
Prolog再考
急がないで推測

オレッグ・キセリョーヴ 　亀山幸義

日本ソフトウェア科学会第31回大会
2014年9月9日

古典Prologは、項代数、非決定性、単一化,反例探索、論理と制御の
分離という最も基本的な概念を簡潔にまとめている素敵な言語であ
る。プログラムが双方向に動くのは不思議だ。しかし、現実
のPrologプログラムが持つ問題-カットの多用、算術, FFI, committed
choice,頻繁な発散など -が古典Prologの利点を打消してしまう。
古典Prologは、魅力的な問題だ。古典Prologの勉強をして、その問題
から教訓を学ぶ必要がある。その教訓として、非決定性は基本的だ
が、標準の実行モードになるべきではない、そして、遅延推測を使
わないと性能が悪すぎる、ということがあげられる。

古典Prologの利点は、普通の正格な関数型言語で実装できる。本研
究では、遅延推測をOCamlライブラリとして実現し、そのライブラ
リを使って Prologの典型的な例を記述する。加えて、双方向に動く
型推論、 committed choice (maximal munch)を使って双方向に動
くparser combinatorsを記述する。これらは古典Prologで実装できな
い。これらの実装から、論理変数の独特な性質、エルブラン領域の

列挙の最適化の立場から見た単一化、WAMへのコンパイルなどが理
解できる。

2

概要

�� 古典Prolog
© 項代数
© 非決定性
© 単一化
© 反例探索
© 論理と制御の分離

© 非決定性はそれぞれの好きな関数言語で

Classical Prolog – the archetype and the eponym of logic
programming – is a fascinating language, especially for natural
language processing and knowledge representation, planning and
reasoning. It is greatly appealing to declaratively state the properties
of a problem and let the system find the solution. Most intriguing is
the ability to run programs ‘forwards’ and ‘backwards’.
We recall these irresistible features below and see why the language
that implements them hasn’t turned out as good as it hoped.

3

古典Prologの全ての利点は、コード2行

append(P,S,L) prefixとsuffixと全てのリストの関連

append([], L,L).
append([H|T],L,[H|R]) :− append(T,L,R).

All the best features of Prolog can be illustrated in just two lines of
code: the append relation. We should not view what is on the slide as
the code to append two lists. These two lines define a relation between
a prefix and a suffix of a list.

3

古典Prologの全ての利点は、コード2行

append(P,S,L) prefixとsuffixと全てのリストの関連

append([], L,L).

I 空リストは各リストのprefixだ
I 各リストは自分のsuffixだ

append([H|T],L,[H|R]) :− append(T,L,R).

3

古典Prologの全ての利点は、コード2行

append(P,S,L) prefixとsuffixと全てのリストの関連

append([], L,L).

append([H|T],L,[H|R]) :− append(T,L,R).

Tは、Rのprefixながら、cons H Tは、cons H Rのprefix

4

関連で計算する

?− append([1,2,3],[4,5], X).
 X = [1, 2, 3, 4, 5].

連結関数として

We can then ask: Is there a list X such that append([1,2,3],[4,5],X)

holds? Prolog answers Yes, and, furthermore, gives us that list X. As if
append were a function to concatenate two lists.

4

関連で計算する

?− append([1,2],X,[1,2,3,4,5]).
 X = [3, 4, 5].

逆に計算する

Prolog’s append is so elegant because it defines a relation among three
lists. We specify any two lists and query for the other one that makes
the relation hold. For example, let’s check if a given list has a given
prefix, and if so, remove it. Likewise, we can check for, and remove, a
given suffix.
If list concatenation was like running forwards, prefix removal is like
running append backwards.

4

関連で計算する

?− append(X,Y,[1,2,3,4,5]).

X = [], Y = [1, 2, 3, 4, 5] ;
X = [1], Y = [2, 3, 4, 5] ;
X = [1, 2], Y = [3, 4, 5] ;
X = [1, 2, 3], Y = [4, 5] ;
X = [1, 2, 3, 4], Y = [5] ;
X = [1, 2, 3, 4, 5], Y = [] ;
false .

反連結

Append can also be asked to split a given list in all possible ways,
returning its prefixes and suffixes. So, append in Prolog can
concatenate, and un-concatenate. If the list is finite, we obtain the
finite number of answers.

5

実際に使われるような例

db2([rec(name(’山下’),graduated(no),grades([4,4])),

rec(name(’山田’),graduated(yes),grades([2,3,4,4]))]).

