
Dependent open terms and the evaluation contexts that bind them

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

How should we represent open terms and their binding contexts,
especially in HOAS, and especially when one binding may depend
on another? We came to this problem when formalizing the small-
step semantics of staging so as to combine staging with effects in
a sound type system. We describe our Twelf solution and call for a
more elegant and natural representation.

Code generation is the most promising approach in high-per-
formance computing (as in SPIRAL [5]) and high-assurance em-
bedded programming (as in Hume [3]). Staged languages such as
MetaOCaml are an attractive way to express such code generation.
Code generation techniques like let insertion require either pro-
gramming in CPS, which is cumbersome, or using effects such as
state or delimited control, which risks scope extrusion: no staged
language today has a type system that is sound with effects.

Yukiyoshi Kameyama and us are studying the combination of
staging and effects. The most straightforward way to formalize
languages with effects (especially delimited control) is small-step
semantics with evaluation contexts [7]. With staging, our redexes
may be open and our evaluation contexts may be binding. We show
a simple example in Scheme, MetaOCaml, and Taha and Nielsen’s
idealization λ α [6] of MetaOCaml.

(1) Scheme: ‘(lambda (x) ,(id ‘x))
MetaOCaml: .<fun x -> .~(id .<x>.)>.

λ α : 〈λxα :int.~(id〈x〉α)〉α

In λ α , a bracket 〈. . .〉 is labeled with a classifier such as α or β , and
a variable or typing judgment is labeled with a level, or a sequence
of classifiers. This program decomposes into the open redex

(2) Scheme: (id ‘x)
MetaOCaml: id .<x>.

λ α : id〈x〉α

and the evaluation context

(3) Scheme: ‘(lambda (x) ,[])
MetaOCaml: .<fun x -> .~[]>.

λ α : 〈λxα :int.~[]〉α ,

which binds the staged variable x or x. Further, the program below
illustrates that an evaluation context may contain several bindings.

(4) Scheme: ‘(lambda (x)
‘(lambda (y) ,,(id ‘‘y)))

MetaOCaml: .<fun x ->
.<fun y -> .~(.~(id .<.<y>.>.))>.>.

λ α : 〈λxα :int.(β)〈λyαβ :int.~~(id〈〈y〉β 〉α)〉β 〉α

Here the λ α expression (β) . . . binds the classifier β . Hence the
λ α evaluation context 〈λxα :int.(β)〈λyαβ :int.~~[]〉β 〉α binds the
variable xα : int, the classifier β , and the variable yαβ : int.

Because the label αβ for y above depends on the bound clas-
sifier β , we face conflicting demands from evaluation and binding
when we try to formalize evaluation contexts as an LF type. On
one hand, in order for an evaluation context to be a defunctional-

ized continuation of a CPS evaluator or one-small-step reducer [2],
we should represent it inside-out, with the part next to the hole most
accessible. On the other hand, in order for β to bind into yαβ : int
above, we should represent the evaluation context outside-in, with
the program root most accessible.

Our mechanization of λ α represents evaluation contexts outside-
in. We thus take advantage of HOAS to ensure α-conversion invari-
ance in a staged language [6], at the cost of obscuring the connec-
tion to defunctionalized continuations. We define in LF

1. the type exp of a closed expression (program) E,
2. the type gs of a typing environment G,
3. the type oquals G of an open level A bound by G,
4. the type oexp A of an open expression O at A bound by G,
5. the type ctxb A of a context C whose hole is at A and bound

by G, and finally
6. the type zip-up O C E of plugging O into C to yield E.

We convinced Twelf that %mode zip-up +O +C -E is total. This
totality suggests that these types adequately represent ordered de-
pendent sequences of bindings, be they needed by an expression
or provided by a context. These definitions let us specify the first
small-step semantics for staging.

The challenge remains to represent contexts inside-out while
expressing its binding structure, in particular how the continuation
of a staged evaluator may “bind off” a later-stage variable. Possibly
relevant are dependent types in CPS [1] and contexts in LF [4].

[1] Barthe, Gilles, John Hatcliff, and Morten Heine B. Sørensen. 1999. CPS
translations and applications: The cube and beyond. Higher-Order and
Symbolic Computation 12(2):125–170.

[2] Danvy, Olivier. 2004. On evaluation contexts, continuations, and the
rest of the computation. In CW’04: Proceedings of the 4th ACM SIG-
PLAN continuations workshop, ed. Hayo Thielecke. Tech. Rep. CSR-
04-1, School of Computer Science, University of Birmingham.

[3] Hammond, Kevin, and Greg Michaelson. 2003. Hume: A domain-
specific language for real-time embedded systems. In Proceedings
of GPCE 2003: 2nd international conference on generative program-
ming and component engineering, ed. Frank Pfenning and Yannis
Smaragdakis, 37–56. Lecture Notes in Computer Science 2830, Berlin:
Springer-Verlag.

[4] Nanevski, Aleksandar, Frank Pfenning, and Brigitte Pientka. 2007.
Contextual modal type theory. Transactions on Computational Logic.
In press.

[5] Püschel, Markus, José M. F. Moura, Jeremy Johnson, David Padua,
Manuela Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti,
Aca Gačić, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and
Nick Rizzolo. 2005. SPIRAL: Code generation for DSP transforms.
Proceedings of the IEEE special issue on program generation, opti-
mization, and adaptation 93(2):232–275.

[6] Taha, Walid, and Michael Florentin Nielsen. 2003. Environment clas-
sifiers. In POPL ’03: Conference record of the annual ACM sympo-
sium on principles of programming languages, 26–37. New York: ACM
Press.

[7] Wright, Andrew K., and Matthias Felleisen. 1994. A syntactic approach
to type soundness. Information and Computation 115(1):38–94.

