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Abstract. We demonstrate that for all practical purposes, Lambek Gram-
mars (LG) are strongly equivalent to Context-Free Grammars (CFG)
and hence to second-order Abstract Categorial Grammars (ACG). To be
precise, for any Lambek Grammar LG there exists a second-order ACG
with a second-order lexicon such that: the set of LG derivations (with
a bound on the ‘nesting’ of introduction rules) is the abstract language
of the ACG, and the set of yields of those derivations is its object lan-
guage. Furthermore, the LG lexicon is represented in the abstract ACG
signature with no duplications. The fixed, and small, bound on the nest-
ing of introduction rules seems adequate for natural languages. One may
therefore say that ACGs are not merely just as expressive as LG, but
strongly equivalent.

The key is the algebraic description of Lambek Grammar derivations,
and the avoidance of the Curry-Howard correspondence with lambda
calculus.

Keywords: Lamkek Grammar · Context-Free Grammar · Pentus Con-
struction · ACG.

1 Introduction

Expressing a Lambek Grammar (LG) as an Abstract Categorial Gram-
mar (ACG) is a sort of a problem that on the surface is either impos-
sible or trivial, with unfolding subtleties and depth – the problem that
just does not go away. Lambek Grammar with its directional types is
based on logic with directional implications without any exchange rule.
In contrast, ACG uses ordinary arrow types, and its underlying implica-
tive fragment of multiplicative linear logic is commutative. No matter
what tricks one may play, the fundamental distinction inevitably comes
to haunt us, as Kubota and Levin [8] and Moot [9] have claimed: “The
best approximations that we can obtain all suffer from overgeneration
because non-commutativity is insufficiently enforced.” [9, §7.2]. In fact,
analyzing right-node raising in an ACG formalism without directional
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types while avoiding overgeneration has been posed as a challenge to the
first author by Yusuke Kubota at ESSLLI 2013.

On the other hand, the problem seems trivial: as Pentus showed
[10], any LG is weakly equivalent to a context-free grammar (CFG), and
CFGs are trivially representable as ACGs [3]. Weak equivalence means
that the two grammars generate the same set of strings. The correspon-
dence of derivations is a different, and subtle matter, investigated by
Kanazawa, Salvati [6, 4], De Groote [1] and others [12]. The latest result
is De Groote’s construction of an ACG that reproduces both derivations
and the yields of an LG [1]. However, that ACG is third order, and still
suffers from redundancies that arise in Pentus-like constructions. Fur-
thermore, the paper [1] notes that the strong equivalence of ACG and
LG cannot be guaranteed in every case.

Our contribution is the general strong equivalence of LG and ACG:

Theorem 1. For any LG and the natural number n, there exists a second-
order ACG with a second-order lexicon whose abstract language is all and
only LG derivations of the distinguished type of hyp-rank n (to be defined
below) and whose object language is the yields of those LG derivations.
The LG lexicon enters the ACG signature with no duplications, let alone
exponential explosions.

As a corollary, we answer the Kubota challenge. As another corollary,

Corollary 1. For any LG and the natural number n, there exists a context-
free grammar (CFG) whose parses are all and only start-type LG deriva-
tions of hyp-rank n. (In fact, CFG parse trees are LG derivation trees,
written ‘upside down’.)

The paper presents the construction of the CFG and ACG from an
LG and argues, in §5, that the hyp-rank qualification is irrelevant in prac-
tice. The key is the algebraic approach to LG derivations and ACG and
avoiding the Curry-Howard correspondence. We do not regard directional
types as function (arrow) types.

The structure of the paper is as follows. The next section reminds
Lambek calculus and grammars and introduces their different but prov-
ably equivalent presentation, which is easier to characterize algebraically.
§3 gives an unconventional, algebraic presentation of second-order ab-
stract categorial grammars. The algebraic presentation immediately re-
lates ACG with LG derivations, leading to the main result of the paper.
The strong equivalence of ACG and LG means the absence of overgener-
ation. §3.1 explicates the reason preventing the overgeneration, and, on
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the concrete examples from Moot [9] and the Kubota challenge, demon-
strates the descriptive adequacy of second-order ACGs. In §4 we examine
related work, in particular, [1]. We also show how our presentation of
LG avoids the most difficult issues in the Pentus construction [10]. §5
discusses hyp-rank and the algebraic presentation of LG.

