
Non-deterministic choice in a conventional
programming language

Enough for logic programming?

http://okmij.org/ftp/kakuritu/logic-programming.html

National Institute of Informatics, Japan
December 18, 2012

2

Outline

I Introduction

Prolog

Hansei

Reversible parsers, Zebra

Type inference

Conclusions

Logic programming is a fascinating approach, especially for AI and
natural language processing. It is greatly appealing to declaratively
state the properties of the problem and let the system find the
solution. Most intriguing is the ability to run programs ‘forwards’ and
‘backwards’.
However, the built-in search methods of logic programming systems
don’t fit all problems and hardly if at all customizable. Mainly, quite
many computations and models are mostly deterministic.
Implementing them in a logic programming language is significantly
inefficient and requires extensive use of problematic features such as
cut. Another problem is interfacing logic programs with mainstream
language libraries: if mode analysis is not available (as is often the
case), one has to live with run-time instantiatedness errors.

An alternative to logic programming, where non-determinism is

default, is a deterministic programming system (such as Scheme,

OCaml, Scala or Haskell – or even C) with (probabilistic)

non-determinism as an option. Is this a good alternative? We explore

this question. We will use Hansei – a probabilistic programming

system implemented as a library in OCaml – to solve a number of

classic logic programming problems, from zebra to scheduling, to

parser combinators, to reversible type checking.

3

Outline

Introduction

I Prolog

Hansei

Reversible parsers, Zebra

Type inference

Conclusions

4

Pure Prolog

append([], L,L).
append([H| T],L,[H| R]) :− append(T,L,R).

First-order theory of append

Since the talk is about alternatives to Prolog, we ought to recall the
golden standard: Prolog. All the best features of Prolog can be
illustrated in only two lines of code: the append relation.
The two lines of code on the slide define the first-order theory for
append:

• the 3-place predicate append,

• an axiom: forall L. append([],L,L) holds.

• a rule: forall H T L L2. whenever append(T,L,L2) holds,
append([H|T],L,[H|L2]) also holds. That is, we can add an
element to T and L2.

4

Pure Prolog

append([], L,L).
append([H| T],L,[H| R]) :− append(T,L,R).

?− append([t,t, t],[f , f], X).
X = [t, t, t, f , f].

append as a concatenation function

Is there a list X such that append([t,t,t],[f,f],X) holds? Prolog answers

Yes, and, furthermore, gives us that list X. As if append were a

function to concatenate two lists.

4

Pure Prolog

append([], L,L).
append([H| T],L,[H| R]) :− append(T,L,R).

?− append([t,t], X,[t, t, t, f , f]).
X = [t, f , f].

concatenating backwards

Prolog’s append is so elegant because it defines a relation among
three lists. We specify any two lists and query for the other one that
makes the relation hold. For example, let’s check if a given list has a
given prefix, and if so, remove it. Likewise, we can check for, and
remove, a given suffix.

If list concatenation was like running forwards, prefix removal is like

running append backwards.

4

Pure Prolog

append([], L,L).
append([H| T],L,[H| R]) :− append(T,L,R).

?− append([t,t, t], X,R).
R = [t, t, t | X].

concatenating in another way

There are more ways to run append; for example: find all lists R with
a given prefix [t,t,t] and an arbitrary suffix X. The answer is given on
one line, which, however, compactly represents an infinite number of
solutions. Hence a question in Prolog may have more than one
answer. We get the first hint of non-determinism.

The compact representation is less wonderful than it looks. For

example, Prolog cannot compactly represent all boolean lists with a

given prefix.

4

Pure Prolog

append([], L,L).
append([H| T],L,[H| R]) :− append(T,L,R).

?− append(X,[f,f], R).
R = [f, f] ;
R = [G328, f, f] ;
R = [G328, G334, f, f] ;
R = [G328, G334, G340, f, f].

and un-concatenating

If we ask for all lists with the [f,f] suffix, Prolog lists the solutions, as

an infinite stream. Non-determinism becomes clear.

4

Pure Prolog

append([], L,L).
append([H| T],L,[H| R]) :− append(T,L,R).