卒業の学生の記録を削除して、それを印刷し、残したDBを返
せよ。記録がなればそう言いなさい。

The append relation is truly elegant. But let’s take a more practical,
involved example of using something like append. Suppose we have a
database of student records, which contains for each student their
name, graduation status and the GPA for each year in attendance. The
task is to find a record of a graduated student, print it out and delete.
Return the resulting database. If the record is not found, say so.

6

実際に使われるような例:削除

del rec ([Rec|LRem],Rec,LRem) :−
Rec = rec(name(),graduated(yes), grades()).

del rec ([H|T],Rec,[H|LRem]) :− del rec(T,Rec,LRem).

del rec(Db,Rec,DbRem)
Db database
Rec 卒業の学生の記録
DbRem RecなしDb

This function finds a record of a graduated student and deletes it. It
looks quite like append: the second clause has exactly the same
structure.

7

実際に使われるような例:印刷

print rec (rec (name(N),graduated(yes),grades([G1,G2,G3,G4]))) :−
print (’ Student: ’), print (N),print (’ Grades:’),
print (G1),print (’, ’),
print (G2),print (’, ’),
print (G3),print (’, ’),
print (G4),nl .

The printing function is standard.

8

実際に使われるような例:組み合わせる

prog1(Db) :− del rec (Db,R,DbRem), print rec(R), nl , print (DbRem).
prog1() :− print (’ None graduated’).

?- db2(X), prog1(X).

Student: 山田 Grades:2, 3, 4, 4

9

実際に使われるような例:問題

prog1(Db) :− del rec (Db,R,DbRem), print rec(R), nl , print (DbRem).
prog1() :− print (’ None graduated’).

db3([rec(name(’山下’),graduated(no),grades([4,4])),

rec(name(’田中’),graduated(yes),grades([4,4]))]).

?- db3(X), prog1(X).

None graduated

非決定性は多過ぎて

But when we use a different database, shown on the slide, the result is
totally puzzling. The program said that no student graduated whereas
we clearly see the record of the graduated Tanaka. The problem is
that Tanaka is very smart and graduated in only two years – and our
printing program was unable to deal with it. It failed – which is
expected. What is unexpected is that the whole program did not fail,
but returned a wrong result. The failure in printing caused the
backtracking in the record deletion. We were solving a different
problem. What we expected that if the candidate for deletion is found,
we should commit to it.

10

実際に使われるような例: committed choice

prog2(Db) :−
del rec (Db,R,DbRem) →print rec (R), nl , print (DbRem);

print (’ None graduated’).

db3([rec(name(’山下’),graduated(no),grades([4,4])),

rec(name(’田中’),graduated(yes),grades([4,4]))]).

?- db3(X), prog2(X).

false.

We need so-called committed choice, or soft-cut. Here is how our
example looks and works with the soft cut. Now the whole program
fails, if the input is unexpected. This is the desired behavior.
Predictably, soft-cut (and its rude alternative !/0) are are ubiquitous in
practical Prolog programs, occurring almost on every line.

11

committed choiceについて

del ([H|T],H,T).
del ([H|T],D,[H|R]) :− del(T,D,R).

prog1(L,S) :− (del (L,true , LRem), S= deleted(LRem));
S= failed.

?− prog1([false , true , false], S).
 S = deleted([false , false]) ;

S = failed .

But committed choice is not without problems. To illustrate them, we
use a simpler deletion operation.

12

committed choiceの問題

del ([H|T],H,T).
del ([H|T],D,[H|R]) :− del(T,D,R).

prog3(L,S) :− del(L,true , LRem) →S= deleted(LRem); S= failed.

?− prog3([true, false , true], S).
 S = deleted([false , true]).

?− prog3(L,S).
 L = [true | G16], S = deleted(G16).

Committed choice cuts choices. Therefore, when we ‘reverse’ progr3,
trying to generate its inputs, we get only one choice, of the list starting
with true. But prog3 clearly can delete true from a list even if that
element occurs in the middle or at the end of the list.
We can’t really complain: once we cut the choices, we no longer can
reverse them.
Constraints immediately come to mind. However, the example is so
formulated that we can’t use the standard, in SWI Prolog,
constraint-solving libraries. In the original example, the record
selection can be arbitrary complex, requiring arbitrarily complex
constraints, which generally cannot be solved efficiently. Anyway,
Classical Prolog didn’t have constraints.