2 Lambek Grammars, Derivations, and Algebras

First we recall the needed definitions of Lambek calculus and gram-
mar, define the hyp-rank and introduce the running example. §2.1 later
presents the variation, the calculus LA, and its algebraic characterization.

A grammar is a description of a language, that is, of a set of finite
strings built from a finite fixed set of ‘words’ (so-called alphabet). We
write ε for the empty string and + for string concatenation. In Lambek
Grammars (LG) – and type logical grammars that followed – the string
building rules are expressed through a deductive system. In the case of
LG, the deductive system is the (associative) Lambek calculus L presented
below, in the Gentzen-style natural deduction form (from [11, §2.2.2]).

Primitive types P ::= s,n,np
Types A,B,C ::= P | A\B | B/A
Environments Γ,∆ ::= A | A,Γ | Γ,A
Judgements Γ ` A

∆ ` B/A Γ ` A
/e

∆, Γ ` B
Γ,A ` B

/i
Γ ` B/A

Γ ` A ∆ ` A\B
\e

Γ,∆ ` B
A,Γ ` B

\i
Γ ` A\B

V ar
A ` A

The formulas of L are called syntactic types, for which we use the
metavariables A, B, and C. They are inductively built from the primitive
types s, n, and np using the left- and right- slashes. As the convenient
abbreviation, vp stands for np\s, tv for vp/np, det for np/n, rel for (n\
n)/(s/np) and pp for n\n. The metavariables Γ and ∆ stand for an en-
vironment: a non-empty sequence of types. Furthermore, A, (B,C) and
(A,B), C represent the same environment; an environment is hence just a
linear sequence of types. Besides associativity, there are no other (struc-
tural) rules about the environments; in particular, there is no exchange
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rule: the order of types in an environment is significant. We define a par-
tial order on types A ≺ B (pronounced: ‘A is a subformula of B’) as
A ≺ A, and A ≺ B/C, A ≺ B\C whenever A ≺ B or A ≺ C. We say A
is a subformula of a collection of types if it is a subformula of some type
in the collection. As an example of L, Fig.1 shows the derivation of the
judgement det ,n, rel ,np, tv , vp ` s.

det ` det

n ` n

rel ` rel

np ` np

tv ` tv np ` np
/e

tv ,np ` vp \e
np, tv ,np ` s

/i
np, tv ` (s/np)

/e
rel ,np, tv ` pp \e

n, rel ,np, tv ` n
/e

det ,n, rel ,np, tv ` np vp ` vp \e
det ,n, rel ,np, tv , vp ` s

<latexit sha1_base64="nZv3daXUyqZu5cBuyOQlJzb5r6c="></latexit>

Fig. 1. Gentzen-style, natural deduction derivation in L

A grammar based on L – Lambek Grammar (LG) – is a tuple (LL, As)
of the lexicon and the initial type (which is often s). The lexicon LL defines
the alphabet of the grammar and assigns to each word of the alphabet the
corresponding L type. Fig.2 shows the sample lexicon, also to be denoted
by LL.

John : np book : n the : det that : rel read : tv vanished : vp

Fig. 2. The LG lexicon LL for the running example

A non-empty string w1 . . . wn (where wi is a word of the alphabet)
is in the language of the grammar (LL, As) just in case the judgement
A1, . . . , An ` As is derivable in L, where Ai is the type assigned by LL to
wi. The derivation in Fig.1 thus shows that the language of the grammar
(LL,s) includes the string “The book that John read vanished,” which
will be our running example.

