
Delimited Continuations in CS and

Linguistics1

Oleg Kiselyov (FNMOC)

Chung-chieh Shan (Rutgers University)

December 4, 2007

Research Center for Language, Brain and Cognition

Tohoku University, Sendai, Japan

1Many helpful conversations with Rui Otake are gratefully acknowledged

?

Summary

Contexts and (delimited) control

Applications in Computer Science (backtracking, OS, Web,. . .)

Hints of linguistic applications

Dynamic Binding and Anaphora

Generating by jumping back-and-forth

Generating code, sentences, denotations in out-of-lexical-order

Type systems, CPS

CPS, double negation translation, type systems for ((delimited)

control) effects formalize as a substructural logic

Types are abstract expressions (Cousot)

The colon is a turnstile (Lambek)

Code online
http://okmij.org/ftp/Computation/Continuations.html

Outline

I Delimited continuations

Examining the stack

Generating (sentences, meanings) by jumping back-and-forth

CPS and types

Summary

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function

int → ∞
Partial context delimited continuation function

int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function

int → ∞
Partial context delimited continuation function

int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(2 * 3))

Full context undelimited continuation function

int → ∞
Partial context delimited continuation function

int → int, i.e., take absolute value and add 42

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + abs(6))

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + if 6>0 then 6 else neg(6))

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + if true then 6 else neg(6))

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(42 + 6)

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(48)

Contexts and continuations are present whether we want them

or not

Continuations are the meanings of evaluation contexts

A context is an expression with a hole

print(48)

Contexts and continuations are present whether we want them

or not

Control effects: Process scheduling in OS

Operating system, User process, System call

schedule(main () {... read(file) ...}) ...

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

Control effects: Process scheduling in OS

Capture, Invoke

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

schedule(main () {... "read string" ...}) ...

Control effects: Process scheduling in OS

Capture

schedule(main () {... read(file) ...}) ...

schedule(ReadRequest(PCB ,file)) ...

...

schedule(resume(PCB ,"read string")) ...

schedule(main () {... "read string" ...}) ...

User-level control operations ⇒ user-level scheduling, thread

library

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

debug run(resume (BP1,3))

Control effects as debugging

debug run(42 + abs(2 * breakpt 1))

BP1

debug run(resume (BP1,3))

debug run(42 + abs(2 * 3))

first-class delimited continuations ⇒ a programmable debugger
I Back-tracking search (what if?), non-determinism

I Enumerator inversion: tracing a loop

Reset

“#” is the identity continuation (reset []). “$” plugs in a term.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a “too hot” a “. ”)

; # $ “Goldilocks said: ” a (# $ “This porridge is ” a “too hot. ”)

; # $ “Goldilocks said: ” a (# $ “This porridge is too hot. ”)

; # $ “Goldilocks said: ” a “This porridge is too hot. ”

; # $ “Goldilocks said: This porridge is too hot. ”

; “Goldilocks said: This porridge is too hot. ”

Shift

“Pk.” removes and binds k to a continuation.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a

(Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”))
a “. ”)

; # $ “Goldilocks said: ” a

(# $ ((# $ “This porridge is ” a [] a “. ”) $ “too hot”) a

((# $ “This porridge is ” a [] a “. ”) $ “too cold”) a

((# $ “This porridge is ” a [] a “. ”) $ “just right”))

Shift

“Pk.” removes and binds k to a continuation.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a

(Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”))
a “. ”)

; # $ “Goldilocks said: ” a

(# $ (# $ “This porridge is ” a “too hot” a “. ”) a

(# $ “This porridge is ” a “too cold” a “. ”) a

(# $ “This porridge is ” a “just right” a “. ”))

; · · ·

; “Goldilocks said:
This porridge is too hot.
This porridge is too cold.
This porridge is just right. ”

Terms E, F ::= V | FE | C $ E | Pk. E

Values V ::= x | λx. E

Coterms C ::= k | # | E, C | C; V

Types T ::= U | S ↓ T

Pure types U ::= U → T | string | int | · · ·

Cotypes S ::= U ↑ T

Transitions

C1 $ · · · $ Cn $ (λx. E)V ; C1 $ · · · $ Cn $ E{x 7→ V}

C1 $ · · · $ Cn $ C $ (Pk. E) ; C1 $ · · · $ Cn $ # $ E{k 7→ C}

Structural rules express evaluation order

C $ FE = E, C $ F C $ VE = C; V $ E V = # $ V

$
(
V1(V2V3)

)
V4 = (V4,#) $ V1(V2V3)

=
(
V2V3, (V4,#)

)
$ V1

=
(
(V4,#); V1

)
$ V2V3

Our coterm type T ↑ T′ is T′/$T.

