
Guess Lazily!

making a program guess, and guess well

http://okmij.org/ftp/kakuritu/logic-programming.html

Strange Loop 2012
St Louis, MO September 25, 2012



2

Outline

I Introduction

Non-determinism

Parsing and un-parsing

Type inference

Conclusions



Guessing is a part of life and science. We form a hypothesis, work out
the consequences and compare with observations. Lots of problems
are formulated by first assuming that the solution exists and then
describing the properties it should have. Planning, scheduling,
diagnostic, learning problems and Sudoku all follow this pattern.
Guessing is good not only for describing these problems but also for
solving them. We make a guess – often a series of guesses – to build,
for example, a schedule, and check if it satisfies resource, timeliness
and other constraints. Often, we guess again.
How do we write “guess the value of this variable” in code? How do
we code “guess again”? How to put in prior knowledge favoring some
guesses? The talk first will answer these questions.



Naive guessing however is hopeless even for toy problems. We often
have to make lots of guesses before we build a candidate solution to
check against the constraints. Only a tiny or even infinitesimal
proportion of these guesses yield a successful candidate. How to make
good guesses? That is very hard to know: Most physical, biological,
sociological, etc. models are set up to compute consequences of the
causes rather than the other way around. It helps to reformulate the
question: how to avoid too many bad guesses? The talk will describe
and illustrate a general principle, found in any serious logic,
non-deterministic or probabilistic programming system.
The techniques explained in the talk are not tied to any language and
can be used even in C. However, functional, especially typed
functional languages have a serious advantage, as we shall see. No
prior knowledge of logic or non-deterministic programming is
required. The ability to read introductory OCaml or Haskell code will
be helpful. The participants will learn how to guess in their favorite
language, and what it takes to succeed doing so. They will see
laziness, unification and constraint propagation in the same light.
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The two main topics for the talk are how to guess and how to guess
well. Very many practical problems are posed in a form that involve a
guess. For example, we assume that a schedule exists and then
enumerate its desired properties. Many non-practical problems are
also posed that way: for instance, the N-queen problem says: guess
the positions of N queens such that they don’t kill each other. The
whole class of NP problems are formulated that way. Recall that N in
NP stands for non-determinism. We guess the solution, and then
verify in polynomial time, that it is correct. But non-determinism is
good not only for asking questions. It is also a good way of answering
them. So, the first part of the talk is about non-deterministic
programming in many languages.
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As you might’ve guessed, naive guessing hardly ever successful. A
very simple principle helps, and I give it away now: laziness! But not
that one! Hopefully by the end you’ll see what I mean and how it all
relates to unification and other constraint functional-logic
programming.
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We start with a simple scheduling problem.
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Puzzle

”U2” has a concert that starts in 17 minutes and they must all
cross a bridge to get there. They stand on the same side of the
bridge. It is night. There is one flashlight. A maximum of two
people can cross at one time, and they must have the flashlight
with them. The flashlight must be walked back and forth. A
pair walk together at the rate of the slower man’s pace:
Bono 1 minute to cross
Edge 2 minutes to cross
Adam 5 minutes to cross
Larry 10 minutes to cross

For example: if Bono and Larry walk across first, 10 minutes have
elapsed when they get to the other side of the bridge. If Larry then
returns with the flashlight, a total of 20 minutes have passed and you
have failed the mission.

Allegedly, this is a question for potential Microsoft employees.
An answer is expected within 5 minutes.



It is indeed a typical scheduling problem: find a sequence of decisions
– who should walk in what sequence – subject to a set of constraints,
optimizing some utility. We assume that there is a schedule and
describe its properties.
There are two answers, neither of which are trick answers. Allegedly,
this is one of the questions for potential Microsoft employees. Some
people really get caught up trying to solve this problem. Reportedly,
one guy solved it by writing a C program, although that took him 37
minutes to develop (compiled and ran on the 1st try though).
Another guy solved it in three minutes. A group of 50, at Motorola,
couldn’t figure it out at all.
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Simple library for non-determinism

val choose : α list → α

let fail () = choose []