The derivation in Fig.1 contains a number of hypotheses (on the left-
side of the turnstile), only one of which is discharged, by the introduc-
tion rule. The maximum number of to-be-discharged hypotheses in any
judgement of a derivation is called the hyp-rank of the derivation. (The
derivation in Fig.1 hence has the hyp-rank one).
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2.1 The Calculus LA

To conveniently view Lambek derivations as an algebra, and to later relate
them to ACG, we give a different but provably equivalent presentation of
L and LG, to be called LA. The only differences from L are the addition
of marks � to the environment and a different treatment of the lexicon.
The new syntax of the environment is:

Γ,∆ ::= � | A | A,Γ | Γ,A

We write • for a sequence of one or more consecutive marks �, and Γ̆ , ∆̆
for a possibly empty mark-free sequence of types.

The grammar based on the calculus (also to be called LA) adjoins to
LA a set of axioms – the LA lexicon LA – and designates one of the types
as initial (usually, s). LA is a different presentation of the LG lexicon:
the mapping of a word to a type is written as an axiom, whose name is
the word and whose conclusion is the corresponding type. If w is a word
in LA, we write LA(w) for its type; the notation extends to sequences of
words. Shown below are three (for the sake of space) axioms of LA that
correspond to LL of the running example:

john
� ` np

book
� ` n

read
� ` tv

The mark thus ‘marks the place’ of a lexical entry axiom in the derivation.
Figure 3 gives the LA derivation for the running example.

the⇧ ` det

book⇧ ` n

that⇧ ` rel

john⇧ ` np

read⇧ ` tv np ` np
/e•,np ` vp \e•,np ` s

/i• ` s/np
/e• ` pp \e• ` n /e• ` np

vanished⇧ ` vp \e• ` s
<latexit sha1_base64="fH39Lw9Z4BGCV5OnMPk3ry5Wsrk="></latexit>

Fig. 3. Sample derivation in LA

If t is an LA derivation (tree), its fringe F(t) is a string of words
naming the axioms that appear in its derivation. It is inductively defined
as follows:

– if t is an axiom named w, F(t) is w;
– if t is a Var axiom A ` A, F(t) is ε



6 Oleg Kiselyov, Hoshino Yuya

– if the last rule in t is \i or /i with the premise t′, then F(t) is F(t′);
– if the last rule in t is \e or /e with the premises t1 and t2, then F(t)

is F(t1)+F(t2).

A non-empty string w1 . . . wn is said to belong to the language of an
LA grammar with the lexicon LA and the initial type As just in case
there is an LA derivation of • ` As whose fringe is w1 . . . wn.

The notion of normal derivations in LA is the same as in L [11, §2.8],
as should be clear from the strong equivalence shown below. That is,
an LA derivation is called normal if it does not contain an introduction
rule for the type B/A or A\B, immediately followed by the rule that
eliminates A. As in L, LA derivations can always be normalized [11, §2.8].
Therefore, we restrict our attention to normal derivations only. Also like
in L, normal LA derivations enjoy the subformula property: any type that
appears within a normal derivation Γ ` As is a subformula of Γ,As or
the set of lexicon types.

2.2 Strong Equivalence of LG and LA Grammars

Proposition 1. If t is an LA derivation of Γ̆ , •, ∆̆ ` A (given the lexicon
LA), then there exists the L derivation Γ̆ ,LA(F(t)), ∆̆ ` A.

The proof is an easy induction on the structure of t. Indeed,

– If t is an axiom � ` A named w, the corresponding L judgement is
A ` A, which is the Var axiom of L.

– If the last rule of t is /i with the conclusion Γ̆ , •, ∆̆ ` B/A, its premise
must be Γ̆ , •, ∆̆, A ` B (whose derivation is to be called t′). By the
inductive hypothesis, there exists an L derivation Γ̆ ,LA(F(t′)), ∆̆, A `
B, which can then be extended with the /i rule to Γ̆ ,LA(F(t)), ∆̆ `
B/A (keeping in mind that F(t) = F(t′)).