Our impure term type T ↓ T ′ is T\$T′.

Reset: dynamic semantics

Alternate between refocusing and reducing.

$ “Goldilocks said: ” a

(# $ “This porridge is ” a “too hot” a “. ”)

= #; (“Goldilocks said: ”a) $
(#; (“This porridge is ”a) $ “too hot” a “. ”)

; #; (“Goldilocks said: ”a) $
(#; (“This porridge is ”a) $ “too hot. ”)

= #; (“Goldilocks said: ”a) $ (# $ “This porridge is ” a “too hot. ”)

; #; (“Goldilocks said: ”a) $ (# $ “This porridge is too hot. ”)

= # $ “Goldilocks said: ” a “This porridge is too hot. ”

; # $ “Goldilocks said: This porridge is too hot. ”

= “Goldilocks said: This porridge is too hot. ”

Shift: dynamic semantics

$ “Goldilocks said: ” a

(# $ “This porridge is ” a

(Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”))
a “. ”)

= #; (“Goldilocks said: ”a) $
(
(“. ”, (#; (“This porridge is ”a))); a

)
$

(

Pk.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”)
)

; #; (“Goldilocks said: ”a) $ # $
(
(((“. ”, (#; (“This porridge is ”a))); a) $ “too hot”) a

(((“. ”, (#; (“This porridge is ”a))); a) $ “too cold”) a

(((“. ”, (#; (“This porridge is ”a))); a) $ “just right”)
)

= #; (“Goldilocks said: ”a) $ # $
(
(# $ “This porridge is ” a “too hot” a “. ”) a

(# $ “This porridge is ” a “too cold” a “. ”) a

(# $ “This porridge is ” a “just right” a “. ”)
)

; · · ·

Outline

Delimited continuations

I Examining the stack

Generating (sentences, meanings) by jumping back-and-forth

CPS and types

Summary

Dynamic binding: summary

Many applications

I Implicit arguments: the-current-directory, thepage

I I/O redirection

I Exception handlers

I Mobile code

I Web applications

I Linguistics: the topic, anaphora

I . . .

Dynamic binding: summary

Many applications

I Implicit arguments: the-current-directory, thepage

I I/O redirection

I Exception handlers

I Mobile code

I Web applications

I Linguistics: the topic, anaphora

I . . .

Many implementations

I Pass implicit argument (dynamic environment) everywhere

I Global mutable cells (shallow binding)

I . . .

Dynamic binding: summary

Many applications

I Implicit arguments: the-current-directory, thepage

I I/O redirection

I Exception handlers

I Mobile code

I Web applications

I Linguistics: the topic, anaphora

I . . .

Many implementations

I Pass implicit argument (dynamic environment) everywhere

I Global mutable cells (shallow binding)

I . . .

Dynamic binding: summary

Many applications

I Implicit arguments: the-current-directory, thepage

I I/O redirection

I Exception handlers

I Mobile code

I Web applications

I Linguistics: the topic, anaphora

I . . .

Many implementations

I Pass implicit argument (dynamic environment) everywhere

I Global mutable cells (shallow binding)

I . . .

context as an implicit, ever-present argument

Anaphora and context marks

Goldilocks said the porridge is too hot for her.

Anaphora and context marks

“Goldilocks” a “ said the porridge is too hot.”

Anaphora and context marks

(“Goldilocks”a)(#$“ said the porridge is too hot.”)
; “Goldilocks said the porridge is too hot.”

Anaphora and context marks

(interp “Goldilocks”)(# $ String “ said the porridge is too hot.”)

interp str = function

| String x -> str a x

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ” a her a “.”)

interp str = function

| String x -> str a x

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ”a

(Pk. Req(Female, k)) a “.”)

interp str = function

| String x -> str a x

| Req(Female,k) -> interp str (k $ str)

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ”a

(Pk. Req(Female, k)) a “.”)

;

(interp “Goldilocks”)(# $ Req(Female, k))

interp str = function

| String x -> str a x

| Req(Female,k) -> interp str (k $ str)

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ”a

(Pk. Req(Female, k)) a “.”)