?− append(X,Y,[t,t, t, f , f]).
X = [], Y = [t, t, t, f , f] ;
X = [t], Y = [t, t, f , f] ;
X = [t, t], Y = [t, f , f] ;
X = [t, t, t], Y = [f, f] ;
X = [t, t, t, f], Y = [f] ;
X = [t, t, t, f , f], Y = [] ;
false .

another un-concatenation: splitting

Append can also split a given list in all possible ways, returning its

prefixes and suffixes. If the list is finite, we obtain the finite number

of answers.

5

FFI

lenf ([],0).
lenf ([| T],N) :− lenf (T,N1), N is N1 + 1.

Append is truly the best illustrative example of Prolog, showing off
building and unifying terms. Once we venture beyond the term
algebra, things easily turn awry. Arithmetic in Prolog is already
“outside” and has to be accessed using a sort of an FFI. Alas, most of
such ‘foreign’ libraries are deterministic, functional rather than
relational.

As an example, let’s define lenf that relates a list and its length, an

integer.

5

FFI

lenf ([],0).
lenf ([| T],N) :− lenf (T,N1), N is N1 + 1.

?− lenf([1,2,3], N).
N = 3.

We easily find the length of a given list.

5

FFI

lenf ([],0).
lenf ([| T],N) :− lenf (T,N1), N is N1 + 1.

?− lenf(X,3).
X = [G280, G283, G286] ;
<divergence>

We can also fix the length (for example, 3) and ask for all lists of that

length. After printing the first solution, Prolog indicates that there

may be more. If we want to see them, Prolog goes into an infinite

loop. The reader is encouraged to find out the cause of the divergence.

5

FFI

lenf ([],0).
lenf ([| T],N) :− lenf (T,N1), N is N1 + 1.

?− lenf([1,2],1).
false .

Here we test if a given list has a given size.

5

FFI

lenf ([],0).
lenf ([| T],N) :− lenf (T,N1), N is N1 + 1.

?− lenf([1,2 | X],1).
<divergence>

Yet if we change the example slightly (asking if a list with the prefix

[1,2] has the length 1) we get no answer. The interpreter loops. Why?

Here’s a hint: a common problem is conjoining a generator that keeps

generating with a test that keeps rejecting.

5

FFI

lenf ([],0).
lenf ([| T],N) :− lenf (T,N1), N is N1 + 1.

lenf1 ([],0).
lenf1 ([| T],N) :− N is N1 + 1, lenf1 (T,N1).

?− lenf1([1,2,3], N).
ERROR: user://4:78:
is /2: Arguments are not sufficiently instantiated

Perhaps moving the test before the generator would help? (Prolog, or

the SLD resolution, evaluates goals in a conjunction strictly

left-to-right.) The divergence is certainly cured, replaced by an error.

The error tells us that the built-in arithmetic of Prolog is not

relational. We cannot run addition ‘backwards’.

5

FFI

lenf ([],0).
lenf ([| T],N) :− lenf (T,N1), N is N1 + 1.

lenf1 ([],0).
lenf1 ([| T],N) :− N is N1 + 1, lenf1 (T,N1).

?− lenf1([1,2,3], N).
ERROR: user://4:78:
is /2: Arguments are not sufficiently instantiated

Arithmetic can be relational

I Constraint solving

I Arithmetic in pure Prolog (FLOPS 2008)

To be sure, arithmetic can be relational. Many Prolog systems, for

example, SWI Prolog, have arithmetic constraint solvers. Relational

arithmetic can also be implemented in Pure Prolog, see our FLOPS

2008 paper.

6

Pure Prolog: Summary

© Declarative: find a solution by stating a problem

© Relational: running forwards and backwards

�� Non-determinism is default,
determinism is difficult and impure

�� Untyped

�� Search is too rigid, divergence is too common

�� FFI breaks purity, causes instantiatedness errors

Let’s review the first part of the talk, good and bad features of
Prolog. To emphasize, we are talking about the pure Prolog. There
are various ways of getting around: for example, some Prolog systems
have good mode analysis (e.g., Mercury) – but many do not. There
are typed Prolog-like systems: Mercury and lambda-Prolog. But they
are, unfortunately, much less popular.
The first drawback – non-determinism as the default – is most
problematic. Many real-life problems are mostly deterministic, or
involve long segments of deterministic computations (e.g., number
crunching). Encoding such problems efficiently in Prolog is very
difficult, often requiring ‘cut’ and other impure features.