– Suppose the last rule of t is /e with the conclusion Γ̆ , •, ∆̆ ` B and the
premises t1 and t2. There are three cases to consider. In the first, t1
has the form Γ̆ , • ` B/A and t2 has the form •, ∆̆ ` A. Applying the
inductive hypothesis to both and then /e gives Γ̆ ,LA(F(t)), ∆̆ ` B,
keeping in mind that F(t) = F(t1)+F(t2). In the second case, t1 has
the form Γ1 ` B/A and t2 has the form Γ̆2, •, ∆̆ ` A where Γ1 is
unmarked and non-empty. Then t1 is the ordinary L derivation, using
no axioms of LA, with no marks in its environment and with the empty
fringe. We reach the conclusion by applying the induction hypothesis
to t2 only, and then the /e rule to get the final L derivation. The
remaining case is symmetrical.
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– The cases of \e and \i as the last rules of t are symmetrical.

Proposition 2. If Γ ` A is derivable in L, then there exists a lexicon
LA and an LA derivation t of Γ̆ , •, ∆̆ ` A such that Γ̆ ,LA(F(t)), ∆̆ is Γ .

Consider an L derivation of Γ ` A where Γ , which must be non-empty,
is A1, . . . , An. Each type Ai must come from a Var axiom Ai ` Ai that is
used at some point in the derivation. Pick from Γ a non-empty consecutive
sequence of types Ak, Ak+1, . . . , Al with l > k, and build the lexicon LA
with the axioms � ` Ai named by distinct words wi, where i = k..l.
For each such Ai we replace the Var axiom that introduced that Ai into
Γ with the corresponding axiom from LA – replacing the corresponding
occurrences of Ai with �. It is easy to see that the result is the valid LA
derivation with the fringe whose types are Ak, Ak+1, . . . , Al.

The easy corollary from the two propositions is that LG and LA de-
scribe the same set of strings: they are weakly equivalent. The exam-
ination of the proofs lets us conclude the stronger result: LG and LA
derivations for the same string have the same shape, and differ only in
the ‘kind’ of some of their axioms, Var vs. lexicon. Thus LG and LA
are strongly equivalent. We may thus speak of LA derivations as Lambek
grammar derivations.

2.3 The Algebra of LA Derivations

One may regard the derivation trees like those in Fig.3 as a multi-sorted
algebra, to be called ALD1 . Its carrier sets are LA derivations; Fig.4
shows the signature ΣAL1 of the operations. (Notably, it includes the
lexicon LL, without any duplications: see the first column of Fig.4.) There,
〈•,np; vp〉, etc. is the notation for atomic sorts (that is, types); although
angular brackets, commas, semicolons might suggest an internal structure,
it is only for the convenience of the reader. In the formalism, the whole
complicated symbol denotes an atomic type (sort) without any separately
interpreted components.

The carriers of ALD1 are LA derivations with no more than one dis-
chargeable np hypothesis at a time. The construction of ALDn for deriva-
tions of any other fixed hyp-rank is analogous. For example, the general
ALD2 adds to ALD1 the operations such as 〈np, •; tv〉 → 〈•,np; np〉 →
〈np, •,np; vp〉 and 〈•; tv〉 → 〈•,np,np; np〉 → 〈•,np,np; vp〉. There are
many such operations, but their number is finite (see below). We can
build an algebra whose carriers are all LA derivations with no restric-
tions; it will have an infinite number of operations: all instances of a
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john : 〈•;np〉 evp : 〈•;np〉 → 〈•; vp〉 → 〈•; s〉
book : 〈•;n〉 enn : 〈•;n〉 → 〈•; pp〉 → 〈•;n〉
the : 〈•; det〉 edp : 〈•; det〉 → 〈•;n〉 → 〈•;np〉
that : 〈•; rel〉 etv : 〈•; tv〉 → 〈•;np〉 → 〈•; vp〉
read : 〈•; tv〉 ehtv : 〈•; tv〉 → 〈np;np〉 → 〈•,np; vp〉
vanished : 〈•; vp〉 hnp : 〈np;np〉

ehvp : 〈•;np〉 → 〈•,np; vp〉 → 〈•,np; s〉
irnp : 〈•,np; s〉 → 〈•; s/np〉
erel : 〈•; rel〉 → 〈•; s/np〉 → 〈•; pp〉

Fig. 4. The signature ΣAL1

finite set of schematic operations (which are the restatement of the LA
inference rules).

