E) ~d DQ[Dl]

The proof is by induction on the structure of D.

—

Lemma 2. If (O, E) ~q Dy and (O, Ey) ~g Dy then (O, Ey ++ Ey) ~q
Do[Dy].

Lemma 3. If (ﬁ, E) ~qg D and E= E\l b E\Q then there exist D and Dy
such that D = Dy[D4] and (ﬁ El) ~q Dy and (I:l EQ) ~a 1 Ds. Conversely,
if (D E) ~a D and D = Dy[D4] then there exist E1 and Ez such that B =
E1 +—+ E2 and (D El) ~q Dy and (D EQ) ~g D,.

The proof is by induction on the length of E\l (in one direction) or E (in the
converse direction), using Lemma 1 and Lemma 2.

~

Lemma 4. If (D,[]) ~g D and @ ~, ¢ then 5[2] ~¢ Dle].

The proof is by structural induction on D.
As usual, we write — ™ for the transitive closure of the transition relation,
and +—* for the transitive reflexive closure.

Pr0p051t10n 1 (Equivalence). For all€ and e such thate ~, e, (¢,0 ﬁ 0) —
(®,0, [] q) for some v iff (e,03,0) —* (v,0,q) for some v such that v ~, v.

The proof depends on the following lemma:

Lemma 5. Let C be the configuration of Myer, and let C be the related con-
figuration of My.. Then:

1.]f@ — ' Jor some C" then there exists C" and C" such that C" —* 6\"’,
C—*C" and C" ~.C'

2. If O C" for some C' then there exists C" and C" such that C" +—* c”,
C—*C", and C" ~,C"

3. If C is a terminal configuration, then there exists terminal C" such that
C—*C" and C" ~. C. Conversely, if C' is terminal, so is C.

38

Only the cases where C includes p@e, ta@pv, pus/hSC\ E'’e, and
v are interesting. In the other configurations, the machines clearly ‘move in
lockstep’. R

The machines turn out to move in lockstep for C' including plﬁlP\pe,
takeSCpuv (seen from Lemma 3) and pus/hS? FE'’e (proved using Lemma 2).

The remaining case is of the first component of C' being a value (the first
component of the related C' must be a value too, by the definition of ~).
There are three sub-cases. First, C' and C are both terminal configurations.
The lemma (part 3) clearly holds then. Second, C' is the terminal conﬁgura—
tion (v, ¢), but the related C is not. The definition of ~ implies that C
must have the form (7,0, F,§) where E is the list made entirely of 0. In
the number of steps equal to the length of the list, the machine reaches the
terminal configuration that is related to C, as part 3 of the lemma requires.

The final sub-case deals with a non-terminal C' = (v, D,q). The re-
lated C' can have one of the following three forms: (v, lA), E, q) with D =+ El,
@,0,p: E.9), or (3,0,D: E,q).

The lemma holds for the second sub-sub-case, with C’ = (pushP pv, D', q)
and C" = (v, D', q) where D = D’[pushP pJ]. The lemma also holds for the
third sub-sub-case: we apply the last rule in Figure A.4, maybe more than
once if D is empty.

The only complex sub-sub-case is when C' = (v, D, q) and the related
C = (¥, D, E,q) with D # 0. The fact that C ~, C shows that D is not [J;

furthermore, it must have the form D’[D;] Where D; is one of
Ule, v, pushP U e, pushSC e, takeSC Ll e, takeSC p L.

In turn, that implies that D must have the form f?\’[l/D\ﬂ where D, is, respec-
tively, one of

ﬁe, zﬁ, pugP\D e, pusES?D e, takeSCL] e, talgS?p .

The machine My. transitions to C" = (D;[v], D', q) and the definitional ma-
chine transitions to C" = (D’[/Dl\[ﬂ 0,E q) If D' = 0 then C7 ~. C' by
Lemma 1. Otherwise, D' = D, [D”] where D, is Slngle frame (that is, it has
the same general stgct\ure as Dl) We observe that Dl[] is not a value, and

hence, neither is D”[D;[v]]. Therefore, D, [lm [v]]] has the structure such
that one of the first six transitions of the definitional machine applies, giving

39

us the configuration (D@l\[v]], D, E, q). By repeating the process finitely

e

many times we obtain C = (Dy[v], D' E, q). Using Lemma 1 we can show
that C" ~, C".

Appendix B. Proving the equivalence of M) and M/

In this section we formally relate exception handling and the restricted
form of capturing a delimited continuation, justifying the conclusion in §3.

The machine M/ (Figure B.5) is My, with a restriction on source pro-
grams: there is no pushSC and all takeSC expressions must be of the form
takeSCe (A_. €¢') (where the notation A_. ¢’ stands for Az. ¢’ such that x is not
free in ¢’). Therefore, contexts D are not values of M,_. The machine ML,
(Figure B.6) is an extended version of the exception machine Me,. We add
integer identifiers ¢ and the conditional if (qi,q2) then e; else ey, which
branches on equality of two identifiers ¢; and ¢o. These identifiers cannot ap-
pear in source programs but are generated by an operator newQ, evaluating
each time to a fresh value. We add unit (), pairs (v,v), and pair projections
functions fst and snd.