When a problem suits Prolog, the answer is breathtakingly elegant.

But most of the time it is not.

7

Outline

Introduction

Prolog

I Hansei

Reversible parsers, Zebra

Type inference

Conclusions

Are there alternatives? Let’s try adding non-determinism to an

ordinary language, where determinism is default.

8

Hansei

http://okmij.org/ftp/kakuritu/

Basic functions

val dist : (prob ∗ α) list → α
val fail : unit → α

val reify0 : (unit → α) → α pV

Convenient derived functions

val flip : prob → bool
val uniformly : α array → α
...
val exact reify : (unit → α) → α pV
val reify part : int option → (unit → α) → (Ptypes.prob ∗ α) list
...

http://okmij.org/ftp/kakuritu/

An example is a library called Hansei, which adds weighted
non-determinism (probabilities) to the ordinary OCaml. We will hush
the probabilities in this talk.

The primitives of the library are dist, to non-deterministically choose

an element from a list, and fail. There is also a strange sounding

function reify0 that turns a program into a tree of choices, letting us

program our own search strategies. The library has lots of convenient

functions written in terms of primitives, such as flip, the uniform

selection, and the exhaustive search through all the choices, which

produces the flattened choice tree, or the probability table. The

function reify part is a version of exact reify. The first argument is the

depth search bound (infinite, if None).

9

Append in Hansei

type bl = Nil | Cons of bool ∗ blist
and blist = unit → bl

let nil : blist = fun () → Nil
let cons : bool → blist → blist = fun h t () → Cons (h,t)
val list of blist : blist → bool list

let t3 = cons true (cons true (cons true nil))
let f2 = cons false (cons false nil)

let rec append l1 l2 =
match l1 () with
| Nil → l2
| Cons (h,t) → cons h (fun () → append t l2 ())

Recall, the append relation is the best illustration of Prolog. Let’s see

if we can represent it in Hansei. We first define boolean lists with a

non-deterministic spine. Elements could (and should be) be

non-deterministic too. We introduce nil and cons as easy-to-use

constructors of lists, and a function to convert blists into ordinary

OCaml lists so we can show them. Sample lists t3 and f2 will be used

in the examples. The append is defined as an ordinary recursive

function pattern-matching on the list.

9

Append in Hansei

type bl = Nil | Cons of bool ∗ blist
and blist = unit → bl

let rec append l1 l2 =
match l1 () with
| Nil → l2
| Cons (h,t) → cons h (fun () → append t l2 ())

append t3 f2;;
− : blist = <fun>

Executing the append by itself does not give an informative answer.

Recall that we use the Hansei library to build a probabilistic model,

which we then have to run. Running the model determines the set of

possible worlds consistent with the probabilistic model: the model of

the model. The set of model outputs in these worlds is the set of

answers. Hansei offers a number of ways to run models and obtain the

answers and their weights. We will be using iterative deepening:

reify part. The first argument is the depth search bound (infinite, if

None).

9

Append in Hansei

type bl = Nil | Cons of bool ∗ blist
and blist = unit → bl

let rec append l1 l2 =
match l1 () with
| Nil → l2
| Cons (h,t) → cons h (fun () → append t l2 ())

reify part None (fun () →
list of blist (append t3 f2))

[(1., [true ; true ; true ; false ; false])]

Running the append model gives the expected result. We have

defined append as a function, and can indeed run it as the

concatenation function, ‘forwards’.

10

Logic variables?

Prolog

?− bool(X) , append([X],[f , f], R).
X = t ,
R = [t , f , f] ;
X = f ,
R = [f , f , f].