;

(interp “Goldilocks”)(# $ Req(Female, k))

;

(interp “Goldilocks”)
(# $ “ said the porridge is too hot ” a “for ” a “Goldilocks” a “.”)

interp str = function

| String x -> str a x

| Req(Female,k) -> interp str (k $ str)

Anaphora and context marks

(interp “Goldilocks”)
(#$“ said the porridge is too hot ” a “for ”a

(Pk. Req(Female, k)) a “.”)

;

(interp “Goldilocks”)(# $ Req(Female, k))

;

(interp “Goldilocks”)
(# $ “ said the porridge is too hot ” a “for ” a “Goldilocks” a “.”)

; “Goldilocks said the porridge is too hot for Goldilocks.”

interp str = function

| String x -> str a x

| Req(Female,k) -> interp str (k $ str)

Several Pronouns, Several Marks

Goldilocks tasted the porridge and said that it is too hot for her.

Several Pronouns, Several Marks

Goldilocks tasted the porridge and said that it is too hot for her.

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that ” a (Pk. Req(Thing, k))a

“ is too hot for ” a (Pk. Req(Female, k)) a “.”)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

Several Pronouns, Several Marks

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that ” a (Pk. Req(Thing, k))a

“ is too hot for ” a (Pk. Req(Female, k)) a “.”)))

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ Req(Thing, k1))))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that ” a “the porridge”a

“ is too hot for ” a (Pk. Req(Female, k)) a “.”)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that the porridge is too hot for ”a

(Pk. Req(Female, k)) a “.”)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that the porridge is too hot for ”a

(Pk. Req(Female, k)) a “.”)))

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ Req(Female, k2))))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ”a

(let v = Pk. Req(Female, k) in

interp Thing “the porridge”(k2 $ v)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ”a

(let v = Pk. Req(Female, k) in

interp Thing “the porridge”(k2 $ v)))

;

(interp Female“Goldilocks”)
(# $ Req(Female, k3))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ”a

(let v = “Goldilocks” in

interp Thing “the porridge”(k2 $ v)))

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that the porridge is too hot for ”a

“Goldilocks” a “.”)))
;

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Several Pronouns, Several Marks

;

(interp Female“Goldilocks”)
(# $ “ tasted ” a ((interp Thing “the porridge”)

(# $ “ and said that the porridge is too hot for ”a

“Goldilocks” a “.”)))
;

Goldilocks tasted the porridge and said that the porridge is too

hot for Goldilocks.

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

Far-reaching pronouns

need to look past the immediate occurrence

“he gave this to him”

Far-reaching pronouns

need to look past the immediate occurrence

“Now just one thing more remained, the box that held the

daylight, and he cried for that. His eyes turned around and

showed different colors, and the people began thinking that he

must be something other than an ordinary baby. But it always

happens that a grandfather loves his grandchild just as he does

his own daughter, so the grandfather felt very sad when he gave

this to him. When the child had this in his hands, he uttered the

raven cry, ”Ga,” and flew out with it through the smoke hole.”

“Raven”, Tlingit Indians of Southeastern Alaska

Far-reaching pronouns

interp mytag str = function

| String x -> str a x

| Req(tag,k) when tag = mytag ->

interp mytag str (k $ str)

| Req(tag,k) ->

let v = Pk. Req(tag, k) in interp mytag str (k $ v)

| ReqDefer(fn,k) ->

let v = fn str in interp mytag str (k $ v)

Leaving bread-crumbs on the stack, walking the stack and

examining them

Anaphora and dynamic binding

Aspects of dynamism:

1. Examining any number of previous bindings

2. Referring to a binding occurrence that is not in scope (e.g.,

referring to a noun in a clause)

Solution: “binding that moves itself up”, see next

Outline

Delimited continuations

Examining the stack

I Generating (sentences, meanings) by jumping

back-and-forth

CPS and types

Summary

Generating denotations of questions

3lO · (\ ·G9)
; this · (is(λe. e · a-book))

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q

this : e

a-book : et

is : (et)(et)

Generating denotations of questions

(3lO · (? ·G9)) ·+

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q

this : e

a-book : et

is : (et)(et)

Generating denotations of questions

(3lO · (? ·G9)) ·+
; (λx. this · (is(λe. e · x)))

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

this : e

a-book : et

is : (et)(et)

Generating denotations of questions

(3lO · (\ ·@)) ·H@$^7?
; (this · (is(λe. e · a-book))) · so-he-said

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

this : e

a-book : et

is : (et)(et)

Generating denotations of questions

((3lO · (? ·@)) ·H@$^7?) ·+

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

Generating denotations of questions

((3lO · (? ·@)) ·H@$^7?) ·+
; (λx.(this · (is(λe. e · x))) · so-he-said)

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

Generating denotations of questions

((3lO · (? ·@)) ·H@$^7?) ·+
; (λx.(this · (is(λe. e · x))) · so-he-said)
(((3lO · (? ·G9)) ·+) ·H@$^7?)