A clear and elegant way of solving the puzzles like ours is
non-determinism. For concreteness, I will use OCaml in this talk. I
could just as well use Scala, for example. I could’ve even chosen C –
and once I did. Anyway, OCaml isn’t special in that it hasn’t been
designed for non-deterministic programming.
Let’s assume that somehow we have this function choose that chooses
an element from a list. Choosing from the empty list fails the
computation.
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Solving the puzzle

type u2 = Bono | Edge | Adam | Larry
type side = u2 list

let rec loop trace forward time left = function
| ([], ) when forward →

print trace (List . rev trace )
| ( , []) when not forward → ...
| (side from , side to ) →

let party = select party side from in
let elapsed = elapsed time party in
let = if elapsed > time left then fail () in
let side from ′ = without party side from in
let side to ′ = side to @ party in
loop (( party , forward):: trace ) (not forward)

(time left − elapsed) (side to ′ , side from ′ )



This code represents the specification of the problem, in the most
straightforward way. We keep a list of people on both sides of the
bridge, and let them walk with the flashlight back and forth. We
finish when everyone made it or when the time is up. This is the
totally standard OCaml code. I’m sure everyone in the audience can
write such code in their sleep. Perhaps only one function would give a
pause.
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Selecting a party

let select party side =
let p1 = choose side in
let p2 = choose (List . filter (fun x → x ≥ p1) side ) in
if p1 = p2 then [p1] else [ p1;p2]



But even the selection function is most straightforward, if we could
non-deterministically select an element from the list. And our simple
library provides exactly that function. The code reflects that the
order of people within a pair is not important.
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Implementing non-determinism

let rec choose = function
| [] → exit 666
| [ x] → x
| (h:: t) →

let pid = fork () in
if pid = 0 then h
else wait (); choose t

let run m = match fork () with
| 0 → m (); printf ”Solution found”; exit 0
| → try while true do waitpid [] 0 done

with ...



One way to implement non-determinism is just to run all the choices,
perhaps in parallel, and hope one of them eventually succeeds. At the
point of making a choice, we split the computation into several parts.
Each split-off computations proceed with one of the choices. Everyone
here knows how to split the computations: use fork.
It indeed works. It is interesting to watch, using top, how processes
are launched and how they die, how their number increases and drops.
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Implementing non-determinism

let rec choose = function
| [] → exit 666
| [ x] → x
| (h:: t) →

let pid = fork () in
if pid = 0 then h
else wait (); choose t

let run m = match fork () with
| 0 → m (); printf ”Solution found”; exit 0
| → try while true do waitpid [] 0 done

with ...



I’d like to point out the fork in run: we split the computation into a
process that does all the work, and the supervisor. As in real life, the
supervisor immediately goes to sleep. It wakes up when all the
workers are finished, to report the achieved result or an exception.
As we watch: ocamlrun is a byte-code OCaml interpreter. Watching
processes coming and going really drives home how much
non-determinism is involved. This problem would work great on a
Hadoop cluster or in a cloud. I think you see that my mentioning of C
wasn’t a joke: you can do non-deterministic programming on any
language that has a POSIX FFI, to fork. Almost any language will do.
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Hansei

http://okmij.org/ftp/kakuritu/

Basic functions

val dist : (prob ∗ α) list → α
val fail : unit → α

val reify0 : (unit → α) → α pV

Convenient derived functions

val flip : prob → bool
val uniformly : α array → α
...
val exact reify : (unit → α) → α pV
...

http://okmij.org/ftp/kakuritu/


Well, I hope it was entertaining. You might be thinking that fork ()
was a bit baroque. Don’t be too quick to ridicule: there is an
important lesson here, as we shall see soon. But before we do, we
should arrange for a faster choice: instead of a heavy-weight Unix
fork(), we need a green fork. Luckily, OCaml has exactly the right
thing, which underlies a library for probabilistic programming, called
Hansei. We will use this library, but hush the probabilities.
The library has the basic functions dist, which is basically choose, but
with probabilities, and fail. There is also a strange sounding function
reify0 that turns a program into a tree of choices, letting us program
our own search strategies. The library has lots of convenient functions
written in terms of primitives, such as flip, the uniform selection, and
the exhaustive search through all the choices, which produces the
flattened choice tree, of the probability table.
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Parsing

type stream v = Eof | Cons of char ∗ stream
and stream = unit → stream v

type α parser = stream →α ∗ stream
(∗ non−deterministically ∗)