Hansei

reify part None (fun () →
let l = fun () → Cons (flip 0.5 , nil) in
list of blist l , list of blist (append l f2))

[(0.25, ([false], [false ; false ; false]));
(0.25, ([false], [true ; false ; false]));
(0.25, ([true], [false ; false ; false]));
(0.25, ([true], [true ; false ; false]))]

Prolog could run append forwards in several ways, for example, to

determine lists with [f,f] as the suffix and a one-element prefix. The

slide shows the Prolog code and the corresponding Hansei code. In

Hansei, a boolean X is modeled as a non-deterministic boolean flip

0.5. But something is wrong with the Hansei code!

11

Logic variables

val letlazy : (unit → α) → (unit → α)

reify part None (fun () →
let l = letlazy (fun () → Cons (flip 0.5, nil)) in
list of blist l , list of blist (append l f2))

[(0.5, ([false], [false ; false ; false]));
(0.5, ([true], [true ; false ; false]))]

I call-time choice

I wave-function collapse

We need the magical function letlazy, which at first blush looks like an
identity function. It is another primitive of Hansei. It takes a thunk
and returns a thunk. When we force that thunk, we force the original
one, and remember the result. All further forcing return the same
result. In functional-logic programming, this is called “call-time
choice”. In quantum mechanics, in is called “wavefunction collapse”.
Before we observe a system, for example, a still spinning coin, there
could indeed be several choices for the result. After we observed the
system, all further observations give the same result.

Now the code gives the expected answer.

12

Logic variables: memoized generators

?− append([t,t, t], X,R), boollist (X), boollist (R).

Let’s recall another Prolog example, enumerating all boolean lists

with [t,t,t] as the prefix. Unlike earlier Prolog code, we now make sure

the lists are really boolean, whose elements are only t or f.

12

Logic variables: memoized generators

?− append([t,t, t], X,R), boollist (X), boollist (R).

X = [],
R = [t, t, t] ;
X = [t],
R = [t, t, t, t] ;
X = [t, t],
R = [t, t, t, t, t] ;
X = [t, t, t],
R = [t, t, t, t, t, t] ;
X = [t, t, t, t],
R = [t, t, t, t, t, t, t] ;
X = [t, t, t, t, t],
R = [t, t, t, t, t, t, t, t] ...

Where is [t, t, t, f]?

Prolog indeed gives an infinite stream of answers. However, it does

seem to be stuck on t. For example, [t,t,t,f] is also a list with [t,t,t] as

the prefix, but we won’t see it. The built-in search strategy of Prolog

is incomplete.

12

Logic variables: memoized generators

let rec a blist () =
letlazy (fun () →

dist [(0.5, Nil);
(0.5, Cons(flip 0.5, a blist ()))])

?− append([t,t, t], X,R), boollist (X), boollist (R).

reify part (Some 3) (fun() →
let x = a blist () in
list of blist (append t3 x))

[(0.5, [true ; true ; true]);
(0.125, [true ; true ; true ; false]);
(0.125, [true ; true ; true ; true])]

Here is the same example in Hansei. We define a generator for blists

(with letlazy) and use it as a logic variable X. We are no longer stuck

on generating all true lists.

13

List comparison

let rec bl compare l1 l2 =
match (l1 (), l2 ()) with
| (Nil , Nil) → true
| (Cons (h1,t1), Cons (h2,t2)) → h1 = h2 && bl compare t1 t2
| → false

Prolog can also run append backwards. Can Hansei? Let’s first define

the comparison function on blist, in the straightforward way.

14

Un-appending

?− append([t,t, t],[f , f], L), append([t, t], X,L).

reify part None (fun() →
let l = append t3 f2 in
let x = a blist () in
let r = append (cons true (cons true nil)) x in
if not (bl compare r l) then fail ();
list of blist x)

[(0.0078125, [true ; false ; false])]

Running backwards ≡ generate-and-test
How come it terminated?

The principle for running a function backwards is generate-and-test.
We generate all possible lists x, prepend [true,true] and check the
result matches l. We effectively un-concatenate l.