Let Ln be the language of an LA grammar whose derivations have the
hyp-rank n. The hyp-rank is the bound on the nesting of the introduction
rules – or, the bound on the length of Γ of any judgement used in a deriva-
tion. The hyp-rank does not limit the total number of the introduction
(or, elimination, for that matter) rules that may occur in a derivation.
Therefore, Ln is generally infinite. Nevertheless, all its derivations can be
performed with a finitely many instances of inference rules. Indeed, if t is
a normal derivation • ` As, all types of all judgements within t are sub-
formulas of As or the types of the lexicon. Therefore, the set of distinct
types appearing within all (potentially infinite many) derivations for Ln

is finite. Furthermore, each judgement within a derivation has no more
that n hypotheses. Therefore, the total number of distinct judgements,
and hence the distinct instances of inference rules, within all derivations
of Ln is also finite.

It is easy to see ALD1 is an initial algebra of the signature ΣAL1 , and
hence represents all and only the LA (and correspondingly, LG) deriva-
tions of the given lexicon (with a single dischargeable np hypothesis).

One may view ΣAL1 as a CFG. For example, the type of the opera-
tion ‘evp’ may be viewed as the production 〈•; s〉 → 〈•; np〉 〈•; vp〉. The
grammar is almost in Chomsky Normal Form (it would be in CNF if we
substitute-out the productions that correspond to the unary rule ‘irnp’).

3 ACG, Algebraically

We now define an algebraic ACG: a subset of second-order ACGs [2,
5], and relate it with LA. An algebraic ACG G is a quadruple of two
algebraic signatures ΣA (called ‘abstract’) and ΣO (called ‘object’), a
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morphism L (called lexicon) and a sort s of the abstract signature called
‘the distinguished type’. L is a morphism from an initial algebra of ΣA to
the initial algebra of ΣO that commutes with ΣA’s operations. Let I(G)
be the word algebra of ΣA. Its carrier of the sort s is called the abstract
language generated by G. The object language of G is the image of the
abstract language by L.

In the original De Groote’s definition of ACG [2], the abstract lan-
guage is taken to be the set of all closed linear lambda terms of the
type s built over a (generally higher-order) signature. In the simplest
second-order ACG, the signature is algebraic. Furthermore, a normal
lambda term of the primitive type s over such signature has no lambda-
abstractions. Thus our algebraic ACG fits with the original second-order
ACG definition.

In the following, let G be a particular algebraic ACG whose abstract
signature is ΣAL1 , the object signature is the string signature defined
below, and the distinguished type is s. The zero-arity operations of ΣAL1

are precisely the LG lexicon, Fig.2; the other operations are determined
by the hyp-rank and the set of lexicon categories – both of which are
small, in natural languages. The abstract language of G is, by definition,
the set of terms, such as

evp(edp(the, enn(book,

erel(that, irnp(ehvp(john, ehtv(read,hnp)))))), vanished)

which is an encoding of the LG derivation in Fig.1. Since I(G) is also an
initial algebra and hence isomorphic to ALD1 , the abstract language of G
represents all and only derivations of LG (with the hyp-rank restriction).

The string signature has only one sort: string. Its constants are john
and book, etc., for each lexical item (Fig.2), plus ε and +. The morphism
from I(G) is defined in Fig.5. (In conventional ACG terms, the lexicon
can be called second-order.) In particular, L maps the abstract language
term above to (the+(book+(that+(ε+(john+(read+ε))))))+vanished. It is
easy to see the morphism computes the fringe of the LA derivation tree:
in other words, it computes the yield of the corresponding LG derivation.

L(john) 7→ john L(hnp) 7→ ε L(irnp(x)) 7→ ε + L(x)
L(evp(x,y)) 7→ L(x) + L(y)

Fig. 5. The lexicon L: the mapping from I(G) to the string language. Only the repre-
sentative mappings are shown. The others are analogous.



