
Call-by-name linguistic side effects

Oleg Kiselyov
FNMOC

oleg@pobox.com

Abstract
We propose a typed call-by-name λ-calculus with shift, reset and
strict functions and describe its linguistic applications, improving
on the previous continuation-based analyses of quantification, bind-
ing, raised and in-situ wh-questions, binding in wh-questions, and
superiority. The evaluation order is not fixed left-to-right: rather,
it is determined by the demand for values exerted by reset and
strict functions. Since functions can take general, effectful terms,
our analyses need no thunks and similar type raising.

The main improvement of the present analyses is in typing:
assigning types both to terms and contexts and building types
using connectives with clear logical interpretation. Types abstractly
interpret operational semantics, and thus concisely describe all the
effects that could occur in the evaluation of a term. Our main result
is that both typing and call-by-name are necessary to correctly
predict superiority and binding in wh-questions with topicalization,
without resorting to thunking or type raising and thus maintaining
the uniformity of the analyses.

We have implemented the calculus including the type checking
and mechanically verified all the analyses.

1. Introduction
Delimited continuations proved useful in linguistics [13] and com-
puter science [4, 5]. Most programming languages and calculi with
delimited continuations are call-by-value (CBV), where the argu-
ment of an application must be fully evaluated before the applica-
tion can be reduced. Recently [6] the attention turned to call-by-
name (CBN) calculi with delimited control, which support substi-
tutions of general, even effectful terms.

We describe a novel call-by-name calculus with delimited con-
trol that most closely corresponds to the familiar CBV shift/reset
calculi [1, 3] and embeds CBV with the help of strict functions.
Our calculus is typed, in the spirit of [9]. The types provide an ab-
stract view of term’s evaluation and are built from connectives of
clear logical meaning. We apply the calculus as the logical metalan-
guage to express the whole range of linguistic analyses described
in Shan [14]. The analyses deal with quantification, binding, raised
and in-situ wh-questions, binding in wh-questions, and superiority.
We are able to reproduce the analyses, without resorting to thunks
or postulating left-to-right overall evaluation order. Our analyses
are marked by typing. We treat types as a syntax-semantic interface:
Well-typed terms, representing utterances in our metalanguage, as-
suredly evaluate to denotations and so only well-typed terms could
have meaning. Our main result is that typed CBN calculus correctly
predicts superiority (§3.2) and binding in wh-questions with topi-
calization (§3.1) without resorting to thunking or type raising. An
individual is always represented by a term of the type e.

Abiding by Karttunen [8]’s exhortation for “the formalization
and computational implementation of linguistic theories” we have
implemented calculus’ evaluation and type-checking relations. We
used the implementation to mechanically verify all the analyses in

Primitive Constants D : : = john
˛̨
mary

˛̨
see

˛̨
tall

˛̨
mother

Constants C : : = D
˛̨
C∧C

˛̨
c

˛̨
∀c

˛̨
∂c

Terms E, F : : = x
˛̨
C

˛̨
λx. E

˛̨
FE

˛̨
E f F

Transitions (λx. E)F ; E{x 7→ F} (β∗)
C1 f C2 ; C1∧C2 (δ)

Figure 1. Basic calculus: λ-calculus with constants

the present paper. The complete code, which includes more ana-
lyses, is available at http://okmij.org/ftp/Computation/
gengo/.

Our work is in the tradition of dynamic semantics, summed lu-
cidly by Moschovakis [10]: the sense of an expression is the al-
gorithm that allows one to compute the denotation of the expres-
sion. Specifically, we follow the ‘variable-free dynamic semantics’
of [11, 14]. We use our calculus as a logical metalanguage to repre-
sent utterances in some abstract form as terms. We define an evalu-
ation procedure to reduce the terms to logical formulas representing
denotations. The reduction of a term may fail to produce a formula,
which we take as an indication that the corresponding utterance
is ungrammatical. We introduce a type system to delineate a set
of terms whose reduction never fails to produce denotation. Being
well-typed is thus an alternative criterion of grammaticality. Ty-
peability, unlike reducibility, has an advantage of being applicable
to separate phrases rather than the whole sentences.

In the next section, we motivate our calculus in two steps, start-
ing from the untyped λ-calculus. We add a form of delimited con-
trol, which causes us to define contexts and distinguish evaluation
orders, CBV and CBN. For comparison, we describe the familiar
CBV calculus with delimited control, emphasizing thunking that is
required for the analyses of quantification and raised wh-questions.
Our CBN calculus is presented in §3 (dynamic semantics) and §3.1
(static semantics: types). The latter section re-analyzes quantifica-
tion and raised wh-questions without resorting to thunking while
maintaining correct predictions. Superiority is analyzed in §3.2. We
then discuss the related work and conclude.

2. Building up CBN with delimited control
We introduce here the basic calculus, to be extended in the later
sections. We draw distinctions (constants vs. terms, evaluation or-
ders) that are not commonly made, are seemingly contrived and
irrelevant in simple cases. It is only when we come to effects that
the significance of the distinctions emerges.