In Prolog, conjoining a generator for an infinite stream with a test

often leads to divergence. The generator keeps producing and the test

keeps rejecting. How come Hansei code terminated, with no upper

bound on the search depth? Hansei search space is finite?

15

Splitting a list

?− append(X,Y,[t,t, t, f , f]).

reify part None (fun() →
let l = append t3 f2 in
let x = a blist () in
let y = a blist () in
let r = append x y in
if not (bl compare r l) then fail ();
(list of blist x, list of blist y)

[(0.000244140625, ([], [true ; true ; true ; false ; false]));
(0.000244140625, ([true], [true ; true ; false ; false]));
(0.000244140625, ([true ; true], [true ; false ; false]));
(0.000244140625, ([true ; true ; true], [false ; false]));
(0.000244140625, ([true ; true ; true ; false], [false]));
(0.000244140625, ([true ; true ; true ; false ; false], []))]

How come it terminated?

Our last Prolog example demonstrated how the append relation splits

the list, in all possible ways. The top of the slide recalls that Prolog

code. Underneath is Hansei code.

16

Laziness principle

I How to guess

I How to go proceed as if we guessed

I Delay the actual guess till the latest possible moment
hoping that moment never arrives

Let me stress the point of the talk: how to write program that guess,

how to guess intelligently, how to proceed as if we guessed (and delay

the actual guess until more information becomes available, counting

that if some other guesses are wrong, the delayed guess is not worth

making).

17

Not that laziness

I Not lazy of OCaml

I Not delay of Scheme

I Not laziness of Haskell

That laziness mutates global (shared) memory

I mutation affects all possible worlds

I letlazy memoizes different results in different possible worlds

I letlazy needs world-local memory

I remember fork () and Unix processes?

Non-deterministic laziness needs first-class memory

We have seen the crucial role of laziness, to delay the computation and
memoize its result. OCaml has a facility to delay a computation and
memoize the result – called lazy. Scheme has delay. In Haskell (GHC),
lazy evaluation is pervasive. None of them do what we want. They
are all implemented via mutation of the ordinary, or global, or shared
memory – shared across all possible worlds, resulting from a choice.
It is useful to think of a non-deterministic choice, flipping a coin, as
splitting the current world. In one world, the coin came up ‘head’, in
the other it came ‘tail’. If we are to memoize, cache the result, we
should use different memo tables for different worlds, because
different worlds have different choices.

In short, non-deterministic laziness needs first-class memory – which

is what Hansei implements.

18

Outline

Introduction

Prolog

Hansei

I Reversible parsers, Zebra

Type inference

Conclusions

I have many more examples of classical logic programming puzzles

written in Hansei – for example, the zebra puzzle. I have non-classical

examples – reversible parser combinators. Please ask me.

19

Outline

Introduction

Prolog

Hansei

Reversible parsers, Zebra

I Type inference

Conclusions

As a final example, I’ll show invertible type-checking.

20

Type inference: terms
Simply typed λ-calculus with integer literals

type varname = string
type term v =
| I of int | V of varname
| L of varname ∗ term | A of term ∗ term

and term = unit → term v

let (%) e1 e2 = fun() → A (e1,e2)
let lam v t = fun() → L (v, t) and num x = fun() →I x

let a term () : term =
let var () = ”x” ˆ string of int (geometric 0.1) in
let rec loop () =

dist [(0.1, fun () → I 1);
(0.1, fun () → V (var ()));
(0.4, fun () → L (var (), letlazy loop));
(0.4, fun () → A (letlazy loop, letlazy loop))] ()

in letlazy loop

Our language is simply-typed lambda-calculus with integer literals.

The slide shows the syntax of terms (literals, variables, abstraction

and application), and sugar functions for building terms conveniently.

Next we define a generator for terms. The sequence of terms is

infinite – as is the sequence of variable names.

21

Type inference: types

type base t = Int
type tp v = B of base t | Arr of tp ∗ tp
and tp = tp v option → tp v

let int : tp = tp pure (B Int)
let arr : tp → tp → tp = fun t1 t2 → tp pure (Arr (t1, t2))

let a tp : tp =
let a baset () = Int in
let rec loop = function
| None →dist [(0.5, B (a baset ()));

(0.5, Arr (tp memo loop, tp memo loop))]
| Some tv →tv

in loop

Types are base types (Int) and arrow types. We show the sugar

functions and the generator.