10 Oleg Kiselyov, Hoshino Yuya

3.1 The Absence of Overgeneration

We have just demonstrated that an algebraic ACG describes the same
language as the corresponding LG of a fixed hyp-rank and hence does not
overgenerate. Since overgeneration is a serious problem in (naive) ACGs
[9], let us discuss how it could arise and how it is prevented in algebraic
ACGs. We use concrete examples from [9] and the Kubota challenge.

We start with one of the examples from [9, §7.2]: sentences with ad-
verbs. The base sentence is “John hit Mary”, which is in the language of
G (after adding to ΣAL1 the lexical entries mary: 〈•; np〉 and hit: 〈•; tv〉).
The corresponding abstract term is evp(john, etv(hit,mary)). After
adding “deliberately” with the syntactic type vp/vp, “John deliberately
hit Mary” should become recognizable. It does indeed, after the following
additions to ΣAL1 :

deliberately : 〈•; vp/vp〉 evpvp : 〈•; vp/vp〉 → 〈•; vp〉 → 〈•; vp〉

of which only the first is the lexical entry. The LG derivation is represented
by the abstract term evp(john, evpvp(deliberately,etv(hit,mary))).

The challenge itself is avoiding overgeneration. Moot shows in [9] that
a naive ACG generates not just the above sentence but also “John de-
liberately Mary hit” and “Mary John hit deliberately”. Let us see how
the former could come about. The signature ΣAL1 has no combinators to
combine ‘mary’ with ‘hit’. We can introduce a np hypothesis and build
irnp(ehvp(mary,ehtv(hit,hnp))) of the sort 〈•; s/np〉 – similar to the
analysis of “john read” in our running example. In the naive ACG this
term has the type indistinguishable from vp (which is np\s), and hence
can be combined with ‘deliberately’ and then with ‘john’, leading to the
overgenerated sentence. Such derivation is, however, impossible in G: the
sort 〈•; s/np〉 is different from 〈•; vp〉; the combination with ‘deliberately’
is not possible. The second overgeneration example by Moot is also not
derivable in G.

Thus although ACGs do not have directional types, the overgenera-
tion can still be prevented, if directional syntactic types such as np\s are
mapped to atomic ACG types (viz., 〈•; np\s〉) rather than function types.
The key, hence, is avoiding the Curry-Howard correspondence, promi-
nently present in other approaches [1, 4]. Using rich set of atomic types
does not imply duplicating lexical entries: ΣAL1 uses just as many lexical
entries as the corresponding LG lexicon.

The Kubota challenge is analyzing right-node-raising such as “John
loves and Bill hates Mary” without overgeneration. The original sentence
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is recognized by G after adding (besides the obvious lexical entries for
‘bill’, ‘loves’ and ‘hates’):

and : 〈•; (rn\rn)/rn〉 eandr : 〈•; (rn\rn)/rn〉 → 〈•; rn〉 → 〈•; rn\rn〉
eandl : 〈•; rn〉 → 〈•; rn\rn〉 → 〈•; rn〉 esnp : 〈•; rn〉 → 〈•;np〉 → 〈•; s〉
(we write rn for s/np.) Here is the derivation

esnp(eandl(irnp(ehvp(john, ehtv(loves,hnp))),

eandr(and, irnp(ehvp(bill, ehtv(hates,hnp))))), mary)

Crucially, “*Mary John loves and Bill hates” is not recognizable: 〈•; s/
np〉 is different from 〈•; vp〉 as explained earlier, and the only combinator
that accepts the arguments of the types 〈•; s/np〉 and 〈•; np〉 takes them
in the shown order.

4 Related Work

The most closely related is the work by De Groote [1]. His approach is
based on a Pentus-like construction connecting LG and CFG, Kanazawa
and Salvati’s characterization of that construction [6], a novel method
of interpreting LG lexicon as linear lambda terms, and lexicalization of
second-order ACGs [13, 7].