Our basic calculus is λ-calculus with constants, which, until
§3.1, we regard as untyped. The calculus, Fig. 1, consists of two
languages, of constants and of terms, with a defined reduction re-
lation on terms. The syntax of the calculus is specified by the BNF
grammar with non-terminals denoted by the capital letters C, D,
etc.; we may use subscripts to distinguish syntactic elements of
the same category. We use x, y, z, and k to refer to variables,
with a countably infinite supply. Terms are identified modulo α-

conversion. We write E{x 7→ F} for a capture-avoiding substitu-
tion of F for x in E.

Constants, referring to elements in the appropriate denotational
domain, are built from primitive constants D, possibly connected
by∧. We also introduce constant parameters c, too with a countably
infinite supply, and the binding forms ∀c and ∂c so that, e.g., ∀c∧C
represents C with free occurrences of c universally quantified. We
shall stipulate that each new appearance of ∀c or ∂c correspond to a
unique, ‘fresh’ c. This round-about approach of building quantified
predicate logic formulas significantly simplifies the presentation.
Essentially the same approach has been previously used in [12, Sec
5]. All constants are terms and serve, in this capacity, as lexical
elements. Other terms are familiar variables, applications, abstrac-
tions, as well as EfF . The latter can be explained by stressing that
tall f john is a term that reduces to the constant tall∧ john. The
difference is akin to that between Scheme’s (cons 1 2) (which
is an expression) and ’(1 . 2) (which is a literal constant). We
take the application and the infix operations f and ∧ to be left-
associative and so we will write (xy)z, (see∧ john)∧mary, etc.
without parentheses.

The following two terms contain no primitive constants and are
taken to be phonetically silent by default:

(1) έ
def
= λx. λy. x f y ὲ

def
= λx. λy. y f x

Terms can be evaluated (or, reduced), by applying the transitions
(β∗) and (δ) whenever and wherever1 they apply. For example, the
term ὲ mary(έ see john)2, which in the full form is (λx. λy. y f
x)mary((λx. λy. xfy) see john) can be reduced by (1) perform-
ing applications with mary then with see and john; the transition
(δ) now applies giving see∧ john, another (β∗) and then (δ) tran-
sitions give see∧ john∧mary. We can perform reductions in a
different way, again, starting with the application to mary and then
substituting the whole term ((λx. λy. x f y) see john) for y. The
result is the same. Terms are meant to be representations of utter-
ances, their evaluation being a map to denotations. So far, our map
is mere reshuffling.

2.1 The interrogation effect
We add a new form of terms in our calculus, who, with the intended
meaning of a wh-question word, so that the term tall f who could
evaluate to ∂c f (tall fc) and eventually to ∂c∧(tall∧c). Replac-
ing the constant parameter c in the body of ∂c with various individ-
uals in the semantic domain, we obtain (truth-valued) denotations
tall∧mary, tall∧ john, etc. If we regard ∂c to be a binding form
we may then call ∂c∧(tall∧c) a characteristic function of the set of
tall individuals – which is regarded as the denotation of a question
[7]. In a more interesting example, we wish ὲ mary(έ seewho) to
evaluate to ∂c f (ὲ mary(έ see c)) – that is, who being replaced
with a constant parameter bound “on the outside.” The first prob-
lem thus is to define the “outside” of a term. The form who raises
the second problem, seen in ὲ who(έ seewho), representing the in-
situ question “Who saw whom?” If we select the leftmost who
for reduction first, the result will be ∂c1∧(∂c2∧(see∧c2∧c1)). If
we first select the rightmost who for reduction, the result will be
∂c2∧(∂c1∧(see∧c2∧c1)). The evaluation order does matter now.

The ambiguity caused by the evaluation order can be taken to
be a model of the ambiguity in the original phrase: an ambiguous
utterance is described by one term, which evaluates to different
denotations depending on the evaluation order. We wish however
the evaluation of our terms be deterministic and so more easily
analyzable. Thus we map an ambiguous utterance to two terms,

1 This phrase assumes congruence rules for transitions, left implicit in
Figure 1. We rectify the omission in the following sections.
2 A reader may notice that after disregarding punctuation and Greek char-
acters the term reads like an uninflected English phrase.

Terms E, F : : = V
˛̨
FE

˛̨
E f F

˛̨
Q $ E

˛̨ t
t| k. E

Values V : : = C
˛̨
x

˛̨
λx. E

Coterms Q : : = k
˛̨
#

˛̨
E, Q

˛̨
Q; V

˛̨
E,c Q

˛̨
Q;c V

Term equalities
Q $ FE = E, Q $ F Q $ V E = Q; V $ E

Q $ F f E = E,c Q $ F Q $ V f E = Q;c V $ E

$ V = V
Transitions

Q1 $ · · · $ Qn $ (λx. E)V ; Q1 $ · · · $ Qn $ E{x 7→ V }
Q1 $ · · · $ Qn $ C1 f C2 ; Q1 $ · · · $ Qn $ C1∧C2

Q1 $ · · · $ Qn $ Q $ t
t| k. E ; Q1 $ · · · $ Qn $ # $ E{k 7→ Q}

Figure 2. The λsr
v -calculus: syntax and operational semantics. The

constants C are defined in Fig. 1

each of which evaluates (or fails to evaluate at all) to only one
denotation.