22

Type inference: forwards and backwards

let rec typeof : gamma →term →tp = fun gamma exp →
match exp () with
| I → int
| V name →begin try List . assoc name gamma

with Not found → fail ()
end

| L (v, body) →
let targ = new tvar() in
let tbody = typeof ((v, targ) :: gamma) body in
arr targ tbody

| A (e1,e2) →
let tres = new tvar() in
tp same (typeof gamma e1) (arr (typeof gamma e2) tres);
tres

A type for a term, terms for a type, or all well-typed terms
This is OCaml, not Prolog or Curry!

The type-inference code fits on a single slide. The code looks quite

like the familiar typing rules. We can either obtain the type for a

term, or generate all terms for a given type or all well-typed terms.

[show demo live]

23

Outline

Introduction

Prolog

Hansei

Reversible parsers, Zebra

Type inference

I Conclusions

24

Hansei: Summary

© Declarative: find a solution by stating a problem

© Fake Relational: running forwards and backwards

© Determinism is default,
non-determinism is rather easy

© Typed

© Search is programmable

© FFI is native

25

Conclusions

Do guess . . . but not a moment too soon

I Guess

I Delay a guess until the last moment

I Fail sooner

I Test-and-generate (rather than generate-and-test)

Logic programming in your language

I Standard logic programming – in the standard OCaml

I Rather than implementing Prolog or Curry in OCaml

I Calling any OCaml function, with no FFI

The principles naturally lead to the constraint (logic) programming.

We have seen the standard logic programming examples in the

completely standard OCaml. We did not implement Prolog, Kanren,

Curry in OCaml. Rather, we used OCaml directly, as it is. In

particular, we call any OCaml function from any OCaml library

directly, and can be called by it. You can probably do the similar

non-deterministic programming in your language.

26

A historical note
“One can see now how this talk in 1957 must have motivated
Gilmore, Davis and Putnam to write their Herbrand-based
proof procedure programs. Their papers ... were based
fundamentally on the idea of systematically enumerating the
Herbrand Universe of a proposed theorem – namely, the
(usually infinite) set of all terms constructible from the function
symbols and individual constants which (after its
Skolemization) the proposed theorem contained. This technique
is actually the computational version of Herbrand’s so-called
Property B method. ... These first implementations of the
Herbrand FOL proof procedure thus revealed the importance of
trying to do better than merely hoping for the best as the
exhaustive enumeration for only ground on, or than guessing
the instantiations that might be the crucial ones in terminating
the process. In fact, Herbrand himself had already in 1930
shown how to avoid this enumerative procedure, in what he
called the Property A method. The key to Herbrand’s Property
A method is the idea of unification.

27

A historical note (cont)
Herbrand’s writing style in his doctoral thesis was not, to put it
mildly, always clear. As a consequence, his exposition of the
Property A method is hard to follow, and is in fact easily
overlooked. At any rate, it seems to have attracted no attention
except in retrospect, after the independent discovery of
unification by Prawitz thirty years later....

Once I had managed to recast the unification algorithm into a
suitable form, I found a way to combine the Cut Rule with
unification so as to produce a rule of inference of a new
machine-oriented kind. It was machine-oriented because in
order to obtain the much greater deductive power than had
hitherto been the norm, it required much more computational
effort to apply it than traditional human-oriented rules typically
required. In writing this work up for publication, when I needed
to think of a name for my new rule, I decided to call it
”resolution”, but at this distance in time I have forgotten why.
This was in 1963.”

John Alan Robinson: “Computational Logic: Memories of the
Past and Challenges for the Future”. Proc. CVL’00.

And of course the resolution is the foundation of Prolog. What I want

to emphasize is that the unification was invented to cope with a large

or infinite search space. It is an optimization. But so is laziness...

	Introduction
	Prolog
	Hansei
	Reversible parsers, Zebra
	Type inference
	Conclusions