To clearly see the differences between De Groote’s and our approaches,
let us take the running example of [1]: “Every man who loves some woman
loves every woman.” It is recognized by LG in a hyp-rank–zero derivation
with the following lexicon

man : n woman : n some : det every : det loves : tv who : pp/vp

(The lexicon shown in [1, Fig.1] has an extra entry for ‘whom’ that is not
used in the running example.)

The most insightful is the comparison of our algebraic ACG with the
intermediate result of De Groote’s derivation, which he dubs LDER: see
Fig.6. The differences show already in the abstract signature: LDER is
larger, reflecting the fact that Pentus-like constructions produce (highly)
redundant grammars. (Even though LDER relied on a particular case
of the Pentus construction with less redundancy than the general case).
The most significant differences are in the lexicon. The LDER lexicon is
clearly third order, producing lambda-terms. Our lexicon is second order,
and outputs strings (the yield of the grammar). The final result [1, Figs.
12 and 13] also has the second-order string lexicon, but a third-order
ACG.

One of the most difficult parts of the Pentus proof [10] is demon-
strating that an L derivation A1, . . . , An ` An+1 for an arbitrary n
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Abstract signature, [1] Abstract signature, this paper

prod0 : <det>→ <n>→ <np>
prod1 : <tv>→ <np>→ <np>→ <s>
prod2 : <pp/vp>→ <vp>→ <n>→ <n>
prod4 : <tv>→ <np>→ <vp>
prod7 : <det>→ <n/np>→ <np/np>
prod8 : <pp/vp>→ <tv>→ <n>→ <n/np>
prod9 : <tv>→ <np/np>→ <tv>
man : <n>

other lexical entries elided

edp : 〈•; det〉 → 〈•;n〉 → 〈•;np〉
evp : 〈•;np〉 → 〈•; vp〉 → 〈•; s〉
etv : 〈•; tv〉 → 〈•;np〉 → 〈•; vp〉
enn : 〈•;n〉 → 〈•; pp〉 → 〈•;n〉
esrel : 〈•; pp/vp〉 → 〈•; vp〉 → 〈•; pp〉

man : 〈•;n〉
other lexical entries elided

Object signature, [1] Object signature, this paper

man,woman : n
some,every : n → np
loves : np → np → np
who : (np → s)→ n → n

man,woman,some,every,loves,who : string
+: string → string → string

Lexicon, [1] Lexicon, this paper

prod0 := λxy. xy
prod1 := λxyz. xyz
prod2 := λwxy.w(λz. xz)y
prod8 := λvwxy. v(λz.wyz)x

. . .
man := man

. . .

L(edp(x,y)) 7→ L(x) + L(y)
L(evp(x,y)) 7→ L(x) + L(y)
L(etv(x,y)) 7→ L(x) + L(y)
L(enn(x,y)) 7→ L(x) + L(y)
L(esrel(x,y)) 7→ L(x) + L(y)
L(man) 7→ man

. . .

Fig. 6. Comparison of the ACG grammar LDER of [1] and the algebraic ACG of
the present paper, for the running example of [1]. The LDER grammar is cited from
Figs.4-7 of [1], after removing the unused entry for ‘whom’ and adjusting the notation.

can be constructed, using only the cut rule, from the the derivations
of A1, . . . , Am ` Am+1 where m is only 1 or 2. Limiting the number of
hypotheses in all judgements of L to, say, two, limits the length of strings
in the LG language also to two. In LA, however, the number of marks �
(collapsed into •) does not count for the purpose of hyp-rank. Therefore,
we may impose the hyp-rank 2 and still generate an infinite set of strings.
In fact, as we argue below, the hyp-rank of two or three may be sufficient
as far as natural languages are concerned. Therefore, LA side-steps the
main difficulty of the Pentus construction.

Moot’s [9] is the comprehensive study of type logical grammars, naive
ACG and lambda-grammars from the point of view of multiplicative linear
logic. It catalogs the overgeneration and the descriptive inadequacy of
lambda-grammars and naive ACGs. Incidentally, Moot introduced what
amounts to our hyp-rank 1 restriction, under the name ‘strict separation’.
Thus hyp-rank is a generalization of strict separation. Since we eschew
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the Curry-Howard correspondence for directional types, we also forsake
the direct semantic or intuitionistic linear logic interpretation for ALD
derivations. (Syntax-semantics interface is out of scope for the present
paper.)