To make the evaluation deterministic, we should no longer ap-
ply the transitions whenever and wherever; rather, they become
context-sensitive: a transition applies only if it occurs in the “right”
context. The notion of context also solves the previous problem of
defining the “outside” of the term.

2.2 Call-by-value contexts
The most common contexts are left-to-right call-by-value. In com-
puter science, the left-to-right evaluation order (i.e., evaluating the
left-hand side of an application before the right-hand side) is mere
convention. The choice is not arbitrary in linguistics however: Shan
[13, 14] has argued that the left-to-right evaluation order is the only
linguistically meaningful. To define the left-to-right CBV contexts,
Fig. 2, we first distinguish terms of a certain form (viz., constants,
variables, and abstractions) and call them values. Values are not
further reducible.

Context are commonly introduced as a “term with a hole.” We
employ an equivalent presentation, which more easily generalizes
to other evaluation orders, following the lead of [9]. We introduce
co-terms: # (called ‘top’) and the others built using the comma
and the semi-colon connectives, Fig. 2. Term equalities, which may
be applied in either direction and at any time, define equivalence
classes of terms. If it were not for the restrictions on values in some
equalities, the co-term connectives could be called left- and right-
adjuncts of the two term connectives: application and f. Given
the original term of the form3 # $ E we ‘rotate‘ (or, ‘focus’) it
using the term equalities into the form where one of the transitions
can be performed. Applying the equalities again, the result can be
converted to a value or to a form where another transition applies.
It could be that a term is neither a value nor convertible to a form
suitable for transition, e.g., # $ mary f λx. x. In that case, we get
stuck – and take the failure of term reductions to yield a value to be
the indication the corresponding utterance ungrammatical.

Instead of the term who our calculus defines a more general
version t

t| k. E (called ‘shift’). Like λx. E, it is a binding form,
binding a (co-)variable k in the body E. We then define who:

who
def
= t

t| k. ∂c f (k $ c) c is fresh
Our earlier example from §2.1 of a term representing the in-situ
question “Who saw whom?” is reduced as follows:

3 We assume #$ ‘prefixed’ to any non-value term that is not already of the
form Q$E, following the convention that the whole program is ‘delimited’;
see [13] for discussion.

(2) # $ ὲ who(έ seewho) = (έ seewho), # $ ὲ who
= (έ seewho), #; ὲ $ who
; # $ ∂c1 f ((έ seewho), #; ὲ $c1)
= # $ ∂c1 f ((έ seewho), # $ ὲ c1)
= # $ ∂c1 f (# $ ὲ c1(έ seewho))
= #;c ∂c1 $ # $ ὲ c1(έ seewho)
= #;c ∂c1 $ (έ seewho), # $ (λx. λy. y f x)c1

; #;c ∂c1 $ (έ seewho), # $ λy. y f c1

= #;c ∂c1 $ # $ (λy. y f c1)(έ seewho)
= #;c ∂c1 $ #; (λy. y f c1) $ έ seewho
= #;c ∂c1 $ who, (#; (λy. y f c1)) $ (λx. λy. x f y) see
; #;c ∂c1 $ who, (#; (λy. y f c1)) $ λy. see fy
= #;c ∂c1 $ (#; (λy. y f c1)); (λy. see fy) $ who
; #;c ∂c1 $ # $ ∂c2 f ((#; (λy. y f c1)); (λy. see fy) $ c2)
= #;c ∂c1 $ #;c ∂c2 $ #; (λy. y f c1) $ (λy. see fy)c2

; #;c ∂c1 $ #;c ∂c2 $ #; (λy. y f c1) $ see fc2

; #;c ∂c1 $ #;c ∂c2 $ #; (λy. y f c1) $ see∧c2

= #;c ∂c1 $ #;c ∂c2 $ # $ (λy. y f c1)(see∧c2)
; #;c ∂c1 $ #;c ∂c2 $ # $ (see∧c2) f c1

; #;c ∂c1 $ #;c ∂c2 $ # $ see∧c2∧c1

= #;c ∂c1 $ #;c ∂c2 $ see∧c2∧c1

= #;c ∂c1 $ # $ ∂c2 f (see∧c2∧c1)
; #;c ∂c1 $ # $ ∂c2∧(see∧c2∧c1)
= # $ ∂c1 f (∂c2∧(see∧c2∧c1))
; # $ ∂c1∧(∂c2∧(see∧c2∧c1))
= ∂c1∧(∂c2∧(see∧c2∧c1))

There is no longer any ambiguity of reductions; in particular, we
cannot move ὲ who of the original term into the context because
the corresponding equality requires the moved term be a value,
which ὲ who is not. The complete reduction sequence above well
demonstrates the interleaving of transitions with applications of the
equalities. In this approach we need no (implicit or explicit) con-
gruence rules. Performing reductions by hand is quite tedious; the
accompanying source code includes the interpreter to reduce terms
automatically. We used the interpreter to verify all the examples.
For that reason and to save space we shall in the following abbrevi-
ate reduction sequences, writing ;∗ for a sequence of transitions
interspersed with an arbitrary number of equalities.