To recap the first point of the talk and transition to the second one,
let’s consider another, more realistic example: parsing. It, too,
benefits from non-determinism. The non-deterministic choice is
prominent in BNF grammars. To illustrate, let me show a simple
parsing combinator library: something like Parsec, which is available
for many languages.
As usual, parsers parse a stream of characters; the characters do not
need to be present all in memory, but can be read on demand. That’s
why stream is a thunk. A parser takes a stream and returns the
parsing result (the result of a semantic action) and the remainder of
the stream.
The type alas does not make it explicit that parsers are
non-deterministic.
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Primitive Parsers

val empty : unit parser

let p sat : (char → bool) → char parser = fun pred st →
match st () with
| Cons (c, st ) when pred c → (c, st )
| → fail ()

let p char : char → char parser =
fun c → p sat (fun x → x = c)



And parsers are generally non-deterministic. First of all, they may
fail. Here are the primitive parsers in our library (like in many
others). The parser empty parses the empty string. The parser p sat

checks if the current character satisfies a given predicate. A parser for
a character p char is written in terms of it. If the current character
does not satisfy the predicate, we fail.
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Parser Combinators

let (<| > ) : αparser → α parser → α parser = fun p1 p2 st →
uniformly [|p1;p2|] st

let alt : α parser array → α parser = fun pa st →
uniformly pa st

val (<∗>) : (α → β) parser → α parser → β parser
val (<$> ) : (α → β) → α parser → β parser
val ( ∗> ) : α parser → β parser → β parser
let ( <∗ ) : α parser → β parser → α parser

val p fix : (α parser → α parser ) → α parser
val many : α parser → α list parser



Parser combinators combine parsers and their semantic actions. For
example, <*> hooks up the parser for a prefix with the parser for the
rest of the stream, and combines the corresponding semantic actions.
You can guess what the other parsers at the bottom do from their
types. More interesting is <|>, for parsing alternatives. It is indeed
implemented as a non-deterministic choice of a parser for the rest of
the stream.
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Example: recognizing palindromes

let pali = p fix (fun pali →
alt [| empty;

(fun → ()) <$> p char ’a’;
(fun → ()) <$> p char ’b’;
p char ’a’∗> pali <∗ p char ’a’;
p char ’b’∗> pali <∗ p char ’b’|]

)

run fwd pali ”ab”;;
run fwd pali ”abaaba”;;



Here is the first example: recognizing palindromes. Since we build a
recognizer, the semantic actions do nothing, returning unit. The
grammar reads pretty much like BNF, doesn’t it? A palindrome over
the two-character alphabet is either the empty string, a single
character, or a palindrome flanked on both sides with the same
character. We can run a few examples.
Show the definition of run fwd and show the two examples.
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Example: generating palindromes

run bwd (Some 10) pali (fun () → stream over [|’a’;’b’|])

run bwd None pali (fun () →
let st = stream over [|’a’;’b’|] in
stream len st 5 ; st )

It is still OCaml – not Prolog, not Kanren, not Monads

How come the second example terminates?



I guess you might’ve seen where all this was going. We can run the
same parser not only forwards but also backwards, not only recognize
palindromes but also to generate them.
(Show the examples live). We do that by making the input stream to
be non-deterministic as well. The function stream over generates an
all streams over a given alphabet, including non-terminated ones.
(Show what the generator does.) We cannot use exact reify since the
search tree is infinite. We have to limit the depth of the search, say,
to 5 levels.
Let’s parse all possible streams of a’s and b’s, and see what we get.
We must limit our search, because it won’t ever end. There is an
infinite number of palindromes.
The next example finds all 5-letter palindromes. We add the
predicate stream len st 5 that fails if the stream does not have 5
elements. Now we can use the exhaustive search. As a bonus, all
palindromes are generated equally likely, with no bias.
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Example: parsing and generating arithmetic expressions

run fwd expression ”10”
 [(0.125, Ptypes.V 10)]

run fwd expression ”(10+ 5∗2)/4”
 [(1.52587890625e−05, Ptypes.V 5)]

(∗ and running backwards ∗)

Related: generating random C code to test C compilers



Before we answer the termination question, let’s look at another
example: parsing arithmetic expression, with a semantic action to
compute its value. The grammar does look like that one printed in
probably every book on compiler construction. We can run the parser
forward, and backwards.
I have tried not to talk about probabilities, but you have probably
guessed what the first number means. Incidentally, probabilities could
be used to set prior knowledge. The inverse of the probability is the
estimate of the number of possible worlds that had to be examined.
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Running backwards in detail

exact reify pali (fun () →
let st = stream over [|’a’;’b’|] in
stream len st 5;

let (v, st ′ ) = pali st in
if st ′ () 6= Eof then fail ();
(v, string of stream st ))

How could it possibly work and terminate?



