
The five articles in this special issue are the extended, journal versions of
the papers first presented at the ACM SIGPLAN 2012 Workshop on Partial
Evaluation and Program Manipulation. PEPM’12 took place in January 2012
in Philadelphia, Pennsylvania, USA. Out of 19 papers presented at PEPM 2012,
the program committee selected six and invited their authors to submit an ex-
tended and improved version to the Special issue. Each submission was reviewed
by three reviewers according to the rigorous journal standards. Five have been
recommended for publication.

The PEPM Symposium/Workshop series is about the theory and practice
of program transformation understood broadly, ranging from program manip-
ulation such as partial evaluation, to program analyses in support of program
manipulation, to treating programs as data objects (metaprogramming). PEPM
focuses on techniques, supporting theory, tools, and applications of the analysis
and manipulation of programs. PEPM specifically stresses that each technique
or tool of program manipulation should have a clear, although perhaps informal,
statement of desired properties, along with an argument how these properties
could be achieved. The papers included in this special issue reflect the entire
scope of PEPM, its interplay of theory and practice, and its stress on rigor and
clarity.

The first article by Kazutaka Matsuda, Kazuhiro Inaba and Keisuke Nakano
on Polynomial-Time Inverse Computation for Accumulative Functions with Mul-
tiple Data Traversals is directly about program manipulation. Specifically, the
topic of the article is program inversion: transforming a program to ‘run in
reverse’, enumerating the possible inputs to the original program that result
in the given output. Not only does the transformed, inverted program always
terminate for a broad class of functions, but it also runs in polynomial time
with respect to the original output and the program size. This paper received
PEPM 2012 Best Paper award, as chosen by the program committee.

Naoki Kobayashi, Kazutaka Matsuda, Ayumi Shinohara and Kazuya Yaguchi
present a rare view of programs as data, namely programs as compressed data.
Running the compressed data as a functional program recovers the original data.
The authors further demonstrate that some program analysis and manipulation
techniques can be applied to the program, having the effect of manipulating the
compressed data without decompressing it. As in article by Matsuda et al., the
authors not only present the compression and manipulation algorithms; they
rigorously formulate the correctness property and prove that it holds.

The article on The Interaction of Contracts and Laziness by Markus Degen,
Peter Thiemann, and Stefan Wehr is on the topic of contract monitoring: check-
ing dynamically that functions satisfy their contracts as they are run. Given a
function and a partial specification of its correctness (a contract), the goal is to
transform the function in order to verify, at run-time, that the specification is
satisfied. Such a transformation is not at all straightforward in lazy languages.
The article defines and justifies the properties of the transformation, and defines
what it means for such a transformation to be complete and to preserve mean-
ing. The article rigorously demonstrates that, surprisingly, contract monitoring
for lazy functional languages cannot simultaneously have both properties.

1



Most program analyses and transformations deal with a program as fully
written. Rarely do we see rigorous analyses of methods to help write programs –
of integrated development environments (IDE) and their user interfaces. Isao
Sasano and Takumi Goto’s An Approach to Completing Variable Names for
Implicitly Typed Functional Languages is an exception. The authors investigate
variable name completion, a popular feature in IDE. The name completion is
guided by the type expected at the current point. Determining the expected type
in a not-yet-completed expression is a challenge in implicitly typed functional
languages, where the types are inferred only after the program is finished. Isao
Sasano and Takumi Goto address this problem, by developing a theory of type
inference on incomplete programs. They have prototyped their approach as an
Emacs mode.

The final article showcases the practical aspect of PEPM. Tiark Rompf,
Nada Amin, Adriaan Moors, Philipp Haller, and Martin Odersky describe the
design and implementation of Scala-Virtualized: a set of Scala features that
support flexible embeddings of domain-specific languages (DSL). Of particular
interest is representing conditionals, pattern matching and other special forms
of the embedded language in Scala syntax (but with possibly different seman-
tics). The article should also appeal to the researchers in program generation
and partial evaluation: the authors treat an embedded DSL program as a pro-
gram generator. The paper was presented at PEPM as a tool demonstration.
The article in this issue is a greatly expanded version, adding to the new large
demonstration example the motivation and a thorough explanation of the vir-
tualization technique.

We hope this issue is informative, and illustrative of PEPM.

Oleg Kiselyov Julia Lawall Simon Thompson
Monterey, CA, US INRIA, FR University of Kent, UK

2