A useful variant of who is the term ι (called ‘input’)
(3) ι

def
= t

t| k. λx. k $ x
which helps, for example, to represent gapped clauses like “Mary
sees ”. In the first approximation, we define the silent element
(called ‘trace’) [14] as ι

(4) def
= ι ε̌

def
= λx. λy. yx

so that the gapped clause has the following representation and
reduction:

(5) # $ ὲ mary(έ see ι) ;∗ λx. # $ see fx f mary
For the full sentence (6) we have

(6) John, Mary sees
(7) # $ ε̌ john(# $ ὲ mary(έ see))

; # $ (λy. y john)(# $ ὲ mary(έ see ι))
;∗ see∧ john∧mary

where ε̌ is just the reverse application. The original term in (7)
had two occurrences of #$ – one is on the very left, where we
are used to seeing it. The other occurrence is inside the term.
That occurrence was ‘outside’ the gapped clause, which is now
embedded in the full sentence. Thus the binding of the variable
replacing ι should occur not necessarily on the outside of the whole
term. Rather, we wish the binding inserted at the (clausal or other
such) boundary. Our calculus is capable of such delimited control
effect: the action of ι spreads to the closest dynamic occurrence of
a delimiter, which is #$. By convention, the form that places the
control delimiter is called reset.

One may think that we can easily define reset as in (8)

(8) reset
def
= λx. # $ x

(7’) # $ ε̌ john(reset(ὲ mary(έ see)))
; # $ (λy. y john)(reset(ὲ mary(έ see ι)))
= #; (λy. y john); reset $ ὲ mary(έ see ι)
;∗ # $ λx. #; (λy. y john); reset $ see fx f mary
= λx. # $ (λy. y john)(reset(see fx f mary))

Hence if we try to use reset (8) in place of #$ in (7) we get quite a
different, and undesired result, (7’), because the argument of reset
is evaluated before the application of reset . The delimiter remains
hidden in the body of reset and fails to delimit the action of ι. We
shall see below another instance of this problem of ‘argument being
evaluated too early’.

We introduce another effect ρV , called ‘output’
ρ

def
= λx. tt| k.(k $ x)x he

def
= ι

with the intended meaning of ‘marking’ the referent of a pronoun,
he. The latter is modeled by ι. Informally ρV is replaced by V at
the same time providing V as the input for the closest ι; see [14] for
the extensive discussion. Thus the phrase “John’s mother saw him”
is represented by the term ὲ(ὲ(ρ john)mother)(έ see he). The
term evaluates to the expected denotation see∧ john∧(mother∧ john).
As is [14], we take mother to be an element of the denotational
domain mapping individuals to their mothers.

Let us now consider binding in combination with (raised) wh-
questions, borrowing the examples (9) and (11) from [14]. The
straightforward combination of the approaches described earlier
gives the terms (10) and (12),

(9) Whoi saw hisi mother
(10) ε̌(ρ who)(# $ ὲ (έ see(ὲ hemother)))
(11) *Whoi did hisi mother see
(12) ε̌(ρ who)(# $ ὲ(ὲ hemother)(έ see))

which both evaluate to denotations of questions. We thus failed to
rule out (11).

The solution to the problems of reset representation (7’) and
over-generation (11) was proposed by Shan [14]. He introduced
a singleton type () and thunks λ(). E. We then write our earlier
examples as

(41) def
= ι ()

(71) # $ ε̌(λ(). john)(# $ ὲ mary(έ see))
(101) ε̌(λ().(ρ who))(# $ ὲ (έ see(ὲ hemother)))
(121) ε̌(λ().(ρ who))(# $ ὲ(ὲ hemother)(έ see))

so that (71) and (101) give respectively the same results as (7) and
(10), whereas (121) gets stuck as desired, correctly ruling out the
phrase (11). Alas, the new definition of trace, (41), makes us re-
write (7), using λ(). john rather than just john, see (71). An indi-
vidual thus is represented sometimes by the corresponding constant
(of the type e, as we will see), sometimes by the thunkified constant
of, albeit isomorphic, but still different type () → e. Uniformity of
the analyses suffers.
3. Call-by-name calculus
Our development culminates in a CBN delimited-control calculus
presented in Fig. 3. We have two forms of functions: strict λ!u. E
(binding strict variables u) and general λx. E. Strict functions are
familiar from CBV calculi; they can only be applied to values
(because, for example, they do semantic operations on values such
as lookup, concatenation, etc). In particular, έ, ὲ and ρ are now
defined as strict:

(13) έ
def
= λ!u. λ!v. u f v ὲ

def
= λ!u. λ!v. v f u

ρ
def
= λ!u. tt| k.(k $ u)u

From the point of view of strict functions, our language is (or,
embeds) the earlier λsr

v . General functions however – which can

Terms E, F : : = V
˛̨
x

˛̨
FE

˛̨
E f F

˛̨
Q $ E

˛̨ t
t| k : S. E

Values V : : = C
˛̨
u

˛̨
λx:T . E

˛̨
W

Strict Values W : : = λ!u :U. E

Coterms Q : : = k
˛̨
#

˛̨
E, Q

˛̨
Q;! W

˛̨
E,c Q

˛̨
Q;c V

Term equalities
Q $ FE = E, Q $ F Q $ WE = Q;! W $ E

Q $ F f E = E,c Q $ F Q $ V f E = Q;c V $ E

$ V = V
Transitions

Q1 $ · · · $ Qn $ (λx. E)F ; Q1 $ · · · $ Qn $ E{x 7→ F}
Q1 $ · · · $ Qn $ (λ!x. E)V ; Q1 $ · · · $ Qn $ E{x 7→ V }
Q1 $ · · · $ Qn $ C1 f C2 ; Q1 $ · · · $ Qn $ C1∧C2

Q1 $ · · · $ Qn $ Q $ t
t| k. E ; Q1 $ · · · $ Qn $ # $ E{k 7→ Q}

Figure 3. The λsr
n -calculus: syntax and operational semantics

substitute in an arbitrary term4, even ι – add expressiveness. The
general functions and the corresponding transition are the only
difference of the present CBN calculus from the CBV one in §2.2.

The calculus is typed and of Church-style: all binders, λ and t
t| ,

are annotated with types, Fig. 4. We disregard the types and type
annotations for now since they are irrelevant for evaluation.

We go back to the simpler expression for as just ι, see (4).
The term (10) representing (9) now evaluates as follows

(102) # $ ε̌(ρ who)(reset(ὲ (έ see(ὲ hemother))))
= (reset(ὲ (έ see(ὲ hemother)))), # $ (λx. λy. yx)(ρ who)
; (reset(ὲ (έ see(ὲ hemother)))), # $ λy. y(ρ who)
= # $ (λy. y(ρ who))(reset(ὲ (έ see(ὲ hemother))))
; # $ (reset(ὲ (έ see(ὲ hemother))))(ρ who)
= (ρ who), # $ (λx. # $ x)(ὲ (έ see(ὲ hemother)))
; (ρ who), # $ # $ (ὲ (έ see(ὲ hemother)))
= (ρ who), # $ ((έ see(ὲ hemother)), #); ὲ $
;∗ (ρ who), # $ λx. # $ ὲ x(έ see(ὲ hemother))
= # $ (λx. # $ ὲ x(έ see(ὲ hemother)))(ρ who)
; # $ # $ ὲ(ρ who)(έ see(ὲ hemother))

and eventually yields ∂c∧(see∧(mother∧c)∧c) – which is the
correct denotation for (9). We note several instances of substituting
the effectful term (ρ who) in the body of functions (viz., in the
third and the last lines of the reduction sequence). We also note the
appearance of reset as defined in (8). Unlike the CBV calculus,
that straightforward definition now works as intended.
3.1 Types
The type system is presented in Figure 4. The system is similar to
the one introduced in [9] for a CBV calculus with so-called ‘dy-
namic’ delimited control; we refer to the latter paper for more de-
tailed description. The type system distinguishes pure terms, whose
evaluation incurs no effect, i.e., includes no t

t| -transitions – in any
context and in any environment binding terms’ free variables, if
any. Such terms are given pure types. The types S ↓U of terms that
may have an effect (at least in some environments) and the types of
co-terms U1↑U2 can be regarded ‘arrow’ types (similar to the types
of functions), only built from implications of a different sort; see [9]
for more discussion. A notable difference from the latter’s type sys-
tem is that the range (i.e., the consequent) of these new implications
is always a pure type. The domain of a co-type is also always pure:
according to the operational semantics, plugging an expression into
a context demands the evaluation of the expression. A reified cap-
tured context can be a general rather than a strict function however.

4 In our presentation of the calculus, we therefore distinguish regular vari-
ables x, which can be substituted by any term, from strict variables u, which
can only be substituted by values.

Types T : : = U
˛̨
S ↓ U

Pure types U : : = U ⇀ T
˛̨
T → T

˛̨
B

Base types B : : = t
˛̨
e

˛̨
B ⇁ B

Cotypes S : : = U ↑ U

[u : U]
···

E : T
λ!

λ!u :U. E : U ⇀ T

[x : T1]···
E : T2

λ
λx:T1. E : T1 → T2

[k : S]
···

$ E : U t
t|t

t| k : S. E : S ↓ U

[u : U1]···
Q $ u : U2 ↑I
Q : U1 ↑ U2

E1 : (B2 ⇁ B) E2 : B2
⇁E

E1 f E2 : B

F : U1 ⇀ T E : U2 U2 ≤ U1
⇀E

FE : T

F : U1 ⇀ T1 E : U2 ↑ UI ↓ UR

[u : U2 k : UI ↑ UR]
···

k ¢ Fu : T
⇀E1

FE : T

F : T1 → T E : T2 T2 ≤ T1 →E
FE : T

F : U1 ↑ UI ↓ UR E : T2

[u : U1 k : UI ↑ UR]
···

k ¢ uE : T
→E1

FE : T

Q : U1 ↑ U E : U2 U2 ≤ U1 ↑E
Q $ E : U

Q : S1 E : S2 ↓ U S1 ≤ S2 ↓E
Q $ E : U

Q : UI ↑ UR E : U
¢UQ ¢ E : U ↑ UI ↓ UR

Q : UI ↑ UR E : S ↓ U2 U2 ≤ UI
¢TQ ¢ E : S ↓ UR

Typing of constants
john : e mary : e

tall : e ⇁ t mother : e ⇁ e see : e ⇁ e ⇁ t

c : e ∀c : t ⇁ t ∂cB : B ⇁ (e ⇁B)