Kanazawa [4] describes a radically different approach to preventing
overgeneration and ensuring the descriptive adequacy of ACGs, based on
so-called syntactic features represented by regular constraints, and tree
automata that capture those constraints. Nevertheless, there is surprising
a similarity: his marking of atomic types by features is similar in spirit to
our atomic types like 〈•,np; s〉 that ‘mark’, so to speak, the type s with
the hypothetical environment containing np.

Retoré and Salvati [12], like us, are interested if ACGs could ‘faith-
fully’ represent categorical formalisms, that is, their derivations. There
are also many similarities in technical details: our calculus LA and the
treatment of lexical entries is similar to the calculus used in their pa-
per, modulo associativity. However, Retoré and Salvati study the non-
associative Lambek calculus whereas we use the associative one. Mainly,
underlying [12] is the linear lambda calculus. We, in contrast, rely on the
algebraic approach and specifically avoid lambda-terms.

5 Discussion

Our approach of representing LGs as algebraic ACGs relies on hyp-rank:
the fixed upper bound on the number of not-yet-discharged hypotheses
that can appear at any single time in any branch of an L derivation. This
section discusses the theoretical significance and the practical insignifi-
cance of the hyp-rank. We also say a few words about the development
and motivations of the LA calculus.

We should stress that the hyp-rank concerns only those hypotheses
of an L derivation that are discharged by the introduction rules in that
derivation. The hypotheses that persists until the end (i.e., correspond to
the lexicon of LG) do not count towards the hyp-rank. Thus the hyp-rank
in no way restricts the size of the LG lexicon. Furthermore, the hyp-rank
counts not the total number of hypotheses in a derivation – not the total
number of introduction rules – but their maximum number along any
single derivation branch. If one branch introduces a hypothesis and then
discharges it with an introduction rule, and so does another, independent
branch, the hyp-rank of each branch and of the merged derivation is one.

From the practical point of view, the hyp-rank can be disregarded.
Whatever large or infinite may be the set of strings in a natural language,
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one may expect that recognizing it requires only a bounded, and rather
small, number of hypotheses. The success of CCG in parsing natural
languages lends credit to this assertion: CCG rules such as composition
and lifting are derivable in LG with only one, local assumption. Thus
the core CCG (AB grammar plus composition, lifting and associativity)
corresponds to LG derivations of hyp-rank one.

From the point of ACG, the fixed hyp-rank qualification can be lifted
if one allows polymorphic ACG signatures. On the other hand, it is in-
teresting to investigate classes of context-free languages recognizable by
LGs of a given hyp-rank.

The LA calculus was originally developed for a different project: to
give some automation to the field of type-logical grammars. The goal is to
use the facilities of programming languages to not only mechanically ver-
ify the derivations, but also to easily compose them from already checked
parts, to reuse in new projects, to develop libraries of derivations and
regression testing suites – and to conveniently display derivations and
produce figures for papers.

We have used the automation in the present paper. We have embedded
LA calculus in OCaml and used the embedding to mechanically check the
derivation in Fig.3 and produce the LaTeX code for Figures 1 and 3. In
fact, the former was produced from the latter by implementing the proof
of Prop.1, which is constructive and can be taken as an algorithm.

6 Conclusions

We have thus demonstrated the strong equivalence of LGs and algebraic
ACGs, by exhibiting the construction of an algebraic ACG for a given
LG and the hyp-rank. The abstract language of this ACG is the set of
LG derivations of the given hyp-rank and the object language is the set
of yields of those derivations – with no blow-up in the lexicon.

Contra Moot [9], we conclude that although ACG lack directional
types, they are just as descriptively adequate as Lambek Grammars. Thus
ACG may, after all, be rightly called categorial grammars.

In the future work we would like to extend our ACG construction to
other type logical grammars, such as Hybrid TLG (HTLG).
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