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

Generating denotations of questions

((3lO · (? ·@)) ·H@$^7?) ·+
; (λx.(this · (is(λe. e · x))) · so-he-said)
(((3lO · (? ·G9)) ·+) ·H@$^7?)
; (λx.(this · (is(λe. e · x)))) · so-he-said

let (·) x f = f x

let make app x f = x a p·q a f

let 3lO = pthisq

let \ e = make app e pa-bookq

let G9 f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let @ f = fun e -> make app e p(is(λe.q a (f peq) a p))q
let ? = Pk. p(λx.q a (k $ (λe. make app epxq)) a p)q)
let + f = # $ f

let H@$^7? f = make app (p(q a f() a p)q) pso-he-saidq

Outline

Delimited continuations

Examining the stack

Generating (sentences, meanings) by jumping back-and-forth

I CPS and types

Summary

Introduction to CPS

42 < (2 × breakpt)

The type of 42:

I int

I (int → bool) → bool

I (int → α) → α : context independence

I (int → F) → F

CPS and Double Negation

Glivenko’s Theorem [1929]: An arbitrary propositional formula

A is classically provable, if and only if ¬¬A is intuitionistically

provable.

Answer types in the CPS transformation

1 < 2

(bool→T)→T
︷ ︸︸ ︷

λk.

(int→T)→T
︷ ︸︸ ︷

(λk. k1) (λx.

(int→T)→T
︷ ︸︸ ︷

(λk. k2) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

Answer types in the CPS transformation

1 < 2

(bool→T)→T
︷ ︸︸ ︷

λk.

(int→T)→T
︷ ︸︸ ︷

(λk. k1) (λx.

(int→T)→T
︷ ︸︸ ︷

(λk. k2) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

Answer types in the CPS transformation

1 < 2

(bool→T)→T
︷ ︸︸ ︷

λk.

(int→T)→T
︷ ︸︸ ︷

(λk. k1) (λx.

(int→T)→T
︷ ︸︸ ︷

(λk. k2) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

Answer types in the CPS transformation

1 < 2

(Pk. “Ouch!”) < 2

(bool→T)→string
︷ ︸︸ ︷

λk.

(int→T)→string
︷ ︸︸ ︷

(λk. “Ouch!”) (λx.

(int→T)→T
︷ ︸︸ ︷

(λk. k2) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

string

Answer types in the CPS transformation

1 < 2

(Pk. “Ouch!”) < 2

1 < (Pk. ‘c’)

(bool→T)→char
︷ ︸︸ ︷

λk.

(int→char)→char
︷ ︸︸ ︷

(λk. k1) (λx.

(int→T)→char
︷ ︸︸ ︷

(λk. ‘c’) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

char

)

︸ ︷︷ ︸

char

Answer types in the CPS transformation

1 < 2

(Pk. “Ouch!”) < 2

1 < (Pk. ‘c’)

(Pk. “Ouch!”) < (Pk. ‘c’)

(bool→T)→string
︷ ︸︸ ︷

λk.

(int→char)→string
︷ ︸︸ ︷

(λk. “Ouch!”) (λx.

(int→T)→char
︷ ︸︸ ︷

(λk. ‘c’) (λy. k(x < y)
︸ ︷︷ ︸

T

)

︸ ︷︷ ︸

char

)

︸ ︷︷ ︸

string

Evaluation order chains together initial and final answer types.

Outline

Delimited continuations

Examining the stack

Generating (sentences, meanings) by jumping back-and-forth

CPS and types

I Summary

Summary

Contexts and (delimited) control

Applications in Computer Science (backtracking, OS, Web,. . .)

Hints of linguistic applications

Dynamic Binding and Anaphora

Generating by jumping back-and-forth

Generating code, sentences, denotations in out-of-lexical-order

Type systems, CPS

CPS, double negation translation, type systems for ((delimited)

control) effects formalize as a substructural logic

Types are abstract expressions (Cousot)

The colon is a turnstile (Lambek)

Code online
http://okmij.org/ftp/Computation/Continuations.html