C1 : (B2 ⇁ B) C2 : B2

C1∧C2 : B

Figure 4. Types in the λsr
n -calculus

The other difference from [9] is yet another arrow type, U ⇀ T ,
corresponding to strict functions. Strict and general functions have
different types. The sub-language of constants is also typed (with
so-called ‘base types’ and its own arrow B ⇁ B, for which there
is no introduction rule); we see the operation ∧ is actually the ap-
plication in the sub-language. The typing uses an auxiliary relation
Q ¢ E : T defined in the same figure. The typing rules also depend
on the subtyping relation T1 ≤ T2 defined in Figure 5.

It may appear that the type system is missing rules, for example,
to type #. That co-term however is typeable using the existing
rules: we note first that for any populated pure type U there is a
value of that type; let V : U be such a value. From the equality

T ≤ T

U ≤ UA UI ≤ UR

U ≤ UA ↑ UI ↓ UR

U ′
A ≤ UA TR ≤ T ′

R

(UA ⇀ TR) ≤ (U ′
A ⇀ T ′

R)

T ′
A ≤ TA TR ≤ T ′

R

(TA → TR) ≤ (T ′
A → T ′

R)

(UA ⇀ TR) ≤ (U ′
A ⇀ T ′

R)

(UA ⇀ TR) ≤ (U ′
A → T ′

R)

UA ≤ U ′
A U ′

I ≤ UI UR ≤ U ′
R

(UA ↑ UI ↓ UR) ≤ (U ′
A ↑ U ′

I ↓ U ′
R)

U ′
A ≤ UA UI ≤ U ′

I

(UA ↑ UI) ≤ (U ′
A ↑ U ′

I)

Figure 5. Subtyping relation for types and co-types

$ V = V we conclude that the left-hand side has the type U as
well. By applying the rule ↑I we obtain # : U ↑ U . The other term
equalities likewise let us derive the typing rules for other co-terms.

Our type system is sound: a typed term does not get stuck and
so shall evaluate to a denotation. In particular, the type system has
the subject-reduction property. The type system for our Church-
style calculus is decidable: The accompanying source code presents
the constructive proof, the implementation of the terminating type
reconstruction algorithm in Twelf.

As just mentioned our calculus is Church style and so bound
variables are annotated with types (our Twelf implementation can
in some cases infer the annotations). Therefore, terms such as
who, ι, etc., which contain binding forms, must be type-annotated
correspondingly:

whoB
def
= t

t| k : e ↑B. ∂cB f (k $ c) c is fresh
ιTS

def
= t

t| k : S. λx:T . k $ x

ρU1U2
def
= λ!u :U1.

t
t| k : U1 ↑ (U1 → U2).(k $ u)u

The constant ∂cB also bears the annotation, for the type of its
‘body.’ The corresponding typing rule in Figure 4 ensures then that
the denotation ∂c t∧(tall∧c) (seen in §2.1) has the type e ⇁ t. The
type demonstrates that the denotation is not a proposition; rather, it
is a characteristic function – in our case, of a set of tall individuals,
the set of the true answers to the question “Who is tall?” (see [7]
for discussion).

The immediate application of types is to make correct predic-
tions for binding in wh-questions, using the earlier examples (9)
and (11) (repeated below for ease of reference):

(9) Whoi saw hisi mother
(10) ε̌(ρ who)(# $ ὲ (έ see(ὲ hemother)))
(11) *Whoi did hisi mother see
(12) ε̌(ρ who)(# $ ὲ(ὲ hemother)(έ see))

The corresponding terms (10) and (12) both successfully evaluate
in CBV if is defined as ι, see (4). The terms also successfully
evaluate in untyped CBN, using the same definition of . Indeed, if
both he and are defined to be the same ι, it makes no difference
whether the trace occurs before or after the pronoun, and so we
cannot rule out the latter case. Here is where the types help.

Although he and are indeed the same modulo type annota-
tions, the annotations set them apart:

(14) heS
def
= ιeS TS

def
= ιTS

Both terms have the type of the same form: S ↓ (T → U). In
he, however, T is fixed to be the pure type e. This type assign-
ment is expected: informally, a pronoun expects an individual as
‘input’. Trace has no restrictions on the type T . With these anno-
tations, (10) is well-typed but (12) cannot be typed. Indeed, the
subterm of the latter (# $ ὲ(ὲ hemother)(έ see)), being equal to
(mother, (((έ see), #); ὲ)); ὲ $ he, has the type e→U for some
U according to the rule ↓E of Fig. 4. The subterm cannot therefore
be applied to (ρ who) because the latter is an effectful term and
cannot have the pure type e. Thus we make the correct predictions
for binding in wh-questions without resorting to thunks and the ac-
companying type raising, preserving the uniformity of the analyses.