13

途中のまとめ

古典Prolog

© 宣言的

© 関連的:前向き、後ろ向きの実行

�� 非決定性が一般的、決定性が困難、非純粋

�� 型つけない

�� 探索は非柔軟で、よく止らない

�� FFIは純粋を汚染する

Let’s review the first part of the talk, good and bad features of Prolog.
To emphasize, we are talking about the Classical Prolog. There are
various ways of getting around: for example, some Prolog systems
have good mode analysis (e.g., Mercury) – but many do not. There
are typed Prolog-like systems: Mercury and lambda-Prolog. But they
are, unfortunately, much less popular.
The first drawback – non-determinism as the default – is most
problematic. Many real-life problems are mostly deterministic, or
involve long segments of deterministic computations (e.g., number
crunching). Encoding such problems efficiently in Prolog is very
difficult, often requiring ‘cut’ and other impure features.
When a problem suits Prolog, the answer is breathtakingly elegant.
But most of the time it is not.

14

古典Prologとは

I Kowalski, Clocksin & MellishのProlog
I 論理変数,単一化,非決定性
I 汎用プログラム言語として

I database queryやSMT solverのための本の記法はでない

Some say: “Prolog has become modeling language. One of the key
features of Prolog is that it is based on first-order logic as a modeling
language.” That is not the Prolog that Kowalski, Clocksin and Mellish,
and the 5th Generation Project had in mind. The ASP Prolog is just a
notation for conveniently expressing sets of constraints, which can be
solved in efficient ways. Perhaps this is a better Prolog, but not the
one that gripped the imagination in the 70s. Datalog is also Prolog,
but it doesn’t even have unification.

I must stress that I do not say non-determinism is bad. It is
non-determinism that leads to the elegant formulation of the problem.
The problem is not non-determinism, but its amount.
Let’s try another approach – instead of designing a language around
non-determinism, let’s start with a proven language and try to add
non-determinism to it.

15

反省
確立プログラムイング言語 http://okmij.org/ftp/kakuritu/

基本

val dist : (prob ∗ α) list → α
val fail : unit → α

val reify0 : (unit → α) → α pV

基本によって表現された便利な関数

val flip : prob → bool
val uniformly : α array → α
...
val exact reify : (unit → α) → α pV
val reify part : int option → (unit → α) →

(Ptypes.prob ∗ α) list
...

http://okmij.org/ftp/kakuritu/

An example is a library called Hansei, which adds weighted
non-determinism (probabilities) to the ordinary OCaml. We will hush
the probabilities in this talk.
The primitives of the library are dist, to non-deterministically choose
an element from a list, and fail. There is also a strange sounding
function reify0 that turns a program into a tree of choices, letting us
program our own search strategies. The library has lots of convenient
functions written in terms of primitives, such as flip, the uniform
selection, and the exhaustive search through all the choices, which
produces the flattened choice tree, or the probability table. The
function reify part is a version of exact reify. The first argument is the
depth search bound (infinite, if None).

16

反省におけるリスト削除: 紛失なしcommitted choice

type bl = Nil | Cons of bool ∗ blist
and blist = unit → bl

let nil : blist = fun () → Nil
let cons : bool → blist → blist = fun h t () → Cons (h,t)
val list of blist : blist → bool list

let ftf = cons false @@ cons true @@ cons false @@ nil

let rec del : blist → bool → blist = fun l b →
match l () with
| Cons (h,t) → if h = b then t else cons h (del t b)
| Nil → fail ()

We now show how that Hansei can not only delete from a list, with
committed choice, but also reverse the deletion without loss.
We first define boolean lists with a non-deterministic spine. Elements
could (and should be) be non-deterministic too. We introduce nil and
cons as easy-to-use constructors of lists, and a function to convert
blists into ordinary OCaml lists so we can show them. The sample list
ftf will be used in the examples. The list deletion is defined as an
ordinary recursive function pattern-matching on the list.

16

反省におけるリスト削除: 紛失なしcommitted choice

type bl = Nil | Cons of bool ∗ blist
and blist = unit → bl

let rec del : blist → bool → blist = fun l b →
match l () with
| Cons (h,t) → if h = b then t else cons h (del t b)
| Nil → fail ()

del ftf true ;;
 − : blist = <fun>

Executing the deletion by itself does not give an informative answer.
Recall that we use the Hansei library to build a probabilistic model,
which we then have to run. Running the model determines the set of
possible worlds consistent with the probabilistic model. Hansei offers
a number of ways to run models and obtain the answers and their
weights. We will be using iterative deepening: reify part. The first
argument is the depth search bound (infinite, if None).

16

反省におけるリスト削除: 紛失なしcommitted choice

type bl = Nil | Cons of bool ∗ blist
and blist = unit → bl

let rec del : blist → bool → blist = fun l b →
match l () with
| Cons (h,t) → if h = b then t else cons h (del t b)
| Nil → fail ()

reify part None @@ fun () →
list of blist @@ del ftf true

[(1. , [false ; false])]

Running the del model gives the expected result. We have defined del

as a function, and can indeed run it as the list deletion function,
‘forwards’. The answer is returned with the probability 1 – del is
deterministic. (Actually, del can fail: it is a partial, or
semi-deterministic function.)