40

Variables .Y, Prompts p,q e N

Expressions e ::= v | ee | newP | pushPee | takeSCeA_.e
Values vi=1x | Are|p
Contexts D == 0] De | vD | pushPDe | takeSCD A_.e
| pushPp D
Single Frame = Oe | O | pushPOe | takeSCO A . e
| pushPp
Transitions between configurations (e, D, q)
(ee/, D,q) — (e, D[Oe],q) e non-value
(ve,D,q) — (e,D[v0],q) e non-value
(pushPee’, D,q) +— (e, D[pushP e}, q) e non-value
(takeSCeA_.€e', D,q) — (e, D[takeSCIA_.€],q) e non-value
(Az.e)v,D,q) — (elv/x],D,q)
(newP,D,q) — (q¢,D,q+1)
(pushPpe, D,q) + (e, D[pushPpL]], q)
(takeSCpA_.e¢/,D,q) +— (€, Ds,q) Ds[pushP pDy] = D, pushPpD’ & D,
(v, D[D1],q) — (D1[v],D,q) D; single frame
(pushPpuv, D,q) — (v,D,q)

Figure B.5: Restricted version M/_ of the abstract machine My that discards the captured
continuation. The initial configuration is (e,d, 0), the terminal is (v, 0, q).

41

Variables TR Exceptions p, ... Id ge N

Expressions e = v | ee | raise,e | try,ee | newQ | if e then e elsee
Values vi=gq | x| el ()] (v,v) | £st | snd
Contexts D == 0| De | vD | raise, D | try,De | if D then e elsec
Single Frame = Oe | v0 | raise,[J | try,0e | if [J then e else e
Transitions between configurations (e, D, q)
(ee/, D,q) — (e, D[Oe], q) e non-value
(ve,D,q) — (e,D[v],q) e non-value
(if e then e; else ey, D,q) +— (e, D[if [J then e; else es),q) e non-value
(raise,e,D,q) +— (e, D[raise,], q) e non-value
(.0, D,q) — (elo/x], D,q)
(try,ee’,D,q) — (e, Dltry,e’],q)
(raise,v,D,q) — (€'v,Ds,q)

Dg[tryp D€'l = D, try, D'e ¢ D,

(new@Q,D,q) — (¢,D,q+1)
(fSt (Ulvv2)) = (U17DaQ)
(Snd (Ula UQ)) = (U27 -D7 Q>
((q1,q2) then ey else 62,D q) — (e1,D,q) q1 = q2
f (q1,q2) then e; else ey, D, q) +— (e2,D,q) G # G2
(v,D[D4]) +— (Div],D) D; single frame
(try,ve’, D) — (v,D)

Figure B.6: Abstract machine M., for exception handling extended with more data types
and operations on them. The initial configuration is (e,[J, 0), the terminal is (v, q).

We define the translation | -] of M/ expressions to the expressions of M.,
as follows.

42

|takeSCuv (A_.e)| = raise, (A |e],|v])

|pushPuve] = try, le] TH

|x] = x

p] = q

| Az e] = Az |e]

le1ea) = lei] [e2]

|newP| = newQ

|pushPe¢’| = [(Az.pushPze€')e| e non-value, z fresh
|takeSCeA_.e'| = |[(Ax.takeSCz A_.¢')e| e non-value, z fresh

We have introduced a dedicated exception type py and the notation TH,:
TH, = Ay.if (Ay2.(q,¥y2))(sndy) then fsty() else raise,,y
It is easy to see the following properties of the translation:

Lemma 6 (Value classification preservation). If an expression e is a
value of M., |e] is a value of M, and conversely. If an expression e is not

a value of M., |e] is not a value of M., and conversely.

Lemma 7 (Substitution). |e[v/z]] = |e][|v]/z].

Proposition 2 (Equivalence). For all M, source programs e, the machine
M., reaches the terminal configuration iff M., does so for the source program

Le].

The proof is by bi-simulation, as follows. We first relate configurations
of M}, and M.,. To avoid confusion, we place the diacritic mark = over the
configurations, contexts and expressions of Mj.. We define the family of
relations ~ as the least relational family satisfying the following;:

43

Relating configurations ~

(@.D.9) ~(e,D.q) iff E~ee, Dy D, G=1q
Relating expressions: € ~. e iff |e] =e
Relating contexts:

O~y O

D/D\e] ~g D[Oe] iff @~ee, D~y D

UD] ~g D[o0] iff T ~e v, D ~g D

[
Do)
D[pushP Oe] ~a D[(Az. try, e TH,)O] iff e~.e, D~y D
[
[

@

DftakesCO_. e|] ~q D[(Az.raisey, (A_.e,x))0] iff e~ e, D~y D

D pusthEl] ~q4 Dltry, O TH,| iff D~y D
By a simple structural induction argument we easily prove the following
two lemmas.