For illustration, here is the term (10) with all type annotations:
$ ε̌(ρe t whot)(reset(ὲ TS(έ see(ὲ hee ↑ t mother))))
where S = e ↑(e→ t) T = S ↓ (e ⇁ t)

The reconstructed type of the whole term is e ⇁ t, the type of ques-
tions. The type annotation on demonstrates that trace may accept
an effectful term such as ρ who.
3.2 Superiority
We now apply the typed CBN calculus to the analysis of superior-
ity. This application turns out quite straightforward and analogous
to the analyses of binding in wh-questions in the previous section.
Once again we borrow our examples, (15) and (17), from [14].
These phrases are represented as terms (16) and (18) in our cal-
culus.

(15) Who saw who?
(16) # $ ε̌ who(reset(ὲ (έ seewho)))
(17) *Who did who see ?
(18) # $ ε̌ who(reset(ὲ who(έ see)))

The term (16) evaluates to ∂c1∧(∂c2∧(see∧c2∧c1)), which is the
expected denotation. This result is anticipated by the fact that (16)
is well-typed. Here is that term with the explicit type annotations:

$ ε̌ whoe ⇁ t(reset(ὲ TS(έ seewhot)))
where S = e ↑(e ⇁ t) T = S ↓ (e ⇁ e ⇁ t)

The reconstructed type of the whole term is e ⇁ e ⇁ t, the type of
denotations of double questions. The types are quite informative:
one sees at a glance that the left-most who is evaluated before the
right-most one. The right-most who is replaced by a variable of the
type e bound outside of the term of the type t. The left-most who is
too replaced by a variable of the type e, bound outside of the term
of the type e ⇁ t – that is, the latter binding is outermost.

In contrast, (18) cannot be typed no matter which annotations
we may assign to who and trace. In fact, even the simpler (20),
corresponding to (19), cannot be typed.

(19) *Mary, who see ?
(20) # $ ε̌ mary(reset(ὲ who(έ see)))

The problem lies with the subterm ὲ whoB(έ see TS), for which
we attempt the detailed derivation below. To keep the derivation as
general as possible, we fix no concrete type for B and T ; as we
shall see, the typing of έ see TS requires S be e ↑U1 for some U1.
whoB : e ↑B ↓ (e ⇁B) by t

t|
ὲ ≡ (λ!u :e. λ!v :e ⇁ t. v f u) : e ⇀(e ⇁ t) ⇀ t by λ!.
(k : B ↑ (e ⇁B)) ¢ ὲ(u : e) : ((e ⇁ t) ⇀ t) ↑B ↓ (e ⇁B)

by ⇀E, ¢U

ὲ whoB :((e ⇁ t) ⇀ t) ↑B ↓ (e ⇁B) by ⇀E1

έ ≡ λ!u :e ⇁ e ⇁ t. λ!v :e. u f v : (e ⇁ e ⇁ t) ⇀ e ⇀(e ⇁ t)
έ see : e ⇀(e ⇁ t) by ⇀E

T (e ↑U1) : (e ↑U1) ↓ (T → U) by t
t|

(k : U1 ↑ (T → U)) ¢ (έ see)(u : e) : (e ⇁ t) ↑ U1 ↓ (T → U)
έ see T (e ↑U1) : (e ⇁ t) ↑ U1 ↓ (T → U) by ⇀E1

(ὲ whoB)(έ see TS) : TR by →E1

if (k : B ↑ (e ⇁B)) ¢ ((u : (e ⇁ t) ⇀ t)(έ see TS)) : TR

(u : (e ⇁ t) ⇀ t)(έ see T (e ↑U1)) : t ↑U1 ↓ (T → U) by ⇀E1

(k : B ↑ (e ⇁B)) ¢ (E : t ↑U1 ↓ (T → U)) : t ↑U1 ↓ (e ⇁B)
by ¢T if (T → U) ≤ B

The last line of the derivation includes the subtyping condition
(T →U) ≤ B, which came from the side-condition of the rule ¢T .
Figure 5 demonstrates that this subtyping relation cannot hold no
matter what T , U and B are. The subterm ὲ whoB(έ see TS) and
hence (20) and (18) are untypeable.

We observe the other benefit of typing: ruling out the phrases
like (17) and (19) on the basis of the failure to type a single subterm.
If a subterm cannot be typed, the whole term cannot be typed. In
contrast, in a calculus with (control) effects the failure to reduce a
closed subterm on its own does not imply at all that a sentence with
that subterm gets stuck.

4. Related Work
Herbelin and Ghilezan [6] too developed a series of CBN cal-
culi with delimited control. Our approaches have markedly dif-
ferent motivations and hence arrive at different results. The cal-
culi of [6] are motivated by the desire to closely represent ab-
stract machines for delimited control and their components such
as meta-continuations; to facilitate investigations of computational
duality and classical reasoning. We, in contrast, aim at operational
and axiomatic formulation of delimited control, considering meta-
continuations a part of implementation, which we abstract over. We
also specifically aim to make the CBN calculus as close as possible
to the familiar CBV calculus with delimited control. All λsr

v exam-
ples in the paper can be evaluated in λsr

n exactly as they are – of-
ten yielding the same results despite different transition sequences.
Our calculus also easily generalizes to dynamic delimited continu-
ations. Because of subtyping, we can type more terms compared to
[6]; we have used subtyping extensively in our analyses.