17

論理変数でしょうか

reify part None @@ fun () →
let l = fun () → Cons (flip 0.5, nil) in
(list of blist l , list of blist @@ del l true)

[(0.25, ([false], [])); (0.25, ([true], []))]

But how can we run the deterministic function like del backwards?
The first attempt is just to run it on a randomly generated list. In
Hansei, a boolean X is modeled as a non-deterministic boolean flip

0.5. But something is wrong with the Hansei code!

18

論理変数

val letlazy : (unit → α) → (unit → α)

reify part None @@ fun () →
let l = letlazy @@ fun () → Cons (flip 0.5, nil) in
(list of blist l , list of blist @@ del l true)

 [(0.5, ([true], []))]

I 呼びなら選択

I 波関数の崩壊

We need the magical function letlazy, which at first blush looks like an
identity function. It is another primitive of Hansei. It takes a thunk
and returns a thunk. When we force that thunk, we force the original
one, and remember the result. All further forcing return the same
result. In functional-logic programming, this is called “call-time
choice”. In quantum mechanics, in is called “wavefunction collapse”.
Before we observe a system, for example, a still spinning coin, there
could indeed be several choices for the result. After we observed the
system, all further observations give the same result.
Now the code gives the expected answer.

19

論理変数: memoされた発生器

let rec a blist () =
letlazy (fun () →

dist [(0.5, Nil); (0.5, Cons(flip 0.5, a blist ()))])

reify part (Some 5) @@ fun () →
let l = a blist () in
(list of blist l , list of blist @@ del l true)

 [(0.03125, ([false ; true], [false]));
(0.125, ([true], []));
(0.03125, ([true ; false], [false]));
(0.03125, ([true ; true], [true]))]

To invert del, we run it on any list. We define a generator for any blists

(with letlazy) and use it as a logic variable X. In Prolog, our
deterministic deletion, with soft cut, was stuck on generating all lists
with true at the head. In Hansei, we can generate other lists.

19

論理変数: memoされた発生器

let rec a blist () =
letlazy (fun () →

dist [(0.5, Nil); (0.5, Cons(flip 0.5, a blist ()))])

reify part None @@ fun () →
let l = a blist () in
list haslen l 3;
(list of blist l , list of blist @@ del l true)

 [(0.0078, ([false ; false ; true], [false ; false]));
(0.0078, ([false ; true ; false], [false ; false]));
(0.0078, ([false ; true ; true], [false ; true]));
(0.0078, ([true ; false ; false], [false ; false]));
(0.0078, ([true ; false ; true], [false ; true]));
(0.0078, ([true ; true ; false], [true ; false]));
(0.0078, ([true ; true ; true], [true ; true]))]

We can do better! We run without the upper bound on the search, and
it terminates! We get all possible lists of three elements, with the
exception of the list with all false, where del true fails. We can recover
from the failure: see the accompanying code for soft-cut.

20

無先行のリスト

reify part (Some 5) @@ fun () →
let l = a blist () in
(list of blist l , list of blist @@ del l true)

let rec list haslen : blist → int → unit = fun l n →
match (l (), n) with
| (Nil ,0) → ()
| (Cons (, t), n) when n >0 → list haslen t (n−1)
| → fail ()

list haslen l 3にはたかが4つthunkが強制させる

21

そのlazyじゃない

I OCamlのlazyじゃない

I Schemeのdelayじゃない

I Haskellの遅延評価じゃない

その遅延評価は全体のstoreを変化させる

非決定性のためは、地元の第一級storeが必要

We have seen the crucial role of laziness, to delay the computation and
memoize its result. OCaml has a facility to delay a computation and
memoize the result – called lazy. Scheme has delay. In Haskell (GHC),
lazy evaluation is pervasive. None of them do what we want. They are
all implemented via mutation of the ordinary, or global, or shared
memory – shared across all possible worlds, resulting from a choice.
It is useful to think of a non-deterministic choice, flipping a coin, as
splitting the current world. In one world, the coin came up ‘head’, in
the other it came ‘tail’. If we are to memoize, cache the result, we
should use different memo tables for different worlds, because
different worlds have different choices.
In short, non-deterministic laziness needs first-class memory – which
is what Hansei implements.