—_—

Lemma 8. If D ~y D then for each non-value expression € of M., Dle] ~.
D[[e]].

Lemma 9. If m} ~q D where l/)\l is a single frame of M., then D has
the form Ds[D1] where Dy ~y Dy and Dy ~4 Dy and Dy is a single frame
(of machine M.,).

As before, we write — for the transitive closure of the transition relation,
and —* for the transitive reflexive closure. The proof of the equivalence of

My, and M,,, Proposition 2, is based on the bi-simulation lemma:

Lemma 10. Let C be the configuration of M. and let C be the related con-
figuration of M.,. Then:

1. ia — C" for some C" then there exists C' such that C —* C’, and
"~ C';
2. If C+— C" for some C" then either
(a) there exists C" and C" such that C' —* C", C +— C', and C" ~
O//
(b) C is a non-terminal conﬁgumtzon with no further transitions pos-
sible (that is, M, is stuck at C) and there exists C" such that
C'—* C" and M., is stuck at C".

44

3.]f@ 15 a terminal configuration, then so is C, and conversely.

The third part follows from the definitions of ~. and ~; and Lemma 6.
The first two claims are straightforward when C has the form (eﬁq),
(’UZD\,(]) (e is not a value), (new/P,\D, q), (pushP/p?,D, q), and (()\SL‘EED, q)
(the latter requires the substitution lemma 7). The two machines transition
in lock-step in these cases. The machines also transition in lock-step when
C has the form (push?e-e\’,D,q) (takeSC;)\Te’,D,q) and (puslﬁ%\,D,q)
(where e is not a value). We show the proof for the takeSC case, the others
are analogous.

Let C be (takeSCg): e’, D, q) where e is not a value. From the definition
of ~, the related C' must have the form ((Az. raise,,(A-. €, x))e, D, q) where
€~ e, ¢ ~ €, and D ~gq D. The machine M/_ is able to transition from C to

' = (e, D[takeSC OA_. €], q). The machine Mex also can make a transition,
from C'to C" = (e, D[(Ax. raise,, (A-. ¢, x))0], q). We observe that C" ~. C".

In the case of C' being (v, D[Dy], q), the machines too transition in lock-

—

step except when the single frame l/?\l is either pushP [e or takeSCIA . e.
The two exceptional cases are analogous; we describe the second one. From
the definition of ~., the related configuration C' must have the form (v, D[D;], q)
where ¥ ~, v, D ~4 D and D is (Az.raise, (A-.e,x))0. The machine M},
transitions to C7 = (takeSC/v)t e, D, q). The machine M., transitions to C"
of the form ((Az.raise,, (A-.e,x))v,D,q). The machine can make another
transition, to C”, which is (raisepo(A e,v), D q)/a_rﬁ related to C'.

The only non-trivial case is C being (takeSCpA_. e’ D q) The related
C must have the form (raise, (A-.€',p), D, q) where ¢ e e ¢ and D ~y D.

Suppose that D has the form D, [pushP le] where pushP pD’ ¢ D,. The

machine M/_ then transitions to O = (e Ds,q). The definition of ~y
shows that D has to have the form Dg[tryp0 D, TH,]. The context D
may well include a frame try, [JTH,. Let us suppose it does. Since

pu@D’ ¢ l/)\l by assumption, we know that p’ is different from p. Thus D
has the form Dy[try, Di[try, Dj THy| TH,]. The machine M, then transi-
tions to (THy (A~ €', p), Do[try, Di THy|, q) and eventually (see the definition
of TH,) to (raise,, (A €', p), Daftry, Di THy],q), which is just like the start-
ing configuration, but with the shorter D;. Eventually there will be no frame
try, O THy in D;. Then Mg, will transition to (TH,(A-. €/, p), D2,), followed

45

by ((A_.€')(), D2, q) and finally to (¢’, Ds, q). The latter is related to .
Conversely, suppose that M., can make a transition from C. That im-

plies the existence of a try, e’ frame in D. By the definition of ~y, all

such frames have the form try, [J TH, for some p’. Thus if D has the

form Ds[try, D) THy| the related D must have the form D,[pushP p/D].
In particular, if D has a frame try, [TH, then D must have the form
Ds[pushP pD;] and M) can transition from C to some C’. The argument in

the previous paragraph shows that M., eventually reaches a related config-
uration. If D has frames try, [J TH, but in none of them p' is equal to p,
then the related D has no frame puglP\pD and so M} is stuck at C. The
sequence of transitions described in the previous paragraph shows that M.,
eventually reaches (raise,,(A_.€,p), D’ q), where D' is the prefix of D that
no longer has any try, U THy frame. The machine Mg, gets stuck at that
point.

46