One straightforward way of building CBN calculi with delim-
ited control is by emulating CBN in a CBV calculus with thunks.
The type system of the CBV calculus with delimited control (de-
scribed in [1, 3]) then naturally extends to the resulting CBN cal-
culus. That emulation is a global term transformation affecting all
parts of a term; the individuals will no longer be denoted by terms
of the type e but of the different (albeit iso-morphic) type () → e.
This procedure is reminiscent of type raising, which we wished
to escape from using the metalanguage with delimited control. Our
type system is also quite distinct from that of [1, 3] in that our types
are built out of connectives with the meaning of logical implication
(see [9] for more discussion).

Shan [14] has been the inspiration and the template for the
present work. Our calculi differ – CBV in [14] vs. CBN here – and
so do the analyses. Another difference is the explicit use of types
in the present work. We are also more explicit in denotations of
questions, differentiating genuine questions (a constant of the type
e ⇁ t, for example) from a seemingly similar gapped clause (which
is a term of the type e→ t).

We distinguish our CBN calculus of delimited control from the
Lambek-Grishin calculus of [2]. We define delimited control di-
rectly and operationally, without appealing to CBN CPS denota-
tions. Mainly, our calculus, like that of [9], is a substructural logic
with neither negation nor multiple conclusions, and thus intuition-
istic in character.
5. Conclusions
We have presented the typed CBN calculus of delimited control and
showed that types and CBN are both necessary for correct predic-
tion of superiority and binding in wh-questions with topicalization
without resorting to thunking. We thus maintain the uniformity of
the analyses: individuals are denoted by the terms that have the type
just e in all the cases, with no need for raising. Linguistics turns out
to offer the first interesting application of the typed CBN shift/reset.

The immediate future work is to analyse intensional phrases, in
particular, coordination including de-dicto phrases. It is interesting
to more formally relate de-re/de-dicto and CBV/CBN distinctions.
Acknowledgments
This paper could not have been written without numerous exten-
sive discussions with Chung-chieh Shan and without his encour-
agement. I am deeply indebted to him for his explanations, advice,
and support. I thank Rui Otake and the anonymous reviewers for
many helpful comments.
References

[1] Asai, Kenichi, and Yukiyoshi Kameyama. 2007. Polymorphic
delimited continuations. In APLAS, vol. 4807 of LNCS, 239–
254.

[2] Bernardi, Raffaella, and Michael Moortgat. 2007. Continua-
tion semantics for symmetric categorial grammar. In WoLLIC,
vol. 4576 of LNCS, 53–71. Springer.

[3] Danvy, Olivier, and Andrzej Filinski. 1989. A functional
abstraction of typed contexts. Tech. Rep. 89/12, DIKU. http:
//www.daimi.au.dk/∼danvy/Papers/fatc.ps.gz.

[4] ———. 1990. Abstracting control. In Proc. conf. Lisp &
funct. prog., 151–160.

[5] Filinski, Andrzej. 1994. Representing monads. In POPL,
446–457.

[6] Herbelin, Hugo, and Silvia Ghilezan. 2008. An approach to
call-by-name delimited continuations. In POPL, 383–394.

[7] Karttunen, Lauri. 1977. Syntax and Semantics of Questions.
Linguistics and Philosophy 1(1):3–44.

[8] ———. 2006. The insufficiency of paper-and-pencil linguis-
tics: the case of Finnish prosody. In Intelligent linguistic
architectures: Variations on themes, ed. Ronald M. Kaplan,
Miriam Butt, Mary Dalrymple, and Tracy Holloway King,
287–300. CSLI Publications, Stanford, California.

[9] Kiselyov, Oleg, and Chung-chieh Shan. 2007. A substructural
type system for delimited continuations. In TLCA, vol. 4583
of LNCS, 223–239. Springer.

[10] Moschovakis, Yiannis. 1994. Sense and Denotation as Al-
gorithm and Value. In Logic colloquium ’90, ed. Jouko
Väänänen and Juha Oikkonen, 382–396.

[11] Shan, Chung-chieh. 2001. A variable-free dynamic semantics.
In Proc. 13th Amsterdam Colloquium, ed. Robert van Rooy
and Martin Stokhof, 204–209. ArXiv.org:cs/0205027.

[12] ———. 2004. Delimited continuations in natural language:
Quantification and polarity sensitivity. In CW’04: Proceed-
ings of the 4th ACM SIGPLAN continuations workshop, ed.
Hayo Thielecke, 55–64. Tech. Rep. CSR-04-1, School of
Computer Science, University of Birmingham.

[13] ———. 2005. Linguistic side effects. Ph.D. thesis, Har-
vard U.

[14] ———. 2007. Linguistic side effects. In Direct composition-
ality, ed. Chris Barker and Pauline Jacobson, 132–163. New
York: Oxford University Press.