22

Hansei: Summary

© 宣言的

© 関連のふりした

© 決定性が一般的,
非決定性が易しい

© 型付け

© 探索がプログラムできる

© FFIが易しい

http://okmij.org/ftp/kakuritu/logic-programming.html

http://okmij.org/ftp/kakuritu/logic-programming.html

23

まとめ

古典Prologは is the exquisite square peg in the world with
mostly round holes

「本物論理プログラミングは各方の好きな関数言語へ」
という例

Prologを学べ、でも実際に使うな

The concise and declarative formulation of problems is the gift of
non-determinism and the reason for its invention. Classical Prolog
makes non-determinism the default computational mode. Taken to
such extreme, non-determinism turns from virtue into vice. Quite
many computations and models are mostly deterministic.
Implementing them in Prolog with any acceptable performance
requires the extensive use of problematic features such as cut. Purity
is also compromised when interfacing with mainstream language
libraries, which are deterministic and cannot run backwards.
Divergence is the constant threat, forcing the Prolog programmers to
forsake the declarative specification and program directly against the
search strategy. All in all, Classical Prolog is the exquisite square peg
in the world with mostly round holes.
We have seen the standard logic programming examples in the
completely standard OCaml. We did not implement Prolog, Kanren,
Curry in OCaml. Rather, we used OCaml directly, as it is. In particular,
we call any OCaml function from any OCaml library directly, and can
be called by it. You can probably do the similar non-deterministic
programming in your language.
The talk is meant to be provocative, so if it hasn’t been so far, I’ll end it
on the provocative note: everyone should learn and know Classical
Prolog, and nobody should use it.

23

まとめ

古典Prologは is the exquisite square peg in the world with
mostly round holes

「本物論理プログラミングは各方の好きな関数言語へ」
という例

Prologを学べ、でも実際に使うな

The concise and declarative formulation of problems is the gift of
non-determinism and the reason for its invention. Classical Prolog
makes non-determinism the default computational mode. Taken to
such extreme, non-determinism turns from virtue into vice. Quite
many computations and models are mostly deterministic.
Implementing them in Prolog with any acceptable performance
requires the extensive use of problematic features such as cut. Purity
is also compromised when interfacing with mainstream language
libraries, which are deterministic and cannot run backwards.
Divergence is the constant threat, forcing the Prolog programmers to
forsake the declarative specification and program directly against the
search strategy. All in all, Classical Prolog is the exquisite square peg
in the world with mostly round holes.
We have seen the standard logic programming examples in the
completely standard OCaml. We did not implement Prolog, Kanren,
Curry in OCaml. Rather, we used OCaml directly, as it is. In particular,
we call any OCaml function from any OCaml library directly, and can
be called by it. You can probably do the similar non-deterministic
programming in your language.
The talk is meant to be provocative, so if it hasn’t been so far, I’ll end it
on the provocative note: everyone should learn and know Classical
Prolog, and nobody should use it.

24

A historical note
“One can see now how this talk in 1957 must have motivated
Gilmore, Davis and Putnam to write their Herbrand-based proof
procedure programs. Their papers ... were based fundamentally
on the idea of systematically enumerating the Herbrand
Universe of a proposed theorem – namely, the (usually infinite)
set of all terms constructible from the function symbols and
individual constants which (after its Skolemization) the
proposed theorem contained. This technique is actually the
computational version of Herbrand’s so-called Property B
method. ... These first implementations of the Herbrand FOL
proof procedure thus revealed the importance of trying to do
better than merely hoping for the best as the exhaustive
enumeration for only ground on, or than guessing the
instantiations that might be the crucial ones in terminating the
process. In fact, Herbrand himself had already in 1930 shown
how to avoid this enumerative procedure, in what he called the
Property A method. The key to Herbrand’s Property A method is
the idea of unification.

25

A historical note (cont)
Herbrand’s writing style in his doctoral thesis was not, to put it
mildly, always clear. As a consequence, his exposition of the
Property A method is hard to follow, and is in fact easily
overlooked. At any rate, it seems to have attracted no attention
except in retrospect, after the independent discovery of
unification by Prawitz thirty years later....
Once I had managed to recast the unification algorithm into a
suitable form, I found a way to combine the Cut Rule with
unification so as to produce a rule of inference of a new
machine-oriented kind. It was machine-oriented because in
order to obtain the much greater deductive power than had
hitherto been the norm, it required much more computational
effort to apply it than traditional human-oriented rules typically
required. In writing this work up for publication, when I needed
to think of a name for my new rule, I decided to call it
”resolution”, but at this distance in time I have forgotten why.
This was in 1963.”

John Alan Robinson: “Computational Logic: Memories of the
Past and Challenges for the Future”. Proc. CVL’00.

And of course the resolution is the foundation of Prolog. What I want
to emphasize is that the unification was invented to cope with a large
or infinite search space. It is an optimization. But so is laziness...