Let’s come back to the code that finds all palindromes of length 5.
The code seems straightforward: choose a sample sequence of a’s and
b’s. If the length isn’t 5 or if it doesn’t completely parse as a
palindrome, fail. If we made it to the end, report the sequence of
characters as a text string.
But why does the code terminate? If stream over generates all
sequences of a’s and b’s, and stream len st 5 rejects them (except the
ones of length 5), the search will get stuck when choosing longer and
longer streams and failing them all. But it doesn’t. Why?
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Uneager stream

type stream v = Eof | Cons of char ∗ stream
and stream = unit → stream v

let rec stream len st n = match (st () , n) with
| (Eof,0) → ()
| (Cons ( , t), n) when n > 0 →stream len t (n−1)
| → fail ()

stream len st 5 forces no more than 6 thunks

Less haste, infinitely more speed



Recall the type of the stream. Remember I said that all characters
don’t have to be present in memory, they can be read on demand.
They also can be chosen on demand. The entire tail of the stream can
be chosen on demand.
The code for stream len shows this demand, when forcing a thunk. It
is easy to see that stream len st 5 forces no more than 6 thunks. If the
6th thunk is a Cons, we fail and never examine any part of the stream
after that. The rest of the stream is never demanded, and is never
chosen.
We were not eager to generate the sequence before examining it,
delaying the choices until we need to look at it. The result is quite a
dramatic improvement: infinite improvement. The search problem
became finite.
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Running backwards in detail

exact reify pali (fun () →
let st = stream over [|’a’;’b’|] in
stream len st 5;
let (v, st ′ ) = pali st in
if st ′ () 6= Eof then fail ();
(v, string of stream st ))

How could it possibly work and terminate?

As if st is the same choice of a stream, not just the same
procedure of choosing a stream



But there is another problem: for example, string of stream does not
have any size limitation; it tries to convert the entire stream into a
string. Ditto for the parser. Furthermore, when a parser forces a
choice, the result can generally differ from that of string of stream

forcing the same thunk. Flipping the same coin generally gives
different result. But the code is written as if sf were the same choice
of a stream, not just the same procedure of choosing a stream. Is
there magic? In a sense, yes.
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Running backwards in detail

val letlazy : (unit → α) → (unit → α)

let stream over : char array → stream = fun ca →
let rec loop () =

if flip 0.5 then Cons (uniformly ca, letlazy loop)
else Eof

in letlazy loop

I call-time choice
I wave-function collapse



Let me disclose the code the chooses a stream over a given alphabet.
You see the magical function letlazy, which at first blush looks like an
identity function. It takes a thunk and returns a thunk. When we
force that thunk, we force the original one, and remember the result.
All further forcing return the same result. In functional-logic
programming, this is called “call-time choice”. In quantum
mechanics, in is called “wavefunction collapse”. Before we observe a
system, for example, a still spinning coin, there could indeed be
several choices for the result. After we observed the system, all
further observations give the same result.
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Laziness principle

I How to guess
I How to go proceed as if we guessed
I Delay the actual guess till the latest possible moment

hoping that moment never arrives



Let me stress the point of the talk: how to write program that guess,
how to guess intelligently, how to proceed as if we guessed (and delay
the actual guess until more information becomes available, counting
that if some other guesses are wrong, the delayed guess is not worth
making).
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Not that laziness

I Not lazy of OCaml
I Not delay of Scheme
I Not laziness of Haskell

That laziness mutates global (shared) memory

I mutation affects all possible worlds
I letlazy memoizes different results in different possible worlds
I letlazy needs world-local memory
I remember fork () and Unix processes?

Non-deterministic laziness needs first-class memory



OCaml has a facility to delay a computation and memoize the result –
called lazy. Scheme has delay. In Haskell (GHC), lazy evaluation is
pervasive. None of them do what we want. They are all implemented
via mutation of the ordinary, or global, or shared memory – shared
across all possible worlds, resulting from a choice.
It is useful to think of a non-deterministic choice, flipping a coin, as
splitting the current world. In one world, the coin came up ‘head’, in
the other it came ‘tail’. If we are to memoize, cache the result, we
should use different memo tables for different worlds, because
different worlds have different choices.
In short, non-deterministic laziness needs first-class memory – which
is what Hansei implements.
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Type inference: forwards and backwards
Simply typed λ-calculus with integer literals

let rec typeof : gamma →term →tp = fun gamma exp →
match exp () with
| I → int
| V name →begin try List . assoc name gamma

with Not found → fail ()
end

| L (v, body) →
let targ = new tvar() in
let tbody = typeof ((v, targ ) :: gamma) body in
arr targ tbody

| A (e1,e2) →
let tres = new tvar() in
tp same (typeof gamma e1) (arr (typeof gamma e2) tres);
tres

Obtain a type for a term, or terms for a type, or all well-typed
terms



The type-inference code fits on a single slide. The code looks quite
like the familiar typing rules. The syntax of the language – the AST –
should be clear from the pattern-matching. We can either obtain the
type for a term, or generate all terms for a given type or all
well-typed terms.
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Conclusions

Do guess . . . but not a moment too soon

I Guess
I Delay a guess until the last moment
I Fail sooner
I Test-and-generate (rather than generate-and-test)

Logic programming in your language

I Standard logic programming – in the standard OCaml
I Rather than implementing Prolog or Curry in OCaml
I Calling any OCaml function, with no FFI



The principles naturally lead to the constraint (logic) programming.
We have seen the standard logic programming examples in the
completely standard OCaml. We did not implement Prolog, Kanren,
Curry in OCaml. Rather, we used OCaml directly, as it is. In
particular, we call any OCaml function from any OCaml library
directly, and can be called by it. You can probably do the similar
non-deterministic programming in your language.



28

Buzzwords

I non-deterministic choice
I fork ()

I Schrödinger cat
I wavefunction collapse
I first-class storage
I call-time choice
I thread-local memory
I logic variable
I unification
I constraint propagation
I generate-and-test
I test-and-generate
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A historical note
“One can see now how this talk in 1957 must have motivated
Gilmore, Davis and Putnam to write their Herbrand-based
proof procedure programs. Their papers ... were based
fundamentally on the idea of systematically enumerating the
Herbrand Universe of a proposed theorem – namely, the
(usually infinite) set of all terms constructible from the function
symbols and individual constants which (after its
Skolemization) the proposed theorem contained. This technique
is actually the computational version of Herbrand’s so-called
Property B method. ... These first implementations of the
Herbrand FOL proof procedure thus revealed the importance of
trying to do better than merely hoping for the best as the
exhaustive enumeration for only ground on, or than guessing
the instantiations that might be the crucial ones in terminating
the process. In fact, Herbrand himself had already in 1930
shown how to avoid this enumerative procedure, in what he
called the Property A method. The key to Herbrand’s Property
A method is the idea of unification.
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A historical note (cont)
Herbrand’s writing style in his doctoral thesis was not, to put it
mildly, always clear. As a consequence, his exposition of the
Property A method is hard to follow, and is in fact easily
overlooked. At any rate, it seems to have attracted no attention
except in retrospect, after the independent discovery of
unification by Prawitz thirty years later....
Once I had managed to recast the unification algorithm into a
suitable form, I found a way to combine the Cut Rule with
unification so as to produce a rule of inference of a new
machine-oriented kind. It was machine-oriented because in
order to obtain the much greater deductive power than had
hitherto been the norm, it required much more computational
effort to apply it than traditional human-oriented rules typically
required. In writing this work up for publication, when I needed
to think of a name for my new rule, I decided to call it
”resolution”, but at this distance in time I have forgotten why.
This was in 1963.”
John Alan Robinson: “Computational Logic: Memories of the
Past and Challenges for the Future”. Proc. CVL’00.



And of course the resolution is the foundation of Prolog. What I want
to emphasize is that the unification was invented to cope with a large
or infinite search space. It is an optimization. But so is laziness...
